
MAY 2013 | VOL. 56 | NO. 05 | COMMUNICATIONS OF THE ACM 93

DOI:10.1145/2447976.2447997

GPU Ray Tracing
By Steven G. Parker, Heiko Friedrich, David Luebke, Keith Morley, James Bigler, Jared Hoberock, David McAllister,
Austin Robison, Andreas Dietrich, Greg Humphreys, Morgan McGuire, and Martin Stich

Abstract
The NVIDIA® OptiX™ ray tracing engine is a programmable
system designed for NVIDIA GPUs and other highly par-
allel architectures. The OptiX engine builds on the key
observation that most ray tracing algorithms can be imple-
mented using a small set of programmable operations.
Consequently, the core of OptiX is a domain-specific just-
in-time compiler that generates custom ray tracing kernels
by combining user- supplied programs for ray generation,
material shading, object intersection, and scene traversal.
This enables the implementation of a highly diverse set of
ray tracing-based algorithms and applications, including
interactive rendering, offline rendering, collision detection
systems, artificial intelligence queries, and scientific simula-
tions such as sound propagation. OptiX achieves high perfor-
mance through a compact object model and application of
several ray tracing-specific compiler optimizations. For ease
of use it exposes a single-ray programming model with full
support for recursion and a dynamic dispatch mechanism
similar to virtual function calls.

1. INTRODUCTION
Many CS undergraduates have taken a computer graphics
course where they wrote a simple ray tracer. With a few
simple concepts on the physics of light transport, students
can achieve high quality images with reflections, refraction,
shadows, and camera effects such as depth of field—all of
which present challenges on contemporary real-time graph-
ics pipelines. Unfortunately, the computational burden of
ray tracing makes it impractical in many settings, especially
where interactivity is important. Researchers have invented
many techniques for improving the performance of ray trac-
ing,13 especially when mapped to high-performance archi-
tectural features such as explicit SIMD instructions12 and
Single-Instruction Multiple-Thread (SIMT)-based6 GPUs.1
Unfortunately most such techniques muddy the simplicity
and conceptual purity that make ray tracing attractive. Nor
have industry standards emerged to hide these complexi-
ties, as Direct3D and OpenGL do for rasterization.

To address these problems, we introduce OptiX, a general
purpose ray tracing engine. A general programming inter-
face enables the implementation of a variety of ray tracing-
based algorithms in graphics and non-graphics domains,
such as rendering, sound propagation, collision detection,
and artificial intelligence. This interface is conceptually
simple yet enables high performance on modern GPU archi-
tectures and is competitive with hand-coded approaches.

In this paper, we discuss the design goals of the OptiX
engine as well as an implementation for NVIDIA GPUs. In
our implementation, we compose domain-specific compi-
lation with a flexible set of controls over scene hierarchy,

acceleration structure creation and traversal, on-the-fly
scene update, and a dynamically load-balanced GPU execu-
tion model. Although OptiX primarily targets highly parallel
GPU architectures, it is applicable to a wide range of special-
and general-purpose hardware, including modern CPUs.

1.1. Ray tracing, rasterization, and GPUs
Computer graphics algorithms for rendering, or image
 synthesis, take one of two complementary approaches. One
family of algorithms loop over the pixels in the image, com-
puting for each pixel, the first object visible at that pixel; this
approach is called ray tracing because it solves the geometric
problem of intersecting a ray from the pixel into the objects.
A second family of algorithms loops over the objects in the
scene, computing for each object the pixels covered by that
object. Because the resulting per-object pixels (called frag-
ments) are formatted for a raster display, this approach is
called rasterization. The central data structure of ray trac-
ing is a spatial index called an acceleration structure, used to
avoid testing each ray against all objects. The central data
structure of rasterization is the depth buffer, which stores the
distance of the closest object seen at each pixel and discards
fragments from invisible objects. While both approaches
have been generalized and optimized greatly beyond this
simplistic description, the basic distinction remains: ray
tracing iterates over rays while rasterization iterates over
objects. High-performance ray tracing and rasterization,
both focus on rendering the simplest of objects: triangles.

Historically, ray tracing has been considered slow and
rasterization fast. The simple, regular structure of depth-
buffer rasterization lends itself to highly parallel hardware
implementations: each object moves through several stages
of computation (the so-called graphics pipeline), with each
stage performing similar computations in data-parallel
fashion on the many objects, fragments, and pixels in flight
throughout the pipeline. As graphics hardware has grown
more parallel it has also grown more general, evolving from
specialized fixed-function circuitry implementing the vari-
ous stages of the graphics pipeline into fully programmable
processors that virtualize those stages onto hundreds or even
thousands of small general-purpose cores. Today’s graphics
processing units, or GPUs, are massively parallel processors
capable of performing trillions of floating-point math oper-
ations and rendering billions of triangles each second. The
computational horsepower and power efficiency of mod-
ern GPUs has made them attractive for high-performance

The original version of this paper is entitled “OptiX: A General
Purpose Ray Tracing Engine” and was published in ACM
Transactions on Graphics (TOG)—Proceedings of ACM
SIGGRAPH, July 2010, ACM

94 COMMUNICATIONS OF THE ACM | MAY 2013 | VOL. 56 | NO. 05

research highlights

computing, from many of the fastest supercomputers in
the world to science, math, and engineering codes on the
desktop. All of which raises the question: can ray tracing be
implemented efficiently and flexibly on GPUs?

