
CMSC 22600
Autumn 2016

Compilers for Computer Languages Project 3
November 29, 2016

Optimization
(extra credit)

Due: December 6, 2016

1 Introduction

For extra credit, you may add a SOIR to SOIR optimization pass to your compiler. We will update
the project repositories with a placeholder for the optimization pass (in soir-opt) and a compiler
flag for enabling optimization (“-O”). If you choose to implement optimizations for SOIR, please
add a file named OPTIMIZATION to the root of your source tree and include a description of what
optimizations you have implemented.

2 Possible optimizations

The class of optimizations that we consider are all examples of contractions (or shrinking) trans-
formations of the code. This class of optimizations tend to provide the most “bang for the buck” as
they are usually straightforward to implement and almost always result in better performance. To
support these optimizations, you will need information about how local variables are defined and
about how many uses they have.

Note that this list is not meant to be exhaustive.

2.1 Compile-time arithmetic

When one or more arguments to an arithmetic operator (or relational operator) are known at compile
time, it is possible to replace arithmetic expressions with constants and/or simpler computations.

2.2 Dead-variable elimination

When the use count of a variable is zero, and the variable is not bound to a side-effecting expression,
then it is possible to delete the variable (and the expression that defines it). This optimization is
useful as a cleanup for other transformations. It also tends to cascade, since the use counts of the
left-hand-side variables will be decreased.



2.3 Compile-time conditional evaluation

If we have a conditional (if or exit_if) that tests a known boolean value, then we can evaluate it
at compile time. In the case of exit_if, a true value cause the loop to be flattened away leaving
just the header code and a false value creates an infinite loop. Note that if your code generator
expects all loops to include an exit_if, then you may not be able to eliminate it in the false
case.

2.4 Compile-time data-structure accessing

Similar to compile-time arithmetic, it is possible to index into tuples, class-metadata tables, and
index tables at compile time. When accessing class metadata and index tables, however, you must
be careful to avoid breaking subtyping and dynamic method dispatch.

3 Submission

This extra-credit work is due at the same time as Project 4 (11pm on Tuesday December 6) and
will be collected as part of Project 4. Please remember to include the OPTIMIZATION file in your
repository (do not forget to do an svn add!).

4 Document history

November 29, 2016 Original version.

2


