
Concurrent ML

John Reppy
jhr@cs.uchicago.edu

University of Chicago

January 21, 2016

jhr@cs.uchicago.edu

Introduction

Outline

I Concurrent programming models
I Concurrent ML
I Multithreading via continuations (if there is time)

CML 2

Introduction

Outline

I Concurrent programming models
I Concurrent ML
I Multithreading via continuations (if there is time)

CML 2

Introduction

Outline

I Concurrent programming models
I Concurrent ML
I Multithreading via continuations (if there is time)

CML 2

Introduction

Outline

I Concurrent programming models
I Concurrent ML
I Multithreading via continuations (if there is time)

CML 2

Concurrent programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

In this lecture, I will mostly focus on explicitly-threaded, non-deterministic, shared-nothing,
concurrent languages

CML 3

Concurrent programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

In this lecture, I will mostly focus on explicitly-threaded, non-deterministic, shared-nothing,
concurrent languages

CML 3

Concurrent programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

In this lecture, I will mostly focus on explicitly-threaded, non-deterministic, shared-nothing,
concurrent languages

CML 3

Concurrent programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

In this lecture, I will mostly focus on explicitly-threaded, non-deterministic, shared-nothing,
concurrent languages

CML 3

Concurrent programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

In this lecture, I will mostly focus on explicitly-threaded, non-deterministic, shared-nothing,
concurrent languages

CML 3

Concurrent programming models

Parallelism vs. concurrency

Parallel and concurrent programming address two different problems.

I Parallelism is about speed — exploiting parallel processors to solve problems quicker.
I Concurrency is about nondeterminism — managing the unpredictable external world.

CML 4

Concurrent programming models

Parallelism vs. concurrency

Parallel and concurrent programming address two different problems.

I Parallelism is about speed — exploiting parallel processors to solve problems quicker.
I Concurrency is about nondeterminism — managing the unpredictable external world.

CML 4

Concurrent programming models

Parallelism vs. concurrency

Parallel and concurrent programming address two different problems.

I Parallelism is about speed — exploiting parallel processors to solve problems quicker.
I Concurrency is about nondeterminism — managing the unpredictable external world.

CML 4

Concurrency

Why concurrency?

I Many applications are reactive systems that must cope with non-determinism (e.g., users and
the network).

I Concurrency provides a clean abstraction of such interactions by hiding the underlying
interleaving of execution.

I Thread abstraction is useful for large-grain, heterogeneous parallelism.

CML 5

Concurrency

Why concurrency?

I Many applications are reactive systems that must cope with non-determinism (e.g., users and
the network).

I Concurrency provides a clean abstraction of such interactions by hiding the underlying
interleaving of execution.

I Thread abstraction is useful for large-grain, heterogeneous parallelism.

CML 5

Concurrency

Why concurrency?

I Many applications are reactive systems that must cope with non-determinism (e.g., users and
the network).

I Concurrency provides a clean abstraction of such interactions by hiding the underlying
interleaving of execution.

I Thread abstraction is useful for large-grain, heterogeneous parallelism.

CML 5

Concurrency

Why concurrency?

I Many applications are reactive systems that must cope with non-determinism (e.g., users and
the network).

I Concurrency provides a clean abstraction of such interactions by hiding the underlying
interleaving of execution.

I Thread abstraction is useful for large-grain, heterogeneous parallelism.

CML 5

Concurrency

Synchronization and communication

For concurrent languages, the choice of synchronization and communication mechanisms is
critical.

I Should these be independent or coupled?
I What guarantees should be provided?

CML 6

Concurrency

Synchronization and communication

For concurrent languages, the choice of synchronization and communication mechanisms is
critical.

I Should these be independent or coupled?
I What guarantees should be provided?

CML 6

Concurrency

Synchronization and communication

For concurrent languages, the choice of synchronization and communication mechanisms is
critical.

I Should these be independent or coupled?
I What guarantees should be provided?

CML 6

Concurrency

Concurrency is hard(?)