1.2. Contributions and design goals
To create a high-performance system for a broad range of ray
tracing tasks, several trade-offs and design decisions led to
the following contributions:

• A general, low level ray tracing engine. OptiX is not a
 renderer. It focuses exclusively on the fundamental
computations required for ray tracing and avoids
embedding, rendering-specific constructs such as
lights, shadows, and reflectance.

• A programmable ray tracing pipeline. OptiX shows that
most ray tracing algorithms can be implemented using
a small set of lightweight programmable operations.
It defines an abstract ray tracing execution model as a
sequence of user-specified programs, analogous to the
traditional rasterization-based graphics pipeline.

• A simple programming model. OptiX avoids burdening
the user with the machinery of high-performance ray
tracing algorithms. It exposes a familiar recursive,
 single-ray programming model rather than ray packets
or explicit vector constructs, and abstracts any batch-
ing or reordering of rays.

• A domain-specific compiler. The OptiX engine combines
just-in-time compilation techniques with ray tracing-
specific knowledge to implement its programming
model efficiently. The engine abstraction permits the
compiler to tune the execution model for available
 system hardware.

2. RELATED WORK
While numerous high-level ray tracing libraries, engines,
and APIs have been proposed,13 efforts to date have been
focused on specific applications or classes of rendering algo-
rithms, making them difficult to adapt to other domains or
architectures. On the other hand, several researchers have
shown how to map ray tracing algorithms efficiently to GPUs
and the NVIDIA® CUDA™ architecture,1, 3, 11 but these systems
have focused on performance rather than flexibility.

Further discussion of related systems and research can
be found in the original paper.10

3. A PROGRAMMABLE RAY TRACING PIPELINE
The core idea behind the OptiX engine is that most ray trac-
ing algorithms can be implemented using combinations of a
small set of programmable operations. This is directly analo-
gous to the programmable rasterization pipelines employed
by OpenGL and Direct3D. At a high level, these systems
expose an abstract rasterizer containing lightweight call-
backs for vertex shading, geometry processing, tessellation,
and pixel shading operations. An ensemble of these program
types, often used in multiple passes, can be used to imple-
ment a broad variety of rasterization-based algorithms.

We have identified a corresponding programmable ray
tracing execution model along with lightweight operations

that can be customized to implement a wide variety of ray
tracing-based algorithms.9 These user-provided operations,
which we simply call programs, can be combined with a user-
defined data structure (payload) associated with each ray.
The ensemble of programs together implement a particular
client application’s algorithm.

3.1 Programs
OptiX includes seven different types of these programs,
each of which conceptually operates on a single ray at a
time. In addition, a bounding box program operates on
geometry to determine primitive bounds for acceleration
structure construction. The combination of user programs
and hardcoded OptiX kernel code forms the ray tracing
pipeline, which is outlined in Figure 2. Unlike a feed-forward
rasterization pipeline, it is more natural to think of the ray
tracing pipeline as a call graph. The core operation, rtTrace,
alternates between locating an intersection (Traverse) and
responding to that intersection (Shade). By reading and
writing data in user-defined ray payloads and in global device-
memory arrays called buffers, these operations are combined
to perform arbitrary computation during ray tracing.

Ray generation programs are the entry into the ray tracing
pipeline. A single invocation of rtContextLaunch from the host
will create many instantiations of these programs. A typical ray
generation program will create a ray using a camera model for
a single sample within a pixel, start a trace operation, and store
the resulting color in an output buffer. But by distinguishing
ray generation from pixels in an image, OptiX enables other
operations such as creating photon maps, precomputing
lighting texture maps (also known as baking), processing ray
requests passed from OpenGL, shooting multiple rays for
super-sampling, or implementing different camera models.

Intersection programs implement ray-geometry intersec-
tion tests. As the acceleration structures are traversed, the
system will invoke intersection programs to perform geo-
metric queries. The program determines if and where the
ray touches the object and may compute normals, texture
coordinates, or other attributes based on the hit position.
An arbitrary number of attributes may be associated with
each intersection. Intersection programs enable support
for arbitrary surfaces beyond polygons and triangles, such
as displacement maps, spheres, cylinders, high-order sur-
faces, or even fractal geometries like the Julia set in Figure
1. A programmable intersection operation is useful even in
a triangle-only system because it facilitates direct access to
native mesh formats.

Closest-hit programs are invoked once traversal has
found the nearest intersection of a ray with the scene
geometry. This program type resembles surface shaders
in classical rendering systems. Typically, a closest-hit pro-
gram will perform computations like shading, potentially
casting new rays in the process, and store resulting data in
the ray payload.

