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Abstract
The NVIDIA® OptiX™ ray tracing engine is a programmable 
system designed for NVIDIA GPUs and other highly par-
allel architectures. The OptiX engine builds on the key 
observation that most ray tracing algorithms can be imple-
mented using a small set of programmable operations. 
Consequently, the core of OptiX is a domain-specific just-
in-time compiler that generates custom ray tracing kernels 
by combining user- supplied programs for ray generation, 
material shading, object intersection, and scene traversal. 
This enables the implementation of a highly diverse set of 
ray tracing-based algorithms and applications, including 
interactive rendering, offline rendering, collision detection 
systems, artificial intelligence queries, and scientific simula-
tions such as sound propagation. OptiX achieves high perfor-
mance through a compact object model and application of 
several ray tracing-specific compiler optimizations. For ease 
of use it exposes a single-ray programming model with full 
support for recursion and a dynamic dispatch mechanism 
similar to virtual function calls.

1. INTRODUCTION
Many CS undergraduates have taken a computer graphics 
course where they wrote a simple ray tracer. With a few 
simple concepts on the physics of light transport, students 
can achieve high quality images with reflections, refraction, 
shadows, and camera effects such as depth of field—all of 
which present challenges on contemporary real-time graph-
ics pipelines. Unfortunately, the computational burden of 
ray tracing makes it impractical in many settings, especially 
where interactivity is important. Researchers have invented 
many techniques for improving the performance of ray trac-
ing,13 especially when mapped to high-performance archi-
tectural features such as explicit SIMD instructions12 and 
Single-Instruction Multiple-Thread (SIMT)-based6 GPUs.1 
Unfortunately most such techniques muddy the simplicity 
and conceptual purity that make ray tracing attractive. Nor 
have industry standards emerged to hide these complexi-
ties, as Direct3D and OpenGL do for rasterization.

To address these problems, we introduce OptiX, a general 
purpose ray tracing engine. A general programming inter-
face enables the implementation of a variety of ray tracing-
based algorithms in graphics and non-graphics domains, 
such as rendering, sound propagation, collision detection, 
and artificial intelligence. This interface is conceptually 
simple yet enables high performance on modern GPU archi-
tectures and is competitive with hand-coded approaches.

In this paper, we discuss the design goals of the OptiX 
engine as well as an implementation for NVIDIA GPUs. In 
our implementation, we compose domain-specific compi-
lation with a flexible set of controls over scene hierarchy, 

acceleration structure creation and traversal, on-the-fly 
scene update, and a dynamically load-balanced GPU execu-
tion model. Although OptiX primarily targets highly parallel 
GPU architectures, it is applicable to a wide range of special- 
and general-purpose hardware, including modern CPUs.

1.1. Ray tracing, rasterization, and GPUs
Computer graphics algorithms for rendering, or image 
 synthesis, take one of two complementary approaches. One 
family of algorithms loop over the pixels in the image, com-
puting for each pixel, the first object visible at that pixel; this 
approach is called ray tracing because it solves the geometric 
problem of intersecting a ray from the pixel into the objects. 
A second family of algorithms loops over the objects in the 
scene, computing for each object the pixels covered by that 
object. Because the resulting per-object pixels (called frag-
ments) are formatted for a raster display, this approach is 
called rasterization. The central data structure of ray trac-
ing is a spatial index called an acceleration structure, used to 
avoid testing each ray against all objects. The central data 
structure of rasterization is the depth buffer, which stores the 
distance of the closest object seen at each pixel and discards 
fragments from invisible objects. While both approaches 
have been generalized and optimized greatly beyond this 
simplistic description, the basic distinction remains: ray 
tracing iterates over rays while rasterization iterates over 
objects. High-performance ray tracing and rasterization, 
both focus on rendering the simplest of objects: triangles.

