
CMSC 22600
Autumn 2016

Compilers for Computer Languages Project 2
October 20, 2016

SOOL typechecker
Due: November 4, 2016

1 Introduction

The second project is to implement a type checker for SOOL, which checks whether or not a parse
tree is statically correct and produces a typed abstract syntax tree (AST). The abstract syntax tree
includes information about the binding sites of identifiers and about the types of variables and
expressions. The project seed code will provide an ML-ULex based scanner, an ML-Antlr based
parser (but you may also use your scanner and parser from Project 1), and modules for implementing
the abstract-syntax-tree representation. A companion document (The SOOL Type System) describes
the formal SOOL type system; the goal of Project 2 is to implement a checker for that formal
system.1

2 Syntactic restrictions

There are a number of syntactic restrictions that should be enforced by the type checker. Some of
these are properties that could have been specified as part of the grammar in Project 1, but would
have made the grammar much more verbose. Others are properties that could be specified as part
the typing rules below, but it is easier to specify them separately.

• Class and interface names in a program must be distinct.

• A declaration of subclass class C that is derived from a class B

class C (· · ·) extends B (· · ·) { · · · }

cannot precede the declaration of B. This restriction ensures that the class hierarchy will be
acyclic. Also note that class B is allowed to mention class C and its methods.

• The parameter names of a class and of a member-function definition must be distinct.

• The member-variable names of a class must be distinct.

• The member-function names of a class or interface definition must be distinct.
1Remember, a specification is a description of a property (yes/no question; true/false statement). It does not define

(though it may suggest) an implementation for deciding whether or not the property holds. A significant component of
this project is to develop the skills needed to produce an implementation from a specification.



• Integer literals are restricted to the range −262..262 − 1 (i.e., representable as a 63-bit 2’s-
complement integer).

Your type checker is responsible for checking these properties and reporting an error when they are
violated.

3 Implementation strategy

Two passes over declarations:

1. first records class and interface names; method and variable signatures; and checks that su-
perclasses are declared before subclasses.

2. second checks that variable and method declarations are well typed and builds the program’s
AST

4 Document history

October 20, 2016 Original version.

2


