Google File System



Assumptions/Goals

* Any component could fail
 Some large files instead of many small files
— Impact

* Append-heavy write; sequential accesses
— |Impact

=>» Different designs from traditional file systems
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Why does GFS have a master?

* Why didn’t Coda use it? (disadvantage of master)
— Scalability
— Availability

* Why does GFS use it?

— Easy to manage



What are the chunkservers?

* Data replication across chunkservers



Normal file system access
(single machine)

 What if | want to read/write “/a/b/c”, 5Kth byte
— Read the i-node of root “/” (from disk)
— Search i-node of “/”: find the data block
— Read the data block of “/”: find #i-node of a
— Read the i-node of a: find the data block
— Read the data block of “a”: find #i-node of b ...

— Read i-node of ¢



Normal file system metadata

* What are meta-datas?
— i-node

* Where are meta-datas?
— disk

 What is the data block size? Why?
— 4K



Google file system read

 What if | want to read “/a/b/c”, 5Kth byte

— Ask master
* File-name + # chunk =» chunk handle =2 list of chunkserver

— Contact (closest) chunkserver
e Compare version number
* Get the data



Google file system meta-data

* What are the meta-data?
— Mapping (filename, chunk handle, chunkserver)

e Where is the meta-data?

— |n memory

e What is the block size?
— 64 M



Write in GFS

Step 1: contact the master; find the chunk
handle; find the chunkservers, primary server

Step 2: propagate the data to all replicas
Step 3: send the write request to primary

Step 4: primary decides the order; sends
command to all replicas

— Write to 1 or write to all replicas?
e all

— Who decides the order among concurrent writes?
* Primary chunkserver (i.e., the one has the lease)



Failures in GFS writes

e What if a chunkserver is down?



Concurrent updates in GFS

e Concurrent write
=» consistent & undefined

 Atomic append
— Step 1: (optional) padding
— Step 2: write at primary specified location
— Step 3: success, return to
=»inconsistent & defined



Write in Google File System

Does GFS provide strong consistency?
— Why?

Is user aware of the inconsistency in Coda/GFS?
Are there “partitioned” writes in GFS?

Does GFS rely on users to solve inconsistency?
— |Is it the same as in Coda?



Other comparison with Coda

e |sthere local disk cache?



Failure tolerance

e |s the master the bottleneck?



Other topics

* Snapshot
* File deletion & garbage collection

* Replica placement, re-replication, balancing



Summary

 Workload affects design

e Master — chunkserver architecture