Historically, ray tracing has been considered slow and 
rasterization fast. The simple, regular structure of depth-
buffer rasterization lends itself to highly parallel hardware 
implementations: each object moves through several stages 
of computation (the so-called graphics pipeline), with each 
stage performing similar computations in data-parallel 
fashion on the many objects, fragments, and pixels in flight 
throughout the pipeline. As graphics hardware has grown 
more parallel it has also grown more general, evolving from 
specialized fixed-function circuitry implementing the vari-
ous stages of the graphics pipeline into fully programmable 
processors that virtualize those stages onto hundreds or even 
thousands of small general-purpose cores. Today’s graphics 
processing units, or GPUs, are massively parallel processors 
capable of performing trillions of floating-point math oper-
ations and rendering billions of triangles each second. The 
computational horsepower and power efficiency of mod-
ern GPUs has made them attractive for high-performance 

The original version of this paper is entitled “OptiX: A General 
Purpose Ray Tracing Engine” and was published in ACM  
Transactions on Graphics (TOG)—Proceedings of ACM 
SIGGRAPH, July 2010, ACM



94    COMMUNICATIONS OF THE ACM   |   MAY 2013  |   VOL.  56  |   NO.  05

research highlights 

 

computing, from many of the fastest supercomputers in 
the world to science, math, and engineering codes on the 
desktop. All of which raises the question: can ray tracing be 
implemented efficiently and flexibly on GPUs?

1.2. Contributions and design goals
To create a high-performance system for a broad range of ray 
tracing tasks, several trade-offs and design decisions led to 
the following contributions:

• A general, low level ray tracing engine. OptiX is not a 
 renderer. It focuses exclusively on the fundamental 
computations required for ray tracing and avoids 
embedding, rendering-specific constructs such as 
lights, shadows, and reflectance.

• A programmable ray tracing pipeline. OptiX shows that 
most ray tracing algorithms can be implemented using 
a small set of lightweight programmable operations. 
It defines an abstract ray tracing execution model as a 
sequence of user-specified programs, analogous to the 
traditional rasterization-based graphics pipeline.

• A simple programming model. OptiX avoids burdening 
the user with the machinery of high-performance ray 
tracing algorithms. It exposes a familiar recursive, 
 single-ray programming model rather than ray packets 
or explicit vector constructs, and abstracts any batch-
ing or reordering of rays.

• A domain-specific compiler. The OptiX engine combines 
just-in-time compilation techniques with ray tracing-
specific knowledge to implement its programming 
model efficiently. The engine abstraction permits the 
compiler to tune the execution model for available 
 system hardware.

2. RELATED WORK
While numerous high-level ray tracing libraries, engines, 
and APIs have been proposed,13 efforts to date have been 
focused on specific applications or classes of rendering algo-
rithms, making them difficult to adapt to other domains or 
architectures. On the other hand, several researchers have 
shown how to map ray tracing algorithms efficiently to GPUs 
and the NVIDIA® CUDA™ architecture,1, 3, 11 but these systems 
have focused on performance rather than flexibility.

Further discussion of related systems and research can 
be found in the original paper.10

3. A PROGRAMMABLE RAY TRACING PIPELINE
The core idea behind the OptiX engine is that most ray trac-
ing algorithms can be implemented using combinations of a 
small set of programmable operations. This is directly analo-
gous to the programmable rasterization pipelines employed 
by OpenGL and Direct3D. At a high level, these systems 
expose an abstract rasterizer containing lightweight call-
backs for vertex shading, geometry processing, tessellation, 
and pixel shading operations. An ensemble of these program 
types, often used in multiple passes, can be used to imple-
ment a broad variety of rasterization-based algorithms.

We have identified a corresponding programmable ray 
tracing execution model along with lightweight operations 

that can be customized to implement a wide variety of ray 
tracing-based algorithms.9 These user-provided operations, 
which we simply call programs, can be combined with a user-
defined data structure (payload) associated with each ray. 
The ensemble of programs together implement a particular 
client application’s algorithm.

3.1 Programs
OptiX includes seven different types of these programs, 
each of which conceptually operates on a single ray at a 
time. In addition, a bounding box program operates on 
geometry to determine primitive bounds for acceleration 
structure construction. The combination of user programs 
and hardcoded OptiX kernel code forms the ray tracing 
pipeline, which is outlined in Figure 2. Unlike a feed-forward 
rasterization pipeline, it is more natural to think of the ray 
tracing pipeline as a call graph. The core operation, rtTrace, 
alternates between locating an intersection (Traverse) and 
responding to that intersection (Shade). By reading and 
writing data in user-defined ray payloads and in global device-
memory arrays called buffers, these operations are combined 
to perform arbitrary computation during ray tracing.

Ray generation programs are the entry into the ray tracing 
pipeline. A single invocation of rtContextLaunch from the host 
will create many instantiations of these programs. A typical ray 
generation program will create a ray using a camera model for 
a single sample within a pixel, start a trace operation, and store 
the resulting color in an output buffer. But by distinguishing 
ray generation from pixels in an image, OptiX enables other 
operations such as creating photon maps, precomputing 
lighting texture maps (also known as baking), processing ray 
requests passed from OpenGL, shooting multiple rays for 
super-sampling, or implementing different camera models.

