
CMSC 22600
Autumn 2016

Compilers for Computer Languages Project 3
November 6, 2016

The SOOL Normalizer
Due: November 20, 2016

1 Introduction

The third project is to transform the typed AST produced by the type checker into a lower-level
representation that is more suitable for code generation and optimization. Specifically, you will
transform the AST representation into SOIR (Simple Object-oriented Intermediate Representation),
which has the following properties:

• arguments to operators and function calls are always variables

• object representations are explicitly represented

• method selection for both objects with class type and interface types is explicit

• class and interface meta-data is explicitly represented

• type coercions are explicitly represented

• self is explicitly passed to member functions

• Optional dispatch and variable access expressions are replaced with conditional tests.

2 SOIR

SOIR is a normalized representation, which means that we have restricted its syntactic structure
to a canonical form. Specifically, SOIR expressions are all simple expressions involving a single
operation that takes values (variables or constants) as arguments. We use such a representation for
several reasons: it gives every subexpression a name (i.e., the variable the expression is bound to),
it makes data dependencies explicit, and it simplifies program analyses and optimizations. We give
a “syntax” for SOIR in Figure 1

A SOOL program is represented in SOIR by a collection of class metadata, interface index
tables, and function definitions. Figure 1 gives a “syntax” for SOIR function definitions that we
use throughout this document. Note that SOIR has several different syntactic forms for extracting a
field of a data object:

• v.x for selecting a member-variable x from the object denoted by v.

Functions
fd ::= fun f (x1, . . . , xn) b

Blocks
b ::= { s1 · · · sn }

Statements
s ::= var x; Local-variable declaration
| var x= e; Local-variable initialization
| x:= e; Local-variable assignment
| v.x:= e; Member-variable assignment
| v(v1, . . . , vn); Function-call statement
| if v then b If-then statement
| if v then b1 else b2 If-then-else statement
| loop b Loop statement
| exit_if v; Loop exit statement
| return ; Void-return statement
| return v; Value-return statement

Expressions
e ::= v Value
| v.x Member-variable selection
| v1::v2 Metadata/index-table selection
| v1[v2] Metadata indexing
| new C Object allocation
| p(v1, . . . , vn) Primitive-operation application
| v(v1, . . . , vn) Function application
| 〈 v1, . . . , vn 〉 Tuple allocation
| #i(v) Tuple-element projection

Values
v ::= x variables
| lit literals
| nil nil
| C.f | f Functions
| C Metadata for class C
| C@I Index table for class C viewed as interface I

Figure 1: SOIR syntax

2

• v::f for selecting the member function f from a class or selecting the member-function
offset for f from an interface’s index table.

• v::I for selecting the offset for interface I’s index table from an interface’s index table.

• v1[v2] for selecting the function or index table from the class metadata specified by v1 at the
offset specified by v2.

• #i(v) for selecting the ith component of the tuple v.

3 Runtime conventions

One of the main differences between the AST and SOIR representations is that we make various
runtime conventions explicit in SOIR.

3.1 The main function

As discussed in the Project Overview, execution of a SOOL program occurs as if the statement
“main().run();” is executed. As part of the translation to SOIR, we synthesize a function named
_sool_main with no arguments whose body consists of creating a main object and then calling its
run function.

3.2 Object creation

Creation of objects in SOIR is split into two steps. First we allocate space on the heap for the
object using “new C” and then we call an initialization function initC for the object passing in
the newly allocated object and the initialization arguments. If the class C has a superclass B, then
its initialization function calls the initialization function for B (and so on) before initializing C’s
member variables.

3.3 Member functions

Member functions in the AST have an implicit self parameter; when we translate to SOIR, we
make this parameter explicit in the representation. This parameter is bound to a pointer to the
heap-allocated object and has the class type of the class where the member function was declared.

3.4 Runtime values

We use a uniform representation convention for SOOL values. By this term, we mean that every
SOOL value is represented by a single machine word, which is either a tagged integer or a pointer
into the heap. Booleans are represented as as tagged integers.1 This representation allows us to
distinguish the nil value, which is represented by the machine value zero, from all other SOOL
values.

