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Concurrent programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

In this lecture, I will mostly focus on explicitly-threaded, non-deterministic, shared-nothing,
concurrent languages

CML 3



Concurrent programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

In this lecture, I will mostly focus on explicitly-threaded, non-deterministic, shared-nothing,
concurrent languages

CML 3



Concurrent programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

In this lecture, I will mostly focus on explicitly-threaded, non-deterministic, shared-nothing,
concurrent languages

CML 3



Concurrent programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

In this lecture, I will mostly focus on explicitly-threaded, non-deterministic, shared-nothing,
concurrent languages

CML 3



Concurrent programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

In this lecture, I will mostly focus on explicitly-threaded, non-deterministic, shared-nothing,
concurrent languages

CML 3



Concurrent programming models

Parallelism vs. concurrency

Parallel and concurrent programming address two different problems.

I Parallelism is about speed — exploiting parallel processors to solve problems quicker.
I Concurrency is about nondeterminism — managing the unpredictable external world.
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Concurrency

Why concurrency?

I Many applications are reactive systems that must cope with non-determinism (e.g., users and
the network).

I Concurrency provides a clean abstraction of such interactions by hiding the underlying
interleaving of execution.

I Thread abstraction is useful for large-grain, heterogeneous parallelism.
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Concurrency

Synchronization and communication

For concurrent languages, the choice of synchronization and communication mechanisms is
critical.

I Should these be independent or coupled?
I What guarantees should be provided?
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Concurrency

Concurrency is hard(?)

Concurrent programming has a reputation of being hard.

I The problem is that shared-memory concurrency using locks and condition variables is the
dominant model in concurrent languages.

I Shared-memory programming requires a defensive approach: protect against data races.
I Synchronization and communication are decoupled.
I Shared state often leads to poor modularity.
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Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong atomicity, make things

much more complicated.
I Also, STM does support conditional synchronization well.
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Message-passing

Message passing

In 1978, Tony Hoare proposed a concurrent programming model based on independent processes
that communicate via messages (CSP).

I Well-defined interfaces between independent, sequential, components.
I Natural encapsulation of state.
I Extends more easily to distributed implementation.
I Inspired many language designs, including CML, go (and its predecessors), OCCAM,

OCCAM-⇡, etc..
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Message-passing

Message-passing design space

I Synchronous vs. asynchronous vs. RPC-style communication.
I Per-thread message addressing vs. channels
I Synchronization constructs: asymmetric choice, symmetric choice, join-patterns.
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Message-passing

Channels

For the rest of the talk, we assume channel-based communication with synchronous message
passing.
In SML, we can define the following interface to this model:
type ’a chan

val channel : unit -> ’a chan

val recv : ’a chan -> ’a
val send : (’a chan

*

’a) -> unit

We might also include a way to monitor multiple channels, such as the following asymmetric
choice operator:
val selectRecv : (’a chan

*

(’a -> ’b)) list -> ’b
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Concurrent ML

Interprocess communication

In practice, it is often the case that
I interactions between processes involve multiple messages.
I processes need to interact with multiple partners (nondeterministic choice).

These two properties of IPC cause a conflict.
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Concurrent ML

Interprocess communication (continued ...)

For example, consider a possible interaction between a client and two servers.

request

reply / ack

nack

request

Server1 Server2Client
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Concurrent ML

Interprocess communication (continued ...)

Without abstraction, the code is a mess.
let val replCh1 = channel() and nack1 = cvar()

val replCh2 = channel() and nack2 = cvar()

in

send (reqCh1, (req1, replCh1, nack1));

send (reqCh2, (req2, replCh2, nack2));

selectRecv [

(replCh1, fn repl1 => ( set nack2; act1 repl1 ),

(replCh2, fn repl2 => ( set nack1; act2 repl2 )

]
end

But traditional abstraction mechanisms do not support choice!
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Concurrent ML

Concurrent ML

I Provides a uniform framework for synchronization: events.
I Event combinators for constructing abstract protocols.
I Collection of event constructors:

I I-variables
I M-variables
I Mailboxes
I Channels

Plus I/O, timeouts, thread join, ...
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Concurrent ML

Events

I We use event values to package up protocols as first-class abstractions.
I An event is an abstraction of a synchronous operation, such as receiving a message or a

timeout.
type ’a event

I Base-event constructors create event values for communication primitives:
val recvEvt : ’a chan -> ’a event

val sendEvt : ’a chan -> unit event
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Concurrent ML

Events (continued ...)

Event operations:
I Event wrappers for post-synchronization actions:

val wrap : (’a event

*

(’a -> ’b)) -> ’b event

I Event generators for pre-synchronization actions and cancellation:
val guard : (unit -> ’a event) -> ’a event

val withNack : (unit event -> ’a event) -> ’a event

I Choice for managing multiple communications:
val choose : ’a event list -> ’a event

I Synchronization on an event value:
val sync : ’a event -> ’a
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Concurrent ML

Swap channels

A swap channel is an abstraction that allows two threads to swap values.
type ’a swap_chan

val swapChannel : unit -> ’a swap_chan
val swapEvt : ’a swap_chan

*

’a -> ’a event

CML 18



Concurrent ML

Swap channels (continued ...)