Intersection programs implement ray-geometry intersec-
tion tests. As the acceleration structures are traversed, the 
system will invoke intersection programs to perform geo-
metric queries. The program determines if and where the 
ray touches the object and may compute normals, texture 
coordinates, or other attributes based on the hit position. 
An arbitrary number of attributes may be associated with 
each intersection. Intersection programs enable support 
for arbitrary surfaces beyond polygons and triangles, such 
as displacement maps, spheres, cylinders, high-order sur-
faces, or even fractal geometries like the Julia set in Figure 
1. A  programmable intersection operation is useful even in 
a triangle-only system because it facilitates direct access to 
native mesh formats.

Closest-hit programs are invoked once traversal has 
found the nearest intersection of a ray with the scene 
geometry. This program type resembles surface shaders 
in classical rendering systems. Typically, a closest-hit pro-
gram will perform computations like shading, potentially 
casting new rays in the process, and store resulting data in 
the ray payload.

Any-hit programs are called during traversal for every 
ray-object intersection that is found. The any-hit program 
allows the material to participate in object intersection deci-
sions while keeping the shading operations separate from 
the geometry operations. It may optionally terminate the ray 
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using the built-in function rtTerminateRay, which will stop 
all traversal and unwind the call stack to the most recent 
invocation of rtTrace. This is a lightweight exception mech-
anism that can be used to implement early ray termina-
tion for shadow rays and ambient occlusion. Alternatively, 
the any-hit program may ignore the intersection using 

rtIgnoreIntersect ion, allowing  traversal to continue looking 
for other geometric objects. For instance, a program may 
choose to ignore an interaction based on a texture channel 
lookup to implement efficient alpha-mapped transparency 
without restarting traversal. Another use case for the any-hit 
program can be found in Section 6.1, where the application 
performs visibility attenuation for partial shadows cast by 
glass objects. Note that intersections may be presented out 
of order. The default any-hit program is a no-op, which is 
often the desired operation.

Miss programs are executed when the ray does not inter-
sect any geometry in the interval provided. They can be 
used to implement a background color or environment 
map lookup.

Exception programs are executed when the system encoun-
ters an exceptional condition, for example, when the recur-
sion stack exceeds the amount of memory available for each 
thread, or when a buffer access index is out of range. OptiX also 
supports user-defined exceptions that can be thrown from any 
program. The exception program can react, for example, by 
printing diagnostic messages or visualizing the condition by 
writing special color values to an output pixel buffer.

Selector visit programs expose programmability for 
coarse-level node graph traversal. For example, an applica-
tion may choose to vary the level of geometric detail for parts 
of the scene on a per-ray basis.

3.2 Scene representation
An explicit goal of OptiX was to minimize the overhead of 
scene representation, rather than forcing a heavyweight 
scene graph onto users. The OptiX engine employs a simple 
but flexible structure for representing scene information 
and associated programmable operations, collected in a 
container object called the context. This representation is 
also the mechanism for binding programmable shaders to 
the object-specific data that they require.

Figure 1. Images from various applications built with OptiX. Top: Physically based light transport through path tracing. Bottom: Ray tracing of 
a procedural Julia set, photon mapping, large-scale line of sight and collision detection, Whitted-style ray tracing of dynamic geometry, and 
ray traced ambient occlusion. All applications are interactive.
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Figure 2. A call graph showing the control flow through the ray 
tracing pipeline. The yellow boxes represent user-specified programs 
and the blue boxes are algorithms internal to OptiX. Execution is 
initiated by the API call rtContextLaunch. A built-in function, rtTrace, 
can be employed by the ray generation program to cast rays into the 
scene. This function may also be called recursively by the closest-hit 
program for shadow and secondary rays. The exception program is 
executed when the execution of a particular ray is terminated by an 
error such as excessive memory consumption.
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set of intersection and bounding box programs. The two 
 geometry  instances share a single material that implements 
a diffuse lighting model and fully attenuates  shadow rays 
via  closest-hit and any-hit programs, respectively.