1The details of the tagging scheme for integers will be addressed in the next project.

3

3.5 Object representation

We use two different runtime representations for objects, depending on whether they have a class or
interface type.

An object of class type C is represented by a heap-allocated sequence of word-sized values,
where the first value is a pointer to the C’s metadata and the remaining values are the member
variables of the object. We use “_md” to label the metadata field of the object’s representation. The
order of member variables must respect the prefix ordering of the class heirarchy. For example,
consider the following two classes:

class A() {
var x : int = 1
var y : int = 2
meth f : () -> int { return self.x; }
meth g : () -> int { return self.y; }

}
class B() extends A() {

var z : int = 3
override meth g : () -> int { return self.z; }
meth h : () -> int { return self.y + self.z; }

}

The object and metadata layout for these classes is as follows:2

_md

x

y

_md

x

y

z

size: 3

f: A.f

size: 4

f: A.f

g: B.g

A B ObjectAn A Object

h: B.h

B’s MetadataA’s Metadata

g: A.g

Notice that the layout of the A object is a prefix of the layout of the B object. This property means
that the A.f function is able to access the x and y member variables of a class B object. Class
metadata is allocated statically and is shared among all objects created from the class.

Objects with an interface type have a more complicated representation, since a given interface
may be implemented by multiple classes. To represent an object of class type C at an interface
type I , we pair the pointer to the object’s representation with a pointer to an index table, which is a
table of offsets used to lookup member functions in C’s metadata table. For example, consider the
previous example extended with the interface

2Note, we are assuming no interfaces in the program, so the metadata for this example does not have to account for
index tables.

4

interface I {
meth g : () -> int

}

which is a supertype of both class A and B. Consider a class B object viewed through the I interface;
for this interface, we need an index table that tells us how to access the g member function from the
object. The wrapped object will have the following runtime representation:

_obj

_idx

_md

x

y

z

g: @2 size: 4

f: A.f

g: B.g

A B ObjectAn I Object

h: B.h

B@I Index B’s Metadata

whereB@I is the name of the table that lets us view a B object at interface I.3 Again, this is a simple
representation that does not account for possible interface-to-interface coercions. We discuss the full
complexity of class and interface metadata in the next section.

3.6 Object-type coercions and meta-data

Because of the prefix ordering on object representations, there is no runtime cost for coercing from
a class to one of its superclasses. When coercing from a class type to an interface type, we can
statically determine what index table must be used access the class’s member functions and generate
code to create the wrapped object representation described above. Things are more complicated,
however, when coercing between two interface types. For example, we might have an object of
class A, where A implements interface I, and we might be using it in a context where it is viewed
as an I object. If in this context, we coerce it to a J-typed object, we do not know that we should
be using A@J to access member functions in the object. Therefore, we have to store pointers to
the interface index tables in the class metadata and, furthermore, we must store offsets for these
pointers in the interface index tables.

Consider a three level class heiarchy: C l B l A. The meta data for class C will consist
an object-size field, followed by three sections: class A’s information, class B’s information, and
class C’s information. For each class, we have two subsections: the member-function pointers for
the members declared in that class and the interface-index tables for class. Because we layout the
metadata for a class from superclass to subclass, the metadata forB will have a layout that is a prefix
for the metadata of class C (although the function-pointers might be different because of function
overriding).

3Note that if we also view class A objects at interface I, then we can share this table between B and its superclass (and
it would be called A@I).