Any-hit programs are called during traversal for every
ray-object intersection that is found. The any-hit program
allows the material to participate in object intersection deci-
sions while keeping the shading operations separate from
the geometry operations. It may optionally terminate the ray

MAY 2013 | VOL. 56 | NO. 05 | COMMUNICATIONS OF THE ACM 95

using the built-in function rtTerminateRay, which will stop
all traversal and unwind the call stack to the most recent
invocation of rtTrace. This is a lightweight exception mech-
anism that can be used to implement early ray termina-
tion for shadow rays and ambient occlusion. Alternatively,
the any-hit program may ignore the intersection using

rtIgnoreIntersect ion, allowing traversal to continue looking
for other geometric objects. For instance, a program may
choose to ignore an interaction based on a texture channel
lookup to implement efficient alpha-mapped transparency
without restarting traversal. Another use case for the any-hit
program can be found in Section 6.1, where the application
performs visibility attenuation for partial shadows cast by
glass objects. Note that intersections may be presented out
of order. The default any-hit program is a no-op, which is
often the desired operation.

Miss programs are executed when the ray does not inter-
sect any geometry in the interval provided. They can be
used to implement a background color or environment
map lookup.

Exception programs are executed when the system encoun-
ters an exceptional condition, for example, when the recur-
sion stack exceeds the amount of memory available for each
thread, or when a buffer access index is out of range. OptiX also
supports user-defined exceptions that can be thrown from any
program. The exception program can react, for example, by
printing diagnostic messages or visualizing the condition by
writing special color values to an output pixel buffer.

Selector visit programs expose programmability for
coarse-level node graph traversal. For example, an applica-
tion may choose to vary the level of geometric detail for parts
of the scene on a per-ray basis.

3.2 Scene representation
An explicit goal of OptiX was to minimize the overhead of
scene representation, rather than forcing a heavyweight
scene graph onto users. The OptiX engine employs a simple
but flexible structure for representing scene information
and associated programmable operations, collected in a
container object called the context. This representation is
also the mechanism for binding programmable shaders to
the object-specific data that they require.

Figure 1. Images from various applications built with OptiX. Top: Physically based light transport through path tracing. Bottom: Ray tracing of
a procedural Julia set, photon mapping, large-scale line of sight and collision detection, Whitted-style ray tracing of dynamic geometry, and
ray traced ambient occlusion. All applications are interactive.

Launch

Traverse Shade

Ray Generation
Program

Miss
Program

Closest-Hit
Program

Selector Visit
Program

Intersection
Program

Any-Hit
Program

Acceleration
Traversal

Node Graph
Traversal

rtContextLaunch

rtTrace

Exception
Program

Figure 2. A call graph showing the control flow through the ray
tracing pipeline. The yellow boxes represent user-specified programs
and the blue boxes are algorithms internal to OptiX. Execution is
initiated by the API call rtContextLaunch. A built-in function, rtTrace,
can be employed by the ray generation program to cast rays into the
scene. This function may also be called recursively by the closest-hit
program for shadow and secondary rays. The exception program is
executed when the execution of a particular ray is terminated by an
error such as excessive memory consumption.

96 COMMUNICATIONS OF THE ACM | MAY 2013 | VOL. 56 | NO. 05

research highlights

set of intersection and bounding box programs. The two
 geometry instances share a single material that implements
a diffuse lighting model and fully attenuates shadow rays
via closest-hit and any-hit programs, respectively.

The diagram on the left of Figure 3 illustrates how these
programs are invoked for 3 rays that traverse through the
scene: 1. The ray generation program creates rays and
traces them against the geometry group. This initiates
the Traverse stage shown in Figure 2, executing parallelo-
gram and triangle-mesh intersection until an intersection
is found (2 and 3). If the ray intersects with geometry, the
closest-hit program will be called whether the intersection
was found on the ground plane or on the triangle mesh.
The material will recursively generate show rays to deter-
mine if the light source is unobstructed. 4. When any inter-
section along the shadow ray is found, the any-hit program
will terminate ray traversal and return to the calling pro-
gram with shadow occlusion information. 5. If a ray does
not intersect with any scene geometry, the miss program
will be invoked.

Geometry Instance objects bind a geometry object to a
set of material objects. This is a common structure used by
scene graphs to keep geometric and shading information
orthogonal.

Geometry objects contain a list of geometric primitives.
Each geometry object is associated with a bounding box pro-
gram and an intersection program, both of which are shared
among the geometry object’s primitives.

Material objects hold information about shading oper-
ations, including the any-hit and closest-hit programs
described in Section 3.1.

3.3. System overview
The OptiX engine consists of two distinct APIs. The host API
is a set of C functions that the client application calls to cre-
ate and configure a context, assemble a node graph, and
launch ray tracing kernels. It also provides calls to manage
GPU devices. The program API is the functionality exposed to
user programs. This includes function calls for tracing rays,
reporting intersections, and accessing data. In addition, sev-
eral semantic variables encode state specific to ray tracing,

Hierarchy nodes. A scene is represented as a lightweight
graph that controls the traversal of rays through the scene.
It can also be used to implement instancing two-level
 hierarchies for animations of rigid objects, or other com-
mon scene structures. To support instancing and sharing of
common data, the nodes can have multiple parents.