The diagram on the left of Figure 3 illustrates how these 
programs are invoked for 3 rays that traverse through the 
scene: 1. The ray generation program creates rays and 
traces them against the geometry group. This initiates 
the Traverse stage shown in Figure 2, executing parallelo-
gram and triangle-mesh intersection until an intersection 
is found (2 and 3). If the ray intersects with geometry, the 
closest-hit program will be called whether the intersection 
was found on the ground plane or on the triangle mesh. 
The material will recursively generate show rays to deter-
mine if the light source is unobstructed. 4. When any inter-
section along the shadow ray is found, the any-hit program 
will terminate ray traversal and return to the calling pro-
gram with shadow occlusion information. 5. If a ray does 
not intersect with any scene geometry, the miss program 
will be invoked.

Geometry Instance objects bind a geometry object to a 
set of material objects. This is a common structure used by 
scene graphs to keep geometric and shading information 
orthogonal.

Geometry objects contain a list of geometric primitives. 
Each geometry object is associated with a bounding box pro-
gram and an intersection program, both of which are shared 
among the geometry object’s primitives.

Material objects hold information about shading oper-
ations, including the any-hit and closest-hit programs 
described in Section 3.1.

3.3. System overview
The OptiX engine consists of two distinct APIs. The host API 
is a set of C functions that the client application calls to cre-
ate and configure a context, assemble a node graph, and 
launch ray tracing kernels. It also provides calls to manage 
GPU devices. The program API is the functionality exposed to 
user programs. This includes function calls for tracing rays, 
reporting intersections, and accessing data. In addition, sev-
eral semantic variables encode state specific to ray tracing, 

Hierarchy nodes. A scene is represented as a lightweight 
graph that controls the traversal of rays through the scene. 
It can also be used to implement instancing two-level 
 hierarchies for animations of rigid objects, or other com-
mon scene structures. To support instancing and sharing of 
common data, the nodes can have multiple parents.

Four main node types can be used to provide the scene 
representation using a directed graph. Any node can be used 
as the root of scene traversal. This allows, for example, dif-
ferent representations to be used for different ray types.

Group nodes contain zero or more (but usually two or 
more) children of any node type. A group node has an accel-
eration structure associated with it and can be used to pro-
vide the top level of a two-level traversal structure.

Geometry Group nodes are the leaves of the graph and 
contain the primitive and material objects described below. 
This node type also has an acceleration structure associated 
with it. Any non-empty scene will contain at least one geom-
etry group.

Transform nodes have a single child of any node type, plus 
an associated 4×3 matrix that is used to perform an affine 
transformation of the underlying geometry.

Selector nodes have zero or more children of any node 
type, plus a single visit program that is executed to select 
among the available children.

Geometry and material objects. The bulk of the scene 
data is stored in the geometry nodes at the leaves of the 
graph. These contain objects that define geometry and 
shading operations. They may also have multiple parents, 
allowing material and geometry information to be shared 
at multiple points in the graph. As an example, consider 
Figure 3. The graph on the right shows a complete OptiX 
context for a simple scene with a pin-hole camera, two 
objects, and shadows. The ray generation program imple-
ments the camera, while a miss program implements 
a  constant white background. A single geometry group 
contains two geometry instances with a single geometric 
index—in this case a bounding-volume hierarchy (BVH)—
built over all  underlying geometry in the triangle mesh and 
ground plane. Two types of geometry are implemented, 
a triangle mesh and a parallelogram, each with its own 
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Figure 3. Example OptiX scene construction and execution.
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NVIDIA’s CUDA C/C++ compiler, nvcc, emits PTX and 
is currently the preferred mechanism for programming 
OptiX. Programs are compiled offline using nvcc and sub-
mitted to the OptiX API as a PTX string. By leveraging the 
CUDA C++ compiler, OptiX shader programs have a rich set 
of programming language constructs available, including 
pointers,  templates, and overloading that come automati-
cally by using C++ as the input language. A set of header 
files is provided that support the necessary variable anno-
tations and pseudo-instructions for tracing rays and other 
OptiX operations. These operations are lowered to PTX in 
the form of a call instruction that gets further processed by 
the OptiX runtime.

4.2. PTX to PTX compilation
Given the set of PTX functions for a particular scene, the 
OptiX compiler rewrites the PTX using multiple PTX to PTX 
transformation passes, which are similar to the compiler 
passes that have proven successful in the LLVM infrastruc-
ture. In this manner, OptiX uses PTX as an intermediate 
representation rather than a traditional instruction set. This 
process implements a number of domain-specific opera-
tions including an ABI (calling sequence), link-time optimi-
zations, and data-dependent optimizations. The fact that 
most data structures in a typical ray tracer are read-only, pro-
vides a substantial opportunity for optimizations that would 
not be considered safe in a more general environment.