5

For each classC in the program, we must define the interfaces of a classC (written IC). We start
by defining the set of object-type coercions in the AST representation of the program as follows:

C = {(I � C) | for each coercion (I � C)e in the program}
∪ {(J � I) | for each coercion (J � I)e in the program}
∪ {(I � C) | for each coercion (I? � C?)e in the program}
∪ {(J � I) | for each coercion (J? � I?)e in the program}

Then, we define the interfaces of C to be the smallest set satisfying the following equation:

IC = {I | (I � C) ∈ C}
∪ {I | I ∈ IB ∧ C lB}
∪ {J | (J � I) ∈ C ∧ I ∈ IC}

This definition consists of three parts: the first accounts for direct coercions of the class C to in-
terfaces, the second accounts for coercions from superclasses of C to interfaces (since C can be
coerced to its superclasses), and the last closes the set over interface to interface coercions.

We must also define the interfaces of an interface I (written II), which are necessary to imple-
ment interface-to-interface coercions. As before, we define this set as the smallest set satisfying the
following equation:

II = {J | (J � I) ∈ C}
∪ {K | (K � J) ∈ C ∧ J ∈ II}

These two definitions satisfy the following important properties:

• If C lB then IB ⊆ IC (the prefix property).

• If there is a coercion (J � I)e in the program, then IJ ⊆ II .

• If I ∈ IC , then II ⊆ IC .

From these definitions, we can construct the metadata for each class, as well as the necessary
index tables to implement interface-to-interface coercions. Before defining this construction, we
need to define a mapping from member-function names in a class C to the SOIR functions that
implement them.

FC : MEMBFUN
fin→ FUNID

This mapping must account for inheritance and for overriding of inherited member functions. For a
base class defined as class C(· · ·) { vd ; fd } we have

FC = {f 7→ C.f | f ∈ fd}

and for a derived class class C(· · ·) extends B(· · ·) { vd ; fd } we have

FC = FB ± {f 7→ C.f | f ∈ fd}

The structure of class metadata has the following structure:

METADATA = N× (FUN∗ × IFC∗)∗

6

The layout of class metadata is specified by the function

LC [[·]] : CLS
fin→ (FUN∗ × IFC∗)∗

which defines the layout of a prefix of class C’s metadata. This function is defined inductively, as
follows: For a base class defined as class C(· · ·) { vd ; fd } the metadata is defined by

LC [[B]] = 〈 FC(f1), . . . , FC(fn), B@I1, . . . , B@In 〉
where B is a base class class B(· · ·) { vd ; fd }
fi ∈ fd , and Ii ∈ IB

LC [[B]] = LC [[A]]⊕ 〈FC(f1), . . . , FC(fn), B@I1, . . . , B@In 〉
where B is a derived class class B(· · ·) extends A(· · ·) { vd ; fd },
fi ∈ fd , and Ii ∈ IB \ IA

where ⊕ is tuple concatenation. We then define the metadata of a class C to be

M[[C]] = 〈 |V̂|+ 1 〉 ⊕ LC [[C]]

where C has the signature (· · ·){|B; V̂; F̂ |}.
We also need to define the contents of the interface index tables (the C@I values) that appear in

the class metadata. We model an index table as a finite map from function and index-table names to
offsets. The actual layout of an index table does not matter, as long as all of the tables for a given
interface have the same layout. Let OC be a function that maps functions and index-table names to
their offset in class C’s metadata and let interface I have the signature {| F̂ |}, then the index table
for class C viewed with type I is given by

X [[C@I]] = {fi 7→ OC(fi) | fi ∈ dom(F̂)} ∪ {Ji 7→ OC(C@Ji) | Ji ∈ dom(II)}

4 Normalization

The other main difference between the AST and SOIR representations is that SOIR is a normalized
representation. In this section, we give a description of the normalization process that translates the
AST to SOIR.

4.1 Classes, functions, and statements

For each class C in the program, we generate a SOIR function C_init to initialize the object and
for each function f defined in C, we generate a SOIR function C.f . For void-valued functions, we
introduce a return statement if there was not one in the AST. For example, the function f in the
following SOOL code:

class C () { meth f () -> void { } }

is translated to the following SOIR function:

7

fun C.f (self) {
return;

}

For statements, the translation from AST to SOIR is mostly a direct conversion of AST statement
forms to SOIR statements. The main difference is that an expression that occurs in an AST statement
is normalized to either a simple expression (if it is the right-hand-side of an assignment or local-
variable definition) or to a value. The expression normalization process (described in the next
section), generates additional statements that define intermediate results for subexpressions.