Concurrent programming has a reputation of being hard.

I The problem is that shared-memory concurrency using locks and condition variables is the
dominant model in concurrent languages.

I Shared-memory programming requires a defensive approach: protect against data races.
I Synchronization and communication are decoupled.
I Shared state often leads to poor modularity.

CML 7

Concurrency

Concurrency is hard(?)

Concurrent programming has a reputation of being hard.

I The problem is that shared-memory concurrency using locks and condition variables is the
dominant model in concurrent languages.

I Shared-memory programming requires a defensive approach: protect against data races.
I Synchronization and communication are decoupled.
I Shared state often leads to poor modularity.

CML 7

Concurrency

Concurrency is hard(?)

Concurrent programming has a reputation of being hard.

I The problem is that shared-memory concurrency using locks and condition variables is the
dominant model in concurrent languages.

I Shared-memory programming requires a defensive approach: protect against data races.
I Synchronization and communication are decoupled.
I Shared state often leads to poor modularity.

CML 7

Concurrency

Concurrency is hard(?)

Concurrent programming has a reputation of being hard.

I The problem is that shared-memory concurrency using locks and condition variables is the
dominant model in concurrent languages.

I Shared-memory programming requires a defensive approach: protect against data races.
I Synchronization and communication are decoupled.
I Shared state often leads to poor modularity.

CML 7

Concurrency

Concurrency is hard(?)

Concurrent programming has a reputation of being hard.

I The problem is that shared-memory concurrency using locks and condition variables is the
dominant model in concurrent languages.

I Shared-memory programming requires a defensive approach: protect against data races.
I Synchronization and communication are decoupled.
I Shared state often leads to poor modularity.

CML 7

Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong atomicity, make things

much more complicated.
I Also, STM does support conditional synchronization well.

CML 8

Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong atomicity, make things

much more complicated.
I Also, STM does support conditional synchronization well.

CML 8

Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong atomicity, make things

much more complicated.
I Also, STM does support conditional synchronization well.

CML 8

Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong atomicity, make things

much more complicated.
I Also, STM does support conditional synchronization well.

CML 8

Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong atomicity, make things

much more complicated.
I Also, STM does support conditional synchronization well.

CML 8

Message-passing

Message passing

In 1978, Tony Hoare proposed a concurrent programming model based on independent processes
that communicate via messages (CSP).

I Well-defined interfaces between independent, sequential, components.
I Natural encapsulation of state.
I Extends more easily to distributed implementation.
I Inspired many language designs, including CML, go (and its predecessors), OCCAM,

OCCAM-⇡, etc..

CML 9

Message-passing

Message passing

In 1978, Tony Hoare proposed a concurrent programming model based on independent processes
that communicate via messages (CSP).

I Well-defined interfaces between independent, sequential, components.
I Natural encapsulation of state.
I Extends more easily to distributed implementation.
I Inspired many language designs, including CML, go (and its predecessors), OCCAM,

OCCAM-⇡, etc..

CML 9

Message-passing

Message passing

In 1978, Tony Hoare proposed a concurrent programming model based on independent processes
that communicate via messages (CSP).

I Well-defined interfaces between independent, sequential, components.
I Natural encapsulation of state.
I Extends more easily to distributed implementation.
I Inspired many language designs, including CML, go (and its predecessors), OCCAM,

OCCAM-⇡, etc..

CML 9

Message-passing

Message passing

In 1978, Tony Hoare proposed a concurrent programming model based on independent processes
that communicate via messages (CSP).

I Well-defined interfaces between independent, sequential, components.
I Natural encapsulation of state.
I Extends more easily to distributed implementation.
I Inspired many language designs, including CML, go (and its predecessors), OCCAM,

OCCAM-⇡, etc..

CML 9

Message-passing

Message passing

In 1978, Tony Hoare proposed a concurrent programming model based on independent processes
that communicate via messages (CSP).