One of the primary steps is transforming the set of 
mutually recursive programs into a non-recursive state 
machine. Although this was originally done to allow exe-
cution on a device that does not support recursion, we 
found benefits in scheduling coherent operations on the 
SIMT device and now employ this transformation even on 
newer devices that have direct support for recursion. The 
main step in the transformation is the introduction of a 
continuation, which is the minimal set of data necessary to 
resume a suspended function.

The set of PTX registers to be saved in the continuation 
is determined using a backward dataflow analysis pass that 
determines which registers are live when a recursive call (e.g., 
rtTrace) is encountered. A live register is one that is used as 
an argument for some subsequent instruction in the data-
flow graph. We reserve slots on a per-thread stack array for 
each of these variables, store them on the stack before the 
call and restore them after the call. This is similar to a caller-
save ABI that a traditional compiler would implement for 
a CPU-based programming language. In preparation for 
introducing continuations, we perform a loop-hoisting pass 
and a copy-propagation pass on each function to help mini-
mize the state saved in each continuation.

Finally, the call is replaced with a branch to return execu-
tion to the state machine described below, and a label that 
can be used to eventually return control flow to this func-
tion. Further detail on this transformation can be found in 
the original paper.

4.3. Optimization
The OptiX compiler infrastructure provides a set of 
domain-specific and data-dependent optimizations 

for example, the current distance to the closest intersection. 
Printing and exception handling facilities are also available 
for debugging.

After using OptiX host, API functions to provide scene 
data such as geometry, materials, acceleration structures, 
hierarchical relationships, and programs, the application 
will then launch ray tracing with the rtContextLaunch API 
function that passes control to OptiX. If required, a new ray 
tracing kernel is compiled from the given user programs, 
acceleration structures are built (or updated) and data is 
synchronized between host and device memory, and finally, 
the ray tracing kernel is executed, invoking the various user 
programs as described above.

After execution of the ray tracing kernel has completed, its 
resulting data can be used by the application. Typically, this 
involves reading from output buffers filled by one of the user 
programs or displaying such a buffer directly, for example, via 
OpenGL. An interactive or multi-pass application then repeats 
the process starting at context setup, where arbitrary changes 
to the context can be made, and the kernel is launched again.

4. DOMAIN-SPECIFIC COMPILATION
The core of the OptiX host runtime is a just-in-time (JIT) 
compiler that serves several important functions. First, 
the JIT stage combines all of the user-provided shader 
programs into one or more kernels. Second, it analyzes 
the node graph to identify data-dependent optimizations. 
Finally, the resulting kernel is executed on the GPU using 
the CUDA driver API.

Generating and optimizing code for massively parallel 
architectures provide some challenges. One challenge is 
that code size and live state per computation must be mini-
mized for maximum performance. Another challenge is 
structuring the code to reduce divergence. Our experience 
with OptiX highlights the interesting tensions between 
these sometimes conflicting requirements.

4.1. OptiX programs
The user-specified programs described in Section 3.1 are 
provided to the OptiX host API in the form of Parallel Thread 
Execution (PTX) functions.8 PTX is a virtual machine assem-
bly language for NVIDIA’s CUDA architecture, similar in 
many ways to the popular open source Low-Level Virtual 
Machine (LLVM) intermediate representation.5 Like LLVM, 
PTX defines a set of simple instructions that provide basic 
operations for arithmetic, control flow and memory access. 
PTX also provides several higher-level operations such as 
texture access and transcendental operations. Also similar 
to LLVM, PTX assumes an infinite register file and abstracts 
many real machine instructions. A JIT compiler in the CUDA 
runtime will perform register allocation, instruction sched-
uling, dead-code elimination, and numerous other late opti-
mizations as it produces machine code targeting a particular 
GPU architecture.

PTX is written from the perspective of a single thread and 
thus does not require explicit lane mask manipulation oper-
ations. This makes it straightforward to lower PTX from a 
high-level shading language, while giving the OptiX runtime 
the ability to manipulate and optimize the resulting code.
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virtual function calls are implemented by setting it from a 
table, and function returns simply restore the state to the 
continuation associated with a previously active function (the 
virtual return address). Furthermore, special control flows 
such as exceptions manipulate the VPC directly, creating the 
desired state transition in a manner similar to a lightweight 
version of the setjmp/longjmp functionality provided by C.