The one statement form that has a slightly more complicated translation is the while loop.
Because we want to avoid duplicating the code that computes the loop’s condition, we need to
break up the loop into two statement forms: a loop statement and a conditional exit statement
(exit_if). For example, the following SOOL while loop:

while (i <= n-1) {
p := i * p;
i := i + 1;

}

is translated to the following SOIR code:

loop {
var t = n-1;
var t2 = (i <= t);

exit_if t2;
p := i * p;
i := i + 1;

}

The code before the exit_if statement is called the loop header.

4.2 Expressions

The normalization of AST expressions is the most involved aspect of the normalization process, so
we formalize its description in this section. This translation is defined in terms of the following
translation functions:

E [[·]] : ASTEXP → (VALUE → STM∗)→ STM∗

A[[·]] : ASTEXPk → (VALUEk → STM∗)→ STM∗

QT,T ′ [[· ∼ ·]] : VALUE × VALUE → (VALUE → STM∗)→ STM∗

N [[·]] : ASTEXP → (VALUE → STM∗)→ (VALUE → STM∗)→ STM∗

C(T ′�T)[[·]] : VALUE → (VALUE → STM∗)→ STM∗

where ASTEXP is the set of AST expressions, VALUE is the set of SOIR value terms, and STM is
the set of SOIR statement terms. The function E is used to normalize expressions, A normalizes
tuples of expression (e.g., the arguments of a function call),QT,T ′ is a helper for translating equality
operators, N is a helper for handling the “?” operation, and C(T ′�T) is used to normalize coercion
expressions.

8

The E and E functions are given in Figure 2, while the other operations are defined in Figure 3.
The definition ofQT,T ′ is incomplete and is left to you to finish. Note that when coercing a boolean
or integer value to its corresponding interface we create a new object using the internal class for the
type. The string type is already represented by an object, so we do not have to allocate a wrapper
for it.

4.3 Primops

Part of the normalization translation is to replace the AST operators with SOIR primitive operators
(primops). The main difference between the BinOp.t datatype and the PrimOp.t datatype is that
the latter supports additional operations that are either generated during translation to SOIR or may
arise from optimizations. For example, SOOL has “<” and “<=” as builtin operators, whereas in
SOIR, we also have “>” and “>=.” The SOIR primops also include type-specialized versions of
equality.

4.4 Options

As part of normalization, we make tests for nil explicit. For that purpose, we have a special primop
isNIL for testing equality to nil. For example, consider the expression “e?x” and assume that
normalization translates e to code that sets the variable t to the result of e. Then, normalization
should produce the following SOIR code for the above expression

var t = ...
var t’;
if isNIL(t)
then t’ := nil
else t’ := t.x

5 An example

In this section, we given an example how metadata is represented in a more complicated situation.
Consider the class and interface declarations shown in Figure 4 (along the type hierarchy). The
inherits relations are shown in green, the implements relations are in orange, and the interface-to-
interface subtyping relations are in blue.

Let us also assume that the program contains the object-type coercions shown in Figure 5. On
the right is the type-hierarchy graph restricted to the coercions in the program. The class-to-class
coercions are in green, the class-to-interface coercions are in orange, and the interface-to-interface
coercions are in blue (the dotted arrows represent subtyping relations that are not manifest in C).
From this diagram, we see that class A must support the K interface; class B must support the I

interface and, because of transitivity, B must also support the J and K interfaces; and class C must

9

E [[(e1 && e2)]]κ = E [[e1]]λ(t1).var t;
if t1 then { E [[e2]]λ(t2). t:= t2; }
else { t:=false; }
κ(t)

E [[(e1 || e2)]]κ = E [[e1]]λ(t1).var t;
if t1 then { t:=true; }
else { E [[e2]]λ(t2). t:= t2; }
κ(t)