I Well-defined interfaces between independent, sequential, components.
I Natural encapsulation of state.
I Extends more easily to distributed implementation.
I Inspired many language designs, including CML, go (and its predecessors), OCCAM,

OCCAM-⇡, etc..

CML 9

Message-passing

Message-passing design space

I Synchronous vs. asynchronous vs. RPC-style communication.
I Per-thread message addressing vs. channels
I Synchronization constructs: asymmetric choice, symmetric choice, join-patterns.

CML 10

Message-passing

Message-passing design space

I Synchronous vs. asynchronous vs. RPC-style communication.
I Per-thread message addressing vs. channels
I Synchronization constructs: asymmetric choice, symmetric choice, join-patterns.

CML 10

Message-passing

Message-passing design space

I Synchronous vs. asynchronous vs. RPC-style communication.
I Per-thread message addressing vs. channels
I Synchronization constructs: asymmetric choice, symmetric choice, join-patterns.

CML 10

Message-passing

Message-passing design space

I Synchronous vs. asynchronous vs. RPC-style communication.
I Per-thread message addressing vs. channels
I Synchronization constructs: asymmetric choice, symmetric choice, join-patterns.

CML 10

Message-passing

Channels

For the rest of the talk, we assume channel-based communication with synchronous message
passing.
In SML, we can define the following interface to this model:
type ’a chan

val channel : unit -> ’a chan

val recv : ’a chan -> ’a
val send : (’a chan

*

’a) -> unit

We might also include a way to monitor multiple channels, such as the following asymmetric
choice operator:
val selectRecv : (’a chan

*

(’a -> ’b)) list -> ’b

CML 11

Concurrent ML

Interprocess communication

In practice, it is often the case that
I interactions between processes involve multiple messages.
I processes need to interact with multiple partners (nondeterministic choice).

These two properties of IPC cause a conflict.

CML 12

Concurrent ML

Interprocess communication

In practice, it is often the case that
I interactions between processes involve multiple messages.
I processes need to interact with multiple partners (nondeterministic choice).

These two properties of IPC cause a conflict.

CML 12

Concurrent ML

Interprocess communication

In practice, it is often the case that
I interactions between processes involve multiple messages.
I processes need to interact with multiple partners (nondeterministic choice).

These two properties of IPC cause a conflict.

CML 12

Concurrent ML

Interprocess communication

In practice, it is often the case that
I interactions between processes involve multiple messages.
I processes need to interact with multiple partners (nondeterministic choice).

These two properties of IPC cause a conflict.

CML 12

Concurrent ML

Interprocess communication (continued ...)

For example, consider a possible interaction between a client and two servers.

request

reply / ack

nack

request

Server1 Server2Client

CML 13

Concurrent ML

Interprocess communication (continued ...)

Without abstraction, the code is a mess.
let val replCh1 = channel() and nack1 = cvar()

val replCh2 = channel() and nack2 = cvar()

in

send (reqCh1, (req1, replCh1, nack1));

send (reqCh2, (req2, replCh2, nack2));

selectRecv [

(replCh1, fn repl1 => (set nack2; act1 repl1),

(replCh2, fn repl2 => (set nack1; act2 repl2)

]
end

But traditional abstraction mechanisms do not support choice!

CML 14

Concurrent ML

Concurrent ML

I Provides a uniform framework for synchronization: events.
I Event combinators for constructing abstract protocols.
I Collection of event constructors:

I I-variables
I M-variables
I Mailboxes
I Channels

Plus I/O, timeouts, thread join, ...

CML 15

Concurrent ML

Concurrent ML

I Provides a uniform framework for synchronization: events.
I Event combinators for constructing abstract protocols.
I Collection of event constructors:

I I-variables
I M-variables
I Mailboxes
I Channels

Plus I/O, timeouts, thread join, ...

CML 15

Concurrent ML

Concurrent ML

I Provides a uniform framework for synchronization: events.
I Event combinators for constructing abstract protocols.
I Collection of event constructors:

I I-variables
I M-variables
I Mailboxes
I Channels

Plus I/O, timeouts, thread join, ...