5.2. Fine-grained scheduling
While the straightforward approach to megakernel execution 
is functionally correct, it suffers serialization penalties when 
the state diverges within a single SIMT unit.6 To mitigate the 
effects of execution divergence, the OptiX runtime uses a 
fine-grained scheduling scheme to reclaim divergent threads 
that would otherwise lay dormant. Instead of allowing the 
SIMT hardware to automatically serialize a divergent switch’s 
execution, OptiX explicitly selects a single state for an entire 
SIMT unit to execute using a scheduling heuristic. Threads 
within the SIMT unit that do not require the state simply idle 
that iteration. The mechanism is outlined in Figure 5.

We have experimented with a variety of fine-grained sched-
uling heuristics. One simple scheme that works well deter-
mines a schedule by assigning a static prioritization over 
states. By scheduling threads with like states during execu-
tion, OptiX reduces the number of total state transitions made 
by a SIMT unit, which can substantially decrease execution 
time over the automatic schedule induced by the serialization 
hardware. Figure 6 shows an example of such a reduction.

As GPUs evolve, different execution models may become 
practical. For example, a streaming execution model2 may be 
useful on some architectures. Other architectures may pro-
vide hardware support for acceleration structure traversal or 
other common operations. Since the OptiX engine does not 

that would be challenging to implement in a statically 
 compiled environment. These include:

• Elide transformation operations for node graphs that 
do not utilize a transformation node.

• Eliminate printing and exception related code if these 
options are not enabled in the current execution.

• Reduce continuation size by regenerating constants 
and intermediates after a restore. Since the OptiX exe-
cution model guarantees that object-specific variables 
are read-only, this local optimization does not require 
an interprocedural pass.

• Specialize traversal based on tree characteristics such as 
existence of degenerate leaves, degenerate trees, shared 
acceleration structure data, or mixed primitive types.

• Move small read-only data to constant memory or 
 textures if there is available space.

Furthermore, the rewrite passes are allowed to introduce 
substantial modifications to the code, which can be cleaned 
up by additional standard optimization passes such as dead-
code elimination, constant propagation, loop-hoisting, and 
copy-propagation.

5. EXECUTION MODEL
Fundamentally, ray tracing is a highly parallel MIMD opera-
tion. In any interesting rendering algorithm, rays will rap-
idly diverge even if they begin together in the camera model. 
At first blush, this is a challenge for GPUs that rely on SIMT 
execution for efficiency. However, it should be observed that 
execution divergence is only temporary; a ray that hits a glass 
material temporarily diverges from one that hits a painted 
surface, yet they both quickly return to the core operation of 
tracing rays - a refraction or reflection in the former case and 
a shadow ray in the latter.

Consequently, the state machine described in Section 
4 provides an opportunity to reconverge after temporary 
divergence. To accomplish this, we link all of the trans-
formed programs into a monolithic kernel, or megakernel, 
an approach that has proven successful on modern GPUs.1 
This approach minimizes kernel launch overhead but 
potentially reduces processor utilization as register require-
ments grow to the maximum across constituent kernels. 
OptiX implements a megakernel by linking together a set of 
individual user programs and traversing the state machine 
induced by execution flow between them at runtime.

5.1. Megakernel execution
A straightforward approach to megakernel execution is sim-
ple iteration over a switch-case construct. Inside each case, a 
user program is executed and the result of this computation 
is the case, or state, to select on the next iteration. Within 
such a state machine mechanism, OptiX may implement 
function calls, recursion, and exceptions.

Figure 4 illustrates a simple state machine. The program 
states are simply inserted into the body of the switch state-
ment. The state index, which we call a virtual program counter 
(VPC), selects the program snippet that will be executed next. 
Function calls are implemented by setting the VPC directly, 

Figure 4. Pseudo-code for a simple state machine approach to 
megakernel execution. The state to be selected next is chosen by a 
switch statement. The switch is executed repeatedly until the state 
variable contains a special value that indicates termination.

state = initialState;
while( state != DONE )
 switch(state) {
  case 1:    state = program1();  break;
  case 2:    state = program2();  break;
  . . .
  case N:    state = programN();  break;
 }

Figure 5. Pseudo-code for megakernel execution through a state 
machine with fine-grained scheduling.

state = initialState;
while( state != DONE ) {
 next_state = scheduler();
 if(state == next_state)
  switch(state) {
   // Insert cases here as before
  }
}
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the ray generation program accumulates the sample color, 
stored in the ray payload, into an output buffer.