E [[(e1 == e2)]]κ = E [[e1]]λ(t1). E [[e2]]λ(t2).QtypeOf(e1),typeOf(e2)[[t1==t2]]κ

E [[(e1 != e2)]]κ = E [[e1]]λ(t1). E [[e2]]λ(t2).QtypeOf(e1),typeOf(e2)[[t1!=t2]]κ

E [[(e1 � e2)]]κ = E [[e1]]λ(t1). E [[e2]]λ(t2).var t= � (t1, t2);κ(t)

E [[C(e1, . . . , en)]]κ = A[[e1, . . . , en]]λ(t1, . . . , tn).var t=new C;initC(t, t1, . . . , tn);κ(t)

E [[e.f(e1, . . . , en)]]κ =



A[[e, e1, . . . , en]]λ(obj , t1, . . . , tn).
var md = obj._md;
var f =md::f;
var t= f(obj , t1, . . . , tn);
κ(t)

if typeOf(e) = C

A[[e, e1, . . . , en]]λ(iobj , t1, . . . , tn).
var obj =#1(iobj);
var index =#2(iobj);
var ix = index::f;
var md = obj._md;
var f =md[ix];
var t= f(obj , t1, . . . , tn);
κ(t)

if typeOf(e) = I

E [[e?f(e1, . . . , en)]]κ = var t;
N [[e]] (λ(). t:=nil;)(λ(t1). E [[t1.f(e1, . . . , en)]]λ(t3). t:= t3;)
κ(t)

E [[e.x]]κ = E [[e]]λ(t1).var t= t.x;κ(t)

E [[e?x]]κ = var t;
N [[e]] (λ(). t:=nil;)(λ(t1). t:= t1.x;)
κ(t)

E [[e!]]κ = N [[e]] (λ().FAIL)(κ(t1))

E [[x]]κ = κ(x)

E [[lit]]κ = κ(lit)

E [[nil T]]κ = κ(nil)

E [[(T ′ � T)e]]κ = E [[e]]λ(t1). C(T ′�T)[[t]]λ(t2). κ(t2)

A[[e1, . . . , en]]κ = E [[e1]]λ(t1). · · · E [[en]]λ(tn). κ(t1, . . . , tn)

Figure 2: Normalization of AST expressions

10

Qι,ι[[v1 ∼ v2]] = var t= ∼ι (v1, v2);κ(t)

Qι?,ι?[[v1 ∼ v2]] = var t= ∼ι (v1, v2);κ(t)

QC,C [[v1 ∼ v2]] = var t= ∼obj (v1, v2);κ(t)

QC?,C?[[v1 ∼ v2]] = var t= ∼obj (v1, v2);κ(t)

QI,C [[v1 ∼ v2]] = var obj =#1(v1);
var t= ∼obj (obj , v2);
κ(t)

QI?,C [[v1 ∼ v2]] = var t;
N [[v1]]

(λ(). t:=false;)
(var obj =#1(v1); t:= ∼obj (obj , v2);)

κ(t)

QI,J [[v1 ∼ v2]] = var obj 1 =#1(v1);
var obj 2 =#1(v2);
var t= ∼obj (obj 1, obj 2);
κ(t)

· · ·

N [[e]]κ1κ2 = E [[e]]λ(t1).var t2 =isNil(t1);
if t2 thenκ1() elseκ2(t1)

C(T?�T)[[v]]κ = κ(v)

C(C′�C)[[v]]κ = κ(v)

C(C′?�C?)[[v]]κ = κ(v)

C(T1?�T2?)[[v]]κ = var t;
N [[v]] (λ(). t:=nil;)(λ(). C(T1�T2)[[v]]λ(t1). t:= t1;)
κ(t)

C(I�C)[[v]]κ = var t= 〈 v, C@I 〉; κ(t)

C(I�ι)[[v]]κ = var t1 =new ι;
initι(t1, v);
var t= 〈 t1, ι@I 〉;
κ(t)