CML 15

Concurrent ML

Concurrent ML

I Provides a uniform framework for synchronization: events.
I Event combinators for constructing abstract protocols.
I Collection of event constructors:

I I-variables
I M-variables
I Mailboxes
I Channels

Plus I/O, timeouts, thread join, ...

CML 15

Concurrent ML

Events

I We use event values to package up protocols as first-class abstractions.
I An event is an abstraction of a synchronous operation, such as receiving a message or a

timeout.
type ’a event

I Base-event constructors create event values for communication primitives:
val recvEvt : ’a chan -> ’a event

val sendEvt : ’a chan -> unit event

CML 16

Concurrent ML

Events (continued ...)

Event operations:
I Event wrappers for post-synchronization actions:

val wrap : (’a event

*

(’a -> ’b)) -> ’b event

I Event generators for pre-synchronization actions and cancellation:
val guard : (unit -> ’a event) -> ’a event

val withNack : (unit event -> ’a event) -> ’a event

I Choice for managing multiple communications:
val choose : ’a event list -> ’a event

I Synchronization on an event value:
val sync : ’a event -> ’a

CML 17

Concurrent ML

Swap channels

A swap channel is an abstraction that allows two threads to swap values.
type ’a swap_chan

val swapChannel : unit -> ’a swap_chan
val swapEvt : ’a swap_chan

*

’a -> ’a event

CML 18

Concurrent ML

Swap channels (continued ...)

The basic implementation of swap channels is straightforward.
datatype ’a swap_chan = SC of (’a

*

’a chan) chan

fun swapChannel () = SC(channel ())

fun swap (SC ch, vOut) = let

val inCh = channel ()
in

select [
wrap (recvEvt ch, fn (vIn, outCh) => (send(outCh, vOut); vIn)),
wrap (sendEvt (ch, (vOut, inCh)), fn () => recv inCh)

]
end

Note that the swap function both offers to send and receive on the channel so as to avoid deadlock.

CML 19

Concurrent ML

Making swap channels first class

We can also make the swap operation first class
val swapEvt : ’a swap_chan

*

’a -> ’a event

by using the guard combinator to allocate the reply channel.
fun swapEvt (SC ch, vOut) = guard (fn () => let

val inCh = channel ()
in

choose [
wrap (recvEvt ch, fn (vIn, outCh) => (send(outCh, vOut); vIn)),
wrap (sendEvt (ch, (vOut, inCh)), fn () => recv inCh)

]
end)

CML 20

Concurrent ML

Two-server interaction using events

Server abstraction:
type server
val rpcEvt : server

*

req -> repl event

The client code is no longer a mess.
select [

wrap (rpcEvt server1, fn repl1 => act1 repl1),

wrap (rpcEvt server2, fn repl2 => act2 repl2)

]

Note that select is shorthand for sync o choose.

CML 21

Concurrent ML

Other abstractions

Events have been used to implement a wide range of abstractions in CML, including:
I Futures
I Promises (asynchronous RPC)
I Actors
I Join patterns

CML 22

Concurrent ML

Other abstractions

Events have been used to implement a wide range of abstractions in CML, including:
I Futures
I Promises (asynchronous RPC)
I Actors
I Join patterns

CML 22

Concurrent ML

Other abstractions

Events have been used to implement a wide range of abstractions in CML, including:
I Futures
I Promises (asynchronous RPC)
I Actors
I Join patterns

CML 22

Concurrent ML

Other abstractions

Events have been used to implement a wide range of abstractions in CML, including:
I Futures
I Promises (asynchronous RPC)
I Actors
I Join patterns

CML 22

Concurrent ML

Other abstractions

Events have been used to implement a wide range of abstractions in CML, including:
I Futures
I Promises (asynchronous RPC)
I Actors
I Join patterns

CML 22

Concurrent ML

Example — distributed tuple spaces

The Linda family of languages use tuple spaces to organize distributed computation.
A tuple space is a shared associative memory, with three operations:

output adds a tuple.
input removes a tuple from the tuple space. The tuple is selected by matching against a

template.
read reads a tuple from the tuple space, without removing it.

val output : (ts
*

tuple) -> unit
val input : (ts

*

template) -> value list event

val read : (ts
*

template) -> value list event

CML 23

Concurrent ML

Distributed tuple spaces (continued ...)