Four main node types can be used to provide the scene
representation using a directed graph. Any node can be used
as the root of scene traversal. This allows, for example, dif-
ferent representations to be used for different ray types.

Group nodes contain zero or more (but usually two or
more) children of any node type. A group node has an accel-
eration structure associated with it and can be used to pro-
vide the top level of a two-level traversal structure.

Geometry Group nodes are the leaves of the graph and
contain the primitive and material objects described below.
This node type also has an acceleration structure associated
with it. Any non-empty scene will contain at least one geom-
etry group.

Transform nodes have a single child of any node type, plus
an associated 4×3 matrix that is used to perform an affine
transformation of the underlying geometry.

Selector nodes have zero or more children of any node
type, plus a single visit program that is executed to select
among the available children.

Geometry and material objects. The bulk of the scene
data is stored in the geometry nodes at the leaves of the
graph. These contain objects that define geometry and
shading operations. They may also have multiple parents,
allowing material and geometry information to be shared
at multiple points in the graph. As an example, consider
Figure 3. The graph on the right shows a complete OptiX
context for a simple scene with a pin-hole camera, two
objects, and shadows. The ray generation program imple-
ments the camera, while a miss program implements
a constant white background. A single geometry group
contains two geometry instances with a single geometric
index—in this case a bounding-volume hierarchy (BVH)—
built over all underlying geometry in the triangle mesh and
ground plane. Two types of geometry are implemented,
a triangle mesh and a parallelogram, each with its own

11

2

3

4

5 Miss
Program

Ray Generation
Program

Context

Geometry
Instance

Material Geometry

Geometry
Group

- Any-Hit
Program

Bounding Box
Program

Intersection
Program

Geometry

Bounding Box
Program

Intersection
Program

Geometry
Instance

Acceleration

Closest-Hit
Program

-

Pinhole Camera Constant Color

BunnyFloor

BVH

Diffuse Triangle MeshParallelogram

Radiance Ray
Programs

Shadow Ray
Programs

Figure 3. Example OptiX scene construction and execution.

MAY 2013 | VOL. 56 | NO. 05 | COMMUNICATIONS OF THE ACM 97

NVIDIA’s CUDA C/C++ compiler, nvcc, emits PTX and
is currently the preferred mechanism for programming
OptiX. Programs are compiled offline using nvcc and sub-
mitted to the OptiX API as a PTX string. By leveraging the
CUDA C++ compiler, OptiX shader programs have a rich set
of programming language constructs available, including
pointers, templates, and overloading that come automati-
cally by using C++ as the input language. A set of header
files is provided that support the necessary variable anno-
tations and pseudo-instructions for tracing rays and other
OptiX operations. These operations are lowered to PTX in
the form of a call instruction that gets further processed by
the OptiX runtime.

4.2. PTX to PTX compilation
Given the set of PTX functions for a particular scene, the
OptiX compiler rewrites the PTX using multiple PTX to PTX
transformation passes, which are similar to the compiler
passes that have proven successful in the LLVM infrastruc-
ture. In this manner, OptiX uses PTX as an intermediate
representation rather than a traditional instruction set. This
process implements a number of domain-specific opera-
tions including an ABI (calling sequence), link-time optimi-
zations, and data-dependent optimizations. The fact that
most data structures in a typical ray tracer are read-only, pro-
vides a substantial opportunity for optimizations that would
not be considered safe in a more general environment.

One of the primary steps is transforming the set of
mutually recursive programs into a non-recursive state
machine. Although this was originally done to allow exe-
cution on a device that does not support recursion, we
found benefits in scheduling coherent operations on the
SIMT device and now employ this transformation even on
newer devices that have direct support for recursion. The
main step in the transformation is the introduction of a
continuation, which is the minimal set of data necessary to
resume a suspended function.

The set of PTX registers to be saved in the continuation
is determined using a backward dataflow analysis pass that
determines which registers are live when a recursive call (e.g.,
rtTrace) is encountered. A live register is one that is used as
an argument for some subsequent instruction in the data-
flow graph. We reserve slots on a per-thread stack array for
each of these variables, store them on the stack before the
call and restore them after the call. This is similar to a caller-
save ABI that a traditional compiler would implement for
a CPU-based programming language. In preparation for
introducing continuations, we perform a loop-hoisting pass
and a copy-propagation pass on each function to help mini-
mize the state saved in each continuation.

Finally, the call is replaced with a branch to return execu-
tion to the state machine described below, and a label that
can be used to eventually return control flow to this func-
tion. Further detail on this transformation can be found in
the original paper.

4.3. Optimization
The OptiX compiler infrastructure provides a set of
domain-specific and data-dependent optimizations

for example, the current distance to the closest intersection.
Printing and exception handling facilities are also available
for debugging.

After using OptiX host, API functions to provide scene
data such as geometry, materials, acceleration structures,
hierarchical relationships, and programs, the application
will then launch ray tracing with the rtContextLaunch API
function that passes control to OptiX. If required, a new ray
tracing kernel is compiled from the given user programs,
acceleration structures are built (or updated) and data is
synchronized between host and device memory, and finally,
the ray tracing kernel is executed, invoking the various user
programs as described above.