The basic implementation of swap channels is straightforward.
datatype ’a swap_chan = SC of (’a

*

’a chan) chan

fun swapChannel () = SC(channel ())

fun swap (SC ch, vOut) = let

val inCh = channel ()
in

select [
wrap (recvEvt ch, fn (vIn, outCh) => (send(outCh, vOut); vIn)),
wrap (sendEvt (ch, (vOut, inCh)), fn () => recv inCh)

]
end

Note that the swap function both offers to send and receive on the channel so as to avoid deadlock.
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Concurrent ML

Making swap channels first class

We can also make the swap operation first class
val swapEvt : ’a swap_chan

*

’a -> ’a event

by using the guard combinator to allocate the reply channel.
fun swapEvt (SC ch, vOut) = guard (fn () => let

val inCh = channel ()
in

choose [
wrap (recvEvt ch, fn (vIn, outCh) => (send(outCh, vOut); vIn)),
wrap (sendEvt (ch, (vOut, inCh)), fn () => recv inCh)

]
end)

CML 20



Concurrent ML

Two-server interaction using events

Server abstraction:
type server
val rpcEvt : server

*

req -> repl event

The client code is no longer a mess.
select [

wrap (rpcEvt server1, fn repl1 => act1 repl1 ),

wrap (rpcEvt server2, fn repl2 => act2 repl2 )

]

Note that select is shorthand for sync o choose.
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Concurrent ML

Other abstractions

Events have been used to implement a wide range of abstractions in CML, including:
I Futures
I Promises (asynchronous RPC)
I Actors
I Join patterns
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Concurrent ML

Example — distributed tuple spaces

The Linda family of languages use tuple spaces to organize distributed computation.
A tuple space is a shared associative memory, with three operations:

output adds a tuple.
input removes a tuple from the tuple space. The tuple is selected by matching against a

template.
read reads a tuple from the tuple space, without removing it.

val output : (ts
*

tuple) -> unit
val input : (ts

*

template) -> value list event

val read : (ts
*

template) -> value list event

CML 23



Concurrent ML

Distributed tuple spaces (continued ...)

There are two ways to implement a distributed tuple space:
I

Read-all, write-one

I
Read-one, write-all

We choose read-all, write-one. In this organization, a write operation goes to a single processor,
while an input or read operation must query all processors.
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Concurrent ML

Distributed tuple spaces (continued ...)

The input protocol is complicated:
1. The reader broadcasts the query to all tuple-space servers.
2. Each server checks for a match; if it finds one, it places a hold on the tuple and sends it to the

reader. Otherwise it remembers the request to check against subsequent write operations.
3. The reader waits for a matching tuple. When it receives a match, it sends an

acknowledgement to the source, and cancellation messages to the others.
4. When a tuple server receives an acknowledgement, it removes the tuple; when it receives a

cancellation it removes any hold or queued request.
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Concurrent ML

Distributed tuple spaces (continued ...)

Here is the message traffic for a successful input operation:
Local

Tuple-server
Proxy

Remote
Tuple-server

ProxyClient

recv

recv

recv

recv

select

request

accept

Remote
Tuple Server

reply
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Concurrent ML

Distributed tuple spaces (continued ...)

We use negative acknowledgements to cancel requests when the client chooses some other event.

Local
Tuple-server

Proxy

Remote
Tuple-server

ProxyClient

recv

recv

recv

recv

select

ev
request

cancel

Remote
Tuple Server

Note that we must confirm that a client accepts a tuple before sending out the acknowledgement.
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Multithreading via continuations

Implementing concurrency in functional languages

I Functional languages can provide a platform for efficient implementations of concurrency
features.

I This is especially true for languages that support continuations.
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Multithreading via continuations

Continuations

Continuations are a semantic concept that captures the meaning of the “rest of the program.”
In a functional language, we can apply the continuation-passing-style transformation to make
continuations explicit.
For example, consider the expression “(x+y)

*

z.” We can rewrite it as
(fn k => k(x+y)) (fn v => v

*

z)

In this rewritten code, the variable k is bound to the continiation of the expression “x+y.”
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Multithreading via continuations

First-class continuations

Some languages make it possible to reify the implicit continuations. For example, SML/NJ
provides the following interface to its first-class continuations:
type ’a cont
val callcc : (’a cont -> ’a) -> ’a
val throw : ’a cont -> ’a -> ’b

First-class continuations can be used to implement many kinds of control-flow, including loops,
back-tracking, exceptions, and various concurrency mechanisms.
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Multithreading via continuations

Coroutines

Implementing a simple coroutine package using continuations is straightforward.
val fork : (unit -> unit) -> unit
val exit : unit -> ’a
val yield : unit -> unit
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Multithreading via continuations

Coroutines (continued ...)

val rdyQ : unit cont Q.queue = Q.mkQueue()

fun dispatch () = throw (Q.dequeue rdyQ) ()

fun yield () = callcc (fn k => (
Q.enqueue (rdyQ, k);
dispatch ()))

fun exit () = dispatch ()

fun fork f = callcc (fn parentK => (
Q.enqueue (rdyQ, parentK);
(f ()) handle _ => ();
exit ()))

To support preemption and/or parallelism requires additional runtime-system support.
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