The application defines three separate pairs of intersec-
tion and bounding box programs, each implementing a dif-
ferent geometric primitive: a parallelogram for the floor, 
a sphere for the metal ball, and a thin-shell sphere for the 
hollow glass ball. The glass ball could have been modeled 
with two instances of the plain sphere primitive, but the 
flexibility of the OptiX program model gives us the freedom 
to implement a more efficient specialized version for this 
case. Each intersection program sets several attribute vari-
ables: a geometric normal, a shading normal, and, if appro-
priate, a texture coordinate. The attributes are utilized by 
material programs to perform shading computations.

The ray type mechanism is employed to differentiate 
radiance from shadow rays. The application attaches to the 
materials’ any-hit slots for shadow rays, a trivial program that 
immediately terminates a ray. This early ray termination yields 
high efficiency for mutual visibility tests between a shading 
point and the light source. The glass material is an exception, 
however: here, the any-hit program is used to attenuate a vis-
ibility factor stored in the ray payload. As a result, the glass 
sphere casts a subtler shadow than the metal sphere.

6.2. NVIDIA design garage
NVIDIA Design Garage is a sophisticated interactive render-
ing demonstration intended for public distribution. The top 
image of Figure 2 was rendered using this software. The core 
of Design Garage is a physically-based Monte Carlo path 
tracing system4 that continuously samples light paths and 
refines an image estimate by integrating new samples over 
time. The user may interactively view and edit a scene as an 
initial noisy image converges to the final solution.

To control stack utilization, Design Garage implements 
path tracing using iteration within the ray generation pro-
gram rather than recursively invoking rtTrace. The pseudo-
code of Figure 8 summarizes.

In Design Garage, each material employs a closest-hit pro-
gram to determine the next ray to be traced, and passes that 
back up using a specific field in the ray payload. The closest-
hit program also calculates the throughput of the current 
light bounce, which is used by the ray generation to main-
tain the cumulative product of throughput over the complete 
light path. Multiplying the color of the light source hit by the 
last ray in the path yields the final sample contribution.

OptiX’s support for C++ in ray programs allow materials to 
share a generic closest-hit implementation that implements 

prescribe an execution order between the roots of the ray 
trees, these alternatives could be targeted with a rewrite pass 
similar to the one we presently use to generate a megakernel.

6. APPLICATION CASE STUDIES
This section presents some example use cases of OptiX by 
discussing the basic ideas behind a number of different 
applications. More examples can be found in Parker et al.10

6.1. Whitted-style ray tracing
The OptiX SDK contains several example ray tracing appli-
cations. One of these is an updated re-creation of Whitted’s 
original sphere scene (Figure 7).14 This scene is simple, yet 
demonstrates important features of the OptiX engine.

The sample’s ray generation program implements a basic 
pinhole camera model. The camera position, orientation, 
and viewing frustum are specified by a set of program vari-
ables that can be modified interactively. The ray generation 
program begins the shading process by shooting a single 
ray per pixel or, optionally, performing adaptive antialias-
ing via supersampling. The material closest-hit programs are 
then responsible for recursively casting rays and computing 
a shaded sample color. After returning from the recursion, 
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Figure 6. The benefit of fine-grained scheduling with prioritization, 
as achieved when rendering 7. Bars represent the number of state 
executions per pixel. A substantial reduction can be seen by scheduling 
the state transitions with a fixed priority, as described in Section 5.2.

Figure 7. Re-creation of Whitted’s sphere scene with user-specified 
programs: sphere and rectangle intersection; glass, procedural 
checker, and metal hit programs; sky miss program; and pinhole 
camera with adaptive anti-aliasing ray generation. Runs at over 
100 fps on a GeForce GTX680 at 1 k by 1 k resolution.

Figure 8. Pseudo-code for iterative path tracing in Design Garage.

float3 throughput   = make_float3( 1, 1, 1 );
payload.nextRay    = camera.getPrimaryRay();
payload.shootNextRay = true;

while( payload.shootNextRay == true ) {
 rtTrace( payload.nextRay, payload );
 throughput *= payload.throughput;
}
sampleContribution = payload.lightColor * throughput;
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architecture would be inefficient under OptiX because it 
would require passing all material parameters between the 
ray generation and hit programs and a variable iteration 
while-loop in the closest-hit program. OptiX-ISPM there-
fore follows an alternative design that treats all propagation 
iterations as co-routines. It contains a single ray genera-
tion program with one thread per photon path. A recursive 
closest-hit program implements the propagate-and-deposit 
iterations. This allows threads to yield between iterations 
so that the fine-grained scheduler can regroup them.