After execution of the ray tracing kernel has completed, its
resulting data can be used by the application. Typically, this
involves reading from output buffers filled by one of the user
programs or displaying such a buffer directly, for example, via
OpenGL. An interactive or multi-pass application then repeats
the process starting at context setup, where arbitrary changes
to the context can be made, and the kernel is launched again.

4. DOMAIN-SPECIFIC COMPILATION
The core of the OptiX host runtime is a just-in-time (JIT)
compiler that serves several important functions. First,
the JIT stage combines all of the user-provided shader
programs into one or more kernels. Second, it analyzes
the node graph to identify data-dependent optimizations.
Finally, the resulting kernel is executed on the GPU using
the CUDA driver API.

Generating and optimizing code for massively parallel
architectures provide some challenges. One challenge is
that code size and live state per computation must be mini-
mized for maximum performance. Another challenge is
structuring the code to reduce divergence. Our experience
with OptiX highlights the interesting tensions between
these sometimes conflicting requirements.

4.1. OptiX programs
The user-specified programs described in Section 3.1 are
provided to the OptiX host API in the form of Parallel Thread
Execution (PTX) functions.8 PTX is a virtual machine assem-
bly language for NVIDIA’s CUDA architecture, similar in
many ways to the popular open source Low-Level Virtual
Machine (LLVM) intermediate representation.5 Like LLVM,
PTX defines a set of simple instructions that provide basic
operations for arithmetic, control flow and memory access.
PTX also provides several higher-level operations such as
texture access and transcendental operations. Also similar
to LLVM, PTX assumes an infinite register file and abstracts
many real machine instructions. A JIT compiler in the CUDA
runtime will perform register allocation, instruction sched-
uling, dead-code elimination, and numerous other late opti-
mizations as it produces machine code targeting a particular
GPU architecture.

PTX is written from the perspective of a single thread and
thus does not require explicit lane mask manipulation oper-
ations. This makes it straightforward to lower PTX from a
high-level shading language, while giving the OptiX runtime
the ability to manipulate and optimize the resulting code.

98 COMMUNICATIONS OF THE ACM | MAY 2013 | VOL. 56 | NO. 05

research highlights

virtual function calls are implemented by setting it from a
table, and function returns simply restore the state to the
continuation associated with a previously active function (the
virtual return address). Furthermore, special control flows
such as exceptions manipulate the VPC directly, creating the
desired state transition in a manner similar to a lightweight
version of the setjmp/longjmp functionality provided by C.

5.2. Fine-grained scheduling
While the straightforward approach to megakernel execution
is functionally correct, it suffers serialization penalties when
the state diverges within a single SIMT unit.6 To mitigate the
effects of execution divergence, the OptiX runtime uses a
fine-grained scheduling scheme to reclaim divergent threads
that would otherwise lay dormant. Instead of allowing the
SIMT hardware to automatically serialize a divergent switch’s
execution, OptiX explicitly selects a single state for an entire
SIMT unit to execute using a scheduling heuristic. Threads
within the SIMT unit that do not require the state simply idle
that iteration. The mechanism is outlined in Figure 5.

We have experimented with a variety of fine-grained sched-
uling heuristics. One simple scheme that works well deter-
mines a schedule by assigning a static prioritization over
states. By scheduling threads with like states during execu-
tion, OptiX reduces the number of total state transitions made
by a SIMT unit, which can substantially decrease execution
time over the automatic schedule induced by the serialization
hardware. Figure 6 shows an example of such a reduction.

As GPUs evolve, different execution models may become
practical. For example, a streaming execution model2 may be
useful on some architectures. Other architectures may pro-
vide hardware support for acceleration structure traversal or
other common operations. Since the OptiX engine does not

that would be challenging to implement in a statically
 compiled environment. These include:

• Elide transformation operations for node graphs that
do not utilize a transformation node.

• Eliminate printing and exception related code if these
options are not enabled in the current execution.

• Reduce continuation size by regenerating constants
and intermediates after a restore. Since the OptiX exe-
cution model guarantees that object-specific variables
are read-only, this local optimization does not require
an interprocedural pass.

• Specialize traversal based on tree characteristics such as
existence of degenerate leaves, degenerate trees, shared
acceleration structure data, or mixed primitive types.

• Move small read-only data to constant memory or
 textures if there is available space.

Furthermore, the rewrite passes are allowed to introduce
substantial modifications to the code, which can be cleaned
up by additional standard optimization passes such as dead-
code elimination, constant propagation, loop-hoisting, and
copy-propagation.

5. EXECUTION MODEL
Fundamentally, ray tracing is a highly parallel MIMD opera-
tion. In any interesting rendering algorithm, rays will rap-
idly diverge even if they begin together in the camera model.
At first blush, this is a challenge for GPUs that rely on SIMT
execution for efficiency. However, it should be observed that
execution divergence is only temporary; a ray that hits a glass
material temporarily diverges from one that hits a painted
surface, yet they both quickly return to the core operation of
tracing rays - a refraction or reflection in the former case and
a shadow ray in the latter.