There are two ways to implement a distributed tuple space:
I

Read-all, write-one

I
Read-one, write-all

We choose read-all, write-one. In this organization, a write operation goes to a single processor,
while an input or read operation must query all processors.

CML 24

Concurrent ML

Distributed tuple spaces (continued ...)

The input protocol is complicated:
1. The reader broadcasts the query to all tuple-space servers.
2. Each server checks for a match; if it finds one, it places a hold on the tuple and sends it to the

reader. Otherwise it remembers the request to check against subsequent write operations.
3. The reader waits for a matching tuple. When it receives a match, it sends an

acknowledgement to the source, and cancellation messages to the others.
4. When a tuple server receives an acknowledgement, it removes the tuple; when it receives a

cancellation it removes any hold or queued request.

CML 25

Concurrent ML

Distributed tuple spaces (continued ...)

Here is the message traffic for a successful input operation:
Local

Tuple-server
Proxy

Remote
Tuple-server

ProxyClient

recv

recv

recv

recv

select

request

accept

Remote
Tuple Server

reply

CML 26

Concurrent ML

Distributed tuple spaces (continued ...)

We use negative acknowledgements to cancel requests when the client chooses some other event.

Local
Tuple-server

Proxy

Remote
Tuple-server

ProxyClient

recv

recv

recv

recv

select

ev
request

cancel

Remote
Tuple Server

Note that we must confirm that a client accepts a tuple before sending out the acknowledgement.

CML 27

Multithreading via continuations

Implementing concurrency in functional languages

I Functional languages can provide a platform for efficient implementations of concurrency
features.

I This is especially true for languages that support continuations.

CML 28

Multithreading via continuations

Implementing concurrency in functional languages

I Functional languages can provide a platform for efficient implementations of concurrency
features.

I This is especially true for languages that support continuations.

CML 28

Multithreading via continuations

Continuations

Continuations are a semantic concept that captures the meaning of the “rest of the program.”
In a functional language, we can apply the continuation-passing-style transformation to make
continuations explicit.
For example, consider the expression “(x+y)

*

z.” We can rewrite it as
(fn k => k(x+y)) (fn v => v

*

z)

In this rewritten code, the variable k is bound to the continiation of the expression “x+y.”

CML 29

Multithreading via continuations

First-class continuations

Some languages make it possible to reify the implicit continuations. For example, SML/NJ
provides the following interface to its first-class continuations:
type ’a cont
val callcc : (’a cont -> ’a) -> ’a
val throw : ’a cont -> ’a -> ’b

First-class continuations can be used to implement many kinds of control-flow, including loops,
back-tracking, exceptions, and various concurrency mechanisms.

CML 30

Multithreading via continuations

Coroutines

Implementing a simple coroutine package using continuations is straightforward.
val fork : (unit -> unit) -> unit
val exit : unit -> ’a
val yield : unit -> unit

CML 31

Multithreading via continuations

Coroutines (continued ...)

val rdyQ : unit cont Q.queue = Q.mkQueue()

fun dispatch () = throw (Q.dequeue rdyQ) ()

fun yield () = callcc (fn k => (
Q.enqueue (rdyQ, k);
dispatch ()))

fun exit () = dispatch ()

fun fork f = callcc (fn parentK => (
Q.enqueue (rdyQ, parentK);
(f ()) handle _ => ();
exit ()))

To support preemption and/or parallelism requires additional runtime-system support.

CML 32

	Introduction
	Concurrent programming models
	Concurrency
	Message-passing
	Concurrent ML
	Concurrent ML
	Multithreading via continuations