7. SUMMARY AND FUTURE WORK
The OptiX system provides a general-purpose and high per-
formance ray tracing API. OptiX balances ease of use with 
performance by presenting a simple programming model, 
based on a programmable ray tracing pipeline for single-
ray user programs that can be compiled into an efficient 
self-scheduling megakernel. Thus the heart of OptiX is a JIT 
compiler that processes programs, snippets of user-specified 
code in the PTX language. OptiX associates these programs 
with nodes in a graph that defines the geometric configura-
tion and acceleration data structures against which rays are 
traced. Our contributions include a low-level ray tracing API 
and associated programming model, the concept of a pro-
grammable ray tracing pipeline and the associated set of 
program types, a domain-specific JIT compiler that performs 
the megakernel transformations and implements several 
domain-specific optimizations, and a lightweight scene rep-
resentation that lends itself to high-performance ray trac-
ing and supports, but does not restrict, the structure of the 
application scene graph. The OptiX ray tracing engine is a 
shipping product and already supports a wide range of appli-
cations. We illustrate the broad applicability of OptiX with 
multiple examples ranging from simplistic to fairly complex.

While OptiX already contains a rich set of features and is 
suitable for many use cases, it will continue to be refined and 
improved. For example, we (or a third party developer) can 
add support for further high level input languages, i.e. lan-
guages that produce PTX code to be consumed by OptiX. In 

light-loops and other core lighting operations, while a specific 
Bidirectional Scattering Distribution Function (BSDF) model 
implements importance sampling and probability density 
 evaluation. Design Garage implements a number of different 
physically-based materials, including metal and automotive 
paint. Some of these shaders support normal and specular maps.

While OptiX implements all ray tracing functionality of 
Design Garage, an OpenGL pipeline implements final image 
reconstruction and display. This pipeline performs various 
post processing stages such as tone mapping, glare, and 
 filtering using standard rasterization-based techniques.

6.3. Image space photon mapping
Image space photon mapping (ISPM)7 is a real-time rendering 
algorithm that combines ray tracing and rasterization strate-
gies (Figure 9). We ported the published implementation to the 
OptiX engine. That process gives insight into the differences 
between a traditional vectorized serial ray tracer and OptiX.

The ISPM algorithm computes the first segment of pho-
ton paths from the light by rasterizing a “bounce map” from 
the light’s reference frame. It then propagates photons by 
recursively ray tracing until the last scattering event before 
the eye. At each scattering event, the photon is deposited into 
an array that is the “photon map.” Indirect illumination is 
then gathered in image space by rasterizing a small volume 
around each photon from the eye’s viewpoint. Direct illumi-
nation is computed by shadow maps and rasterization.

Consider the structure of a CPU-ISPM photon tracer. It 
launches one persistent thread per core. These threads pro-
cess photon paths from a global atomic work queue. ISPM 
photon mapping generates incoherent rays, so traditional 
packet strategies for vectorizing ray traversal do not help with 
this process. For each path, the processing thread enters a 
while-loop, depositing one photon in a global photon array 
per iteration. The loop terminates upon photon absorption.

Trace performance increases with the success of 
 fine-grain scheduling of programs into coherent units and 
decreases with the size of state communicated between 
 programs. Mimicking a traditional CPU-style of software 

Figure 9. ISPM real-time global illumination. A recursive closest-hit program in OptiX implements the photon trace.
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addition to language frontends, we are planning support for 
further backends. Because PTX serves only as an intermedi-
ate representation, it is possible to translate and execute com-
piled megakernels on machines other than NVIDIA GPUs. 
OptiX has a CPU fallback path that employs this approach.

One downside of OptiX, like any compiler, is that per-
formance of the compiled kernel does not always match a 
hand-tuned kernel for a specific use-case. We continue to 
explore optimization techniques to close that gap. The origi-
nal paper discusses performance in more detail.

We have also discovered tradeoffs in the compile-time spe-
cialization of kernels that achieve high performance, but result 
in small delays when assumptions are violated and a kernel 
must be regenerated. In the future, the system may choose to 
fall back to a generalized kernel to maintain slightly degraded 
interactivity while a new specialized  kernel is compiled.
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