Consequently, the state machine described in Section
4 provides an opportunity to reconverge after temporary
divergence. To accomplish this, we link all of the trans-
formed programs into a monolithic kernel, or megakernel,
an approach that has proven successful on modern GPUs.1
This approach minimizes kernel launch overhead but
potentially reduces processor utilization as register require-
ments grow to the maximum across constituent kernels.
OptiX implements a megakernel by linking together a set of
individual user programs and traversing the state machine
induced by execution flow between them at runtime.

5.1. Megakernel execution
A straightforward approach to megakernel execution is sim-
ple iteration over a switch-case construct. Inside each case, a
user program is executed and the result of this computation
is the case, or state, to select on the next iteration. Within
such a state machine mechanism, OptiX may implement
function calls, recursion, and exceptions.

Figure 4 illustrates a simple state machine. The program
states are simply inserted into the body of the switch state-
ment. The state index, which we call a virtual program counter
(VPC), selects the program snippet that will be executed next.
Function calls are implemented by setting the VPC directly,

Figure 4. Pseudo-code for a simple state machine approach to
megakernel execution. The state to be selected next is chosen by a
switch statement. The switch is executed repeatedly until the state
variable contains a special value that indicates termination.

state = initialState;
while(state != DONE)
 switch(state) {
 case 1: state = program1(); break;
 case 2: state = program2(); break;
 . . .
 case N: state = programN(); break;
 }

Figure 5. Pseudo-code for megakernel execution through a state
machine with fine-grained scheduling.

state = initialState;
while(state != DONE) {
 next_state = scheduler();
 if(state == next_state)
 switch(state) {
 // Insert cases here as before
 }
}

MAY 2013 | VOL. 56 | NO. 05 | COMMUNICATIONS OF THE ACM 99

the ray generation program accumulates the sample color,
stored in the ray payload, into an output buffer.

The application defines three separate pairs of intersec-
tion and bounding box programs, each implementing a dif-
ferent geometric primitive: a parallelogram for the floor,
a sphere for the metal ball, and a thin-shell sphere for the
hollow glass ball. The glass ball could have been modeled
with two instances of the plain sphere primitive, but the
flexibility of the OptiX program model gives us the freedom
to implement a more efficient specialized version for this
case. Each intersection program sets several attribute vari-
ables: a geometric normal, a shading normal, and, if appro-
priate, a texture coordinate. The attributes are utilized by
material programs to perform shading computations.

The ray type mechanism is employed to differentiate
radiance from shadow rays. The application attaches to the
materials’ any-hit slots for shadow rays, a trivial program that
immediately terminates a ray. This early ray termination yields
high efficiency for mutual visibility tests between a shading
point and the light source. The glass material is an exception,
however: here, the any-hit program is used to attenuate a vis-
ibility factor stored in the ray payload. As a result, the glass
sphere casts a subtler shadow than the metal sphere.

6.2. NVIDIA design garage
NVIDIA Design Garage is a sophisticated interactive render-
ing demonstration intended for public distribution. The top
image of Figure 2 was rendered using this software. The core
of Design Garage is a physically-based Monte Carlo path
tracing system4 that continuously samples light paths and
refines an image estimate by integrating new samples over
time. The user may interactively view and edit a scene as an
initial noisy image converges to the final solution.

To control stack utilization, Design Garage implements
path tracing using iteration within the ray generation pro-
gram rather than recursively invoking rtTrace. The pseudo-
code of Figure 8 summarizes.

In Design Garage, each material employs a closest-hit pro-
gram to determine the next ray to be traced, and passes that
back up using a specific field in the ray payload. The closest-
hit program also calculates the throughput of the current
light bounce, which is used by the ray generation to main-
tain the cumulative product of throughput over the complete
light path. Multiplying the color of the light source hit by the
last ray in the path yields the final sample contribution.

OptiX’s support for C++ in ray programs allow materials to
share a generic closest-hit implementation that implements

prescribe an execution order between the roots of the ray
trees, these alternatives could be targeted with a rewrite pass
similar to the one we presently use to generate a megakernel.

6. APPLICATION CASE STUDIES
This section presents some example use cases of OptiX by
discussing the basic ideas behind a number of different
applications. More examples can be found in Parker et al.10

6.1. Whitted-style ray tracing
The OptiX SDK contains several example ray tracing appli-
cations. One of these is an updated re-creation of Whitted’s
original sphere scene (Figure 7).14 This scene is simple, yet
demonstrates important features of the OptiX engine.

The sample’s ray generation program implements a basic
pinhole camera model. The camera position, orientation,
and viewing frustum are specified by a set of program vari-
ables that can be modified interactively. The ray generation
program begins the shading process by shooting a single
ray per pixel or, optionally, performing adaptive antialias-
ing via supersampling. The material closest-hit programs are
then responsible for recursively casting rays and computing
a shaded sample color. After returning from the recursion,

SIMD Scheduling

of

 e
xe

cu
tio

ns
 p

er
 p

ix
el

Default Schedule
Priority Schedule

State

Figure 6. The benefit of fine-grained scheduling with prioritization,
as achieved when rendering 7. Bars represent the number of state
executions per pixel. A substantial reduction can be seen by scheduling
the state transitions with a fixed priority, as described in Section 5.2.