C(J�I)[[v]]κ = var t1 =#1(v);
var t2 =#2(v);
var t3 = t2::J;
var t4 = t1._md;
var t5 = t4[t3];
var t= 〈 t1, t5 〉;
κ(t)

Figure 3: Additional normalization functions

11

class A() {
meth f : () -> void { · · · }

}
class B() extends A() {
override meth f : () -> void { · · · }
meth g : () -> void { · · · }

}
class C() {
meth h : () -> void { · · · }
meth f : () -> void { · · · }

}
interface I {
meth f : () -> void
meth g : () -> void

}
interface J {
meth g : () -> void

}
interface K {
meth f : () -> void

}

⋖

≺
≼

≼ ≺

≺

≺

≺

A

C

B

I

J

K

Figure 4: A simple example and its type heirarchy

C =



(A � B)
(K � A)
(I � B)
(K � C)
(J � I)
(K � I)



A

C

B

I

J

K

Figure 5: Coercions and the type hierarchy restricted to the program’s coercions (the dotted edges
represent subtyping relations that are not manifest in C)

12

B’s MetadataA’s Metadata C’s Metadata

A@K Index

C@K Index

B@I Index B@J Index

h: C.h

size: _ size: _ size: _

K: A@K

f: A.f f: B.f

K: A@K

g: B.g

I: B@I

J: B@J

K: C@K

f: C.f

f: @1

f: @2

f: @1

g: @3

J: @5

g: @3

K: @2

Figure 6: Metadata tables for example in Figure 4

support the K interface. Using the notation from the previous section, we have

IA = {K}
IB = {I, K, J}
IC = {K}
II = {K, J}
IJ = {}
IK = {}

These requirements are captured in the metadata layout shown in Figure 6. In this layout, we use
the notation “A@K” to name the index table for viewing objects from class A as having interface
type K. Because of the prefix property of classes, this index table will also work for any subclass of
A (e.g., B). With this information, we can then translate the various coercions that were described
above. This translation is given in Figure 7.

6 Implementation hints

There are two main parts to this project: an analysis of the AST, which determines the runtime
representations of objects, and of class and interface metadata; and the normalization phase, which
translates the AST to SOIR.

13

Coercion SOIR code
(A � B)obj ⇒ no code required

(K � A)obj ⇒ var iobj= 〈obj, A@K 〉;

(I � B)obj ⇒ var iobj= 〈obj, B@I 〉;

(K � C)obj ⇒ var iobj= 〈obj, C@K 〉;

(J � I)iobj ⇒ var obj=#1(iobj);
var index=#2(iobj);
var ix=index::J;
var md=obj. md;
var index′ =md[ix];
var iobj′ = 〈obj, index′ 〉;

(K � I)iobj ⇒ var obj=#1(iobj);
var index=#2(iobj);
var ix=index::K;
var md=obj. md;
var index′ =md[ix];
var iobj′ = 〈obj, index′ 〉;

Figure 7: SOIR code for coercions using the metadata from Figure 6

6.1 AST analysis

The main job of the AST analysis is to determine the representation of class and interface meta-
data. It also involves defining a mapping from class and interface members in the AST to their
representation in SOIR.

The first step of the analysis is to walk over the AST representation of the program and to collect
the object-type coercions (i.e., the set C). From these, the equations of Section 3.6 can be computed
using in a brute-force fixed-point iteration, but it is also possible to compute them more efficiently
using the coercion graph to guide the computation. The coercion graph is a graph with a node for
each class and interface in the program, and an edge from the node for type T to T ′ if there is a
coercion (T � T ′) ∈ C. We augment these edges with a edge fromB to C when ClB and there is
no coercion fromC toB in the program. Figure 8(a) shows the coercion graph for the example from
Figure 4. Note that the direction of the edges in the coercion graph go from supertype to subtype!
I.e., the opposite direction as the edges in the type-hierarchy graph. Recall the three properties of
the interface sets given on Page 6; These imply that if there is an edge from T to T ′, then IT ⊆ IT ′ .
Thus, by propagating the interface sets from the roots to the leaves of the coercion graph we can
compute the information for the metadata layout. Figures 8(b)-(d) illustrate this process on the
example graph. Note that the only real propagation of information occurs at the last step, when the
interfaces J and K are propagated to class B.

