Google File System



Assumptions/Goals

* Any component could fail
 Some large files instead of many small files
— Impact

* Append-heavy write; sequential accesses
— |Impact

=>» Different designs from traditional file systems



Overall architecture

Coda

client

AFS
server

client

lient
clien AFS

server
client

client

AFS
server




Overall architecture

Coda GFS

client

client

AFS
server

chunk
server

client client

client client master

AFS
server

chunk

server

client client

client client

AFS
server

chunk
server




Why does GFS have a master?

* Why didn’t Coda use it? (disadvantage of master)
— Scalability
— Availability

* Why does GFS use it?

— Easy to manage



What are the chunkservers?

* Data replication across chunkservers



Normal file system access
(single machine)

 What if | want to read/write “/a/b/c”, 5Kth byte
— Read the i-node of root “/” (from disk)
— Search i-node of “/”: find the data block
— Read the data block of “/”: find #i-node of a
— Read the i-node of a: find the data block
— Read the data block of “a”: find #i-node of b ...

— Read i-node of ¢



Normal file system metadata

* What are meta-datas?
— i-node

* Where are meta-datas?
— disk

 What is the data block size? Why?
— 4K



Google file system read

 What if | want to read “/a/b/c”, 5Kth byte

— Ask master
* File-name + # chunk =» chunk handle =2 list of chunkserver

— Contact (closest) chunkserver
e Compare version number
* Get the data



Google file system meta-data

* What are the meta-data?
— Mapping (filename, chunk handle, chunkserver)

e Where is the meta-data?

— |n memory

e What is the block size?
— 64 M



Write in GFS

Step 1: contact the master; find the chunk
handle; find the chunkservers, primary server

Step 2: propagate the data to all replicas
Step 3: send the write request to primary

Step 4: primary decides the order; sends
command to all replicas

— Write to 1 or write to all replicas?
e all

— Who decides the order among concurrent writes?
* Primary chunkserver (i.e., the one has the lease)



Failures in GFS writes

e What if a chunkserver is down?



Concurrent updates in GFS

e Concurrent write
=» consistent & undefined

 Atomic append
— Step 1: (optional) padding
— Step 2: write at primary specified location
— Step 3: success, return to
=»inconsistent & defined



Write in Google File System

Does GFS provide strong consistency?
— Why?

Is user aware of the inconsistency in Coda/GFS?
Are there “partitioned” writes in GFS?

Does GFS rely on users to solve inconsistency?
— |Is it the same as in Coda?



Other comparison with Coda

e |sthere local disk cache?



Failure tolerance

e |s the master the bottleneck?



Other topics

* Snapshot
* File deletion & garbage collection

* Replica placement, re-replication, balancing



Summary

 Workload affects design

e Master — chunkserver architecture