Figure 7. Re-creation of Whitted’s sphere scene with user-specified
programs: sphere and rectangle intersection; glass, procedural
checker, and metal hit programs; sky miss program; and pinhole
camera with adaptive anti-aliasing ray generation. Runs at over
100 fps on a GeForce GTX680 at 1 k by 1 k resolution.

Figure 8. Pseudo-code for iterative path tracing in Design Garage.

float3 throughput = make_float3(1, 1, 1);
payload.nextRay = camera.getPrimaryRay();
payload.shootNextRay = true;

while(payload.shootNextRay == true) {
 rtTrace(payload.nextRay, payload);
 throughput *= payload.throughput;
}
sampleContribution = payload.lightColor * throughput;

100 COMMUNICATIONS OF THE ACM | MAY 2013 | VOL. 56 | NO. 05

research highlights

architecture would be inefficient under OptiX because it
would require passing all material parameters between the
ray generation and hit programs and a variable iteration
while-loop in the closest-hit program. OptiX-ISPM there-
fore follows an alternative design that treats all propagation
iterations as co-routines. It contains a single ray genera-
tion program with one thread per photon path. A recursive
closest-hit program implements the propagate-and-deposit
iterations. This allows threads to yield between iterations
so that the fine-grained scheduler can regroup them.

7. SUMMARY AND FUTURE WORK
The OptiX system provides a general-purpose and high per-
formance ray tracing API. OptiX balances ease of use with
performance by presenting a simple programming model,
based on a programmable ray tracing pipeline for single-
ray user programs that can be compiled into an efficient
self-scheduling megakernel. Thus the heart of OptiX is a JIT
compiler that processes programs, snippets of user-specified
code in the PTX language. OptiX associates these programs
with nodes in a graph that defines the geometric configura-
tion and acceleration data structures against which rays are
traced. Our contributions include a low-level ray tracing API
and associated programming model, the concept of a pro-
grammable ray tracing pipeline and the associated set of
program types, a domain-specific JIT compiler that performs
the megakernel transformations and implements several
domain-specific optimizations, and a lightweight scene rep-
resentation that lends itself to high-performance ray trac-
ing and supports, but does not restrict, the structure of the
application scene graph. The OptiX ray tracing engine is a
shipping product and already supports a wide range of appli-
cations. We illustrate the broad applicability of OptiX with
multiple examples ranging from simplistic to fairly complex.

While OptiX already contains a rich set of features and is
suitable for many use cases, it will continue to be refined and
improved. For example, we (or a third party developer) can
add support for further high level input languages, i.e. lan-
guages that produce PTX code to be consumed by OptiX. In

light-loops and other core lighting operations, while a specific
Bidirectional Scattering Distribution Function (BSDF) model
implements importance sampling and probability density
 evaluation. Design Garage implements a number of different
physically-based materials, including metal and automotive
paint. Some of these shaders support normal and specular maps.

While OptiX implements all ray tracing functionality of
Design Garage, an OpenGL pipeline implements final image
reconstruction and display. This pipeline performs various
post processing stages such as tone mapping, glare, and
 filtering using standard rasterization-based techniques.

6.3. Image space photon mapping
Image space photon mapping (ISPM)7 is a real-time rendering
algorithm that combines ray tracing and rasterization strate-
gies (Figure 9). We ported the published implementation to the
OptiX engine. That process gives insight into the differences
between a traditional vectorized serial ray tracer and OptiX.

The ISPM algorithm computes the first segment of pho-
ton paths from the light by rasterizing a “bounce map” from
the light’s reference frame. It then propagates photons by
recursively ray tracing until the last scattering event before
the eye. At each scattering event, the photon is deposited into
an array that is the “photon map.” Indirect illumination is
then gathered in image space by rasterizing a small volume
around each photon from the eye’s viewpoint. Direct illumi-
nation is computed by shadow maps and rasterization.

Consider the structure of a CPU-ISPM photon tracer. It
launches one persistent thread per core. These threads pro-
cess photon paths from a global atomic work queue. ISPM
photon mapping generates incoherent rays, so traditional
packet strategies for vectorizing ray traversal do not help with
this process. For each path, the processing thread enters a
while-loop, depositing one photon in a global photon array
per iteration. The loop terminates upon photon absorption.

Trace performance increases with the success of
 fine-grain scheduling of programs into coherent units and
decreases with the size of state communicated between
 programs. Mimicking a traditional CPU-style of software

Figure 9. ISPM real-time global illumination. A recursive closest-hit program in OptiX implements the photon trace.

MAY 2013 | VOL. 56 | NO. 05 | COMMUNICATIONS OF THE ACM 101

addition to language frontends, we are planning support for
further backends. Because PTX serves only as an intermedi-
ate representation, it is possible to translate and execute com-
piled megakernels on machines other than NVIDIA GPUs.
OptiX has a CPU fallback path that employs this approach.