In your implementation, you will also have to introduce nodes for the Basis interfaces (e.g.,
boolI). In addition, there are internal classes that implement the methods of the boolI, intI,
and stringI interfaces. Coercions from primitive types to these interfaces should be treated as
coercions from the corresponding internal classes to the interfaces.

14

A

C

B

I

J

K

(a) Initial coercion graph

{K}

{}

{K}

{I}

{J,K}

{}

A

C

B

I

J

K

(b) Step 1 of analysis

{K}

{}

{K}

{I}

{J,K}

{}

A

C

B

I

J

K

(c) Step 2 of analysis

{K}

{}

{K}

{I,J,K}

{J,K}

{}

A

C

B

I

J

K

(d) Step 3 of analysis

Figure 8: Computing metadata for example in Figure 4. Each node is annotated with its interfaces
computed so far; the green nodes are the frontier of the graph traversal and the orange nodes are the
nodes that have already been computed.

Once the interface sets have been computed, the layout of class metadata and the creation of
interface index tables can proceed by a pre-order traversal of the class hierarchy.

Another detail that must be addressed are orphan interfaces, which are interfaces for which
there is no class that coerces to them (but there is code that uses them). For example, consider the
following SOOL program:

interface I { meth f : () -> void }
interface J extends I { meth g : () -> void }
class main {
meth h (x : J) -> I { return x; }
meth run () -> void { }

}

In the body of main.h, we need to generate code for a coercion from J to I, but since there is no
class that implements either I or J, we will not have generated a layout for the interfaces. In this
case, it is safe to map all offsets for the interface to 0. Thus, the SOIR code for main.h will be

fun main.h (self, x) {
var obj = #1(x);
var md = obj._md;
var index = md[0];
var iobj = 〈obj, index〉

15

return;
}

6.2 Normalization

The most direct way to implement the normalization of expressions is using a higher-order, context-
passing, approach. In this case, a context is a function from a SOIR variable to a list of SOIR
statements (essentially, it is the κ in Figure 2). For example, consider the expression “e1 + e2.”
We are going to generate code that evaluates e1 and binds the result to some variable (say t1), then
evaluates e2 and binds the result to t2, and then computes the sum and binds the result to the variable
t. In the normalizer, this would be implemented as:

fun expToVar (env, exp, cxt) = (case exp
of ...
| AST.EXP_PrimOp(e1, BinOp.ˆ+ˆ, e2) =>

expToVar (env, e1, fn v1 =>
expToVar (env, e2, fn v2 => let

val t = freshTmp()
in
SOIR.LocalVarStm(t,
SOME(SOIR.PrimExp(PrimOp.IntAdd, [v1, v2])))

:: cxt (SOIR.VarVal t))
end))

| ...
(* end case *))

Of course, in practice, we want to handle all of the non-conditional operators as a single case.

7 Submission

We will collect the projects at 11pm on Sunday November 20 from the SVN repositories, so make
sure that you have committed your final version before then.

Important note: You are expected to submit code that compiles and that is
well documented. Remember that points for project code are assigned 30%
for coding style (documentation, choice of variable names, and program
structure), and 70% for correctness. Code that does not compile will not
receive any points for correctness.

8 Document history

November 17, 2016 Removed rule for QI,C? from Figure 3, since that case cannot occur (neither
argument is a subtype of the other) and replaced it with the rule for QI?,C .

November 16, 2016 Fixed typo in rule for && operator.

16

November 12, 2016 Changed the treatment of string to stringI coercions to agree with the other
primitive types.

November 6, 2016 Original version.

17