One downside of OptiX, like any compiler, is that per-
formance of the compiled kernel does not always match a
hand-tuned kernel for a specific use-case. We continue to
explore optimization techniques to close that gap. The origi-
nal paper discusses performance in more detail.

We have also discovered tradeoffs in the compile-time spe-
cialization of kernels that achieve high performance, but result
in small delays when assumptions are violated and a kernel
must be regenerated. In the future, the system may choose to
fall back to a generalized kernel to maintain slightly degraded
interactivity while a new specialized kernel is compiled.

Acknowledgments
The car, frog, and engine model in Figure 1 are courtesy of
TurboSquid. The bunny model in Figures 3 and 9 is courtesy of
the Stanford University Graphics Lab. Phil Miller was instrumen-
tal in keeping the effort on track. The authors benefited greatly
from groundwork and numerous conversations on ray tracing
with members of NVIDIA Research and the SceniX team.

 1. Aila, T., Laine, S. Understanding the
efficiency of ray traversal on GPUs.
In Proceedings of High-Performance
Graphics 2009 (2009), 145–149.

 2. Gribble, C.P., Ramani, K. Coherent

ray tracing via stream filtering.
In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing
(2008), 59–66.

 3. Horn, D.R., Sugerman, J., Houston, M.,

References

Hanrahan, P. Interactive k-d tree gpu
raytracing. In I3D ‘07: Proceedings of
the 2007 Symposium on Interactive
3D Graphics and Games (2007), ACM,
New York, NY, USA, 167–174.

 4. Kajiya, J.T. The rendering equation.
In Computer Graphics (Proceedings of
ACM SIGGRAPH) (1986), 143–150.

 5. Lattner, C., Adve, V. LLVM: A
compilation framework for lifelong
program analysis & transformation.
In CGO ‘04: Proceedings of the 2004
International Symposium on Code
Generation and Optimization (2004).

 6. Lindholm, E., Nickolls, J., Oberman, S.,
Montrym, J. NVIDIA Tesla: A unified
graphics and computing architecture.
IEEE Micro 28 (2008), 39–55.

 7. McGuire, M., Luebke, D. Hardware-
accelerated global illumination
by image space photon mapping.
In Proceedings of the 2009 ACM
SIGGRAPH/EuroGraphics conference
on High Performance Graphics (2009).

 8. NVIDIA. PTX: Parallel Thread
Execution ISA Version 2.3 (2011).
http://developer.download.nvidia.com/-
compute/DevZone/docs/html/C/doc/
ptx_isa_2.3.pdf.

 9. NVIDIA. NVIDIA OptiX Ray Tracing

Engine Programming Guide Version 2.5
(2012). http://www.nvidia.com/object/
optix.html.

 10. Parker, S.G., Bigler, J., Dietrich, A.,
Friedrich, H., Hoberock, J., Luebke, D.,
McAllister, D., McGuire, M., Morley, K.,
Robison, A., Stich, M. OptiX: A general
purpose ray tracing engine. In ACM
Transactions on Graphics (TOG) –
Proceedings of ACM SIGGRAPH (2010).

 11. Popov, S., Günther, J., Seidel, H.P.,
Slusallek, P. Stackless kd-tree
traversal for high performance gpu ray
tracing. In Computer Graphics Forum,
(Proceedings of Eurographics), vol. 26,
no. 3 (Sept. 2007), 415–424.

 12. Wald, I., Benthin, C., Wagner, M.,
Slusallek, P. Interactive rendering
with coherent ray tracing. In Computer
Graphics Forum (Proceedings of
Eurographics 2001), vol. 20, (2001)

 13. Wald, I., Mark, W.R., Günther, J.,
Boulos, S., Ize, T., Hunt, W., Parker,
S.G., Shirley, P. State of the art in ray
tracing animated scenes. In STAR
Proceedings of Eurographics 2007
(2007), 89–116.

 14. Whitted, T. An improved illumination
model for shaded display. Commun.
ACM 23, 6 (1980), 343–349.

Steven G. Parker, Heiko Friedrich,
David Luebke, Keith Morley,
James Bigler, Jared Hoberock,
David McAllister, Austin Robison,
Andreas Dietrich, Greg Humphreys,
and Martin Stich ({sparker, hfriedrich,
dluebke, kmorley, jbigler, jhoberock,
davemc, arobison, adietrich, ghumphreys,
mstich}@nvidia.com), NVIDIA,
Santa Clara, CA.

Morgan McGuire (morgan@cs.williams.
edu), NVIDIA and Williams College.

© 2013 ACM 0001-0782/13/05

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring network in engineering,
science and mathematics. MentorNet’s award-winningOne-on-OneMentoring Programs pair ACM
student members with mentors from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.
Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet
MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals, Bechtel Group Foundation, Cisco
Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed Martin Space Systems, National Science Foundation, Naval Research
Laboratory, NVIDIA, Sandia National Laboratories, Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

