
CMSC 22600
Autumn 2016

Compilers for Computer Languages Homework 2
Due Nov 22

This homework assignment is a written assignment about parsing and typechecking. Please turn
in your completed homework at the beginning of class on Tuesday, November 22.

1. Consider the following augmented grammar G of expressions.

S′ → E

E → id

E → id(E )

E → E * id

(a) Calculate First and Follow for G.

(b) Build the LR(0) DFA (i.e., states and goto edges) for the grammar. Your answer should
clearly define the set of LR(0) items for each state and include a diagram of the DFA.

(c) Give the LR(0) action and goto tables for the grammar (remember that the goto table is
different from the goto edges!). Is this grammar LR(0)? If not, why?

(d) Is this grammar SLR? If not, why?

(e) Is this grammar LR(1)? If not, why?

2. Recall the discussion in Handout 4 (Basic Polymorphic Typechecking). Assume that we have
both int and real as base types. To extend the typechecker to support overloaded functions
(e.g., “+”) on integers and reals, we need to allow type variables that are restricted to be
members of some set. For example, the type of “+” could be written as

∀α ∈ {int,real}.(α× α)→ α

We can model this semantics by changing the representation of type-variable kinds:

and tvar_kind
= INSTANCE of ty
| UNIV of int
| NUMKIND

Give a modified version of the destructive unification algorithm given in Figure 5 that deals
with this new kind representation. The idea is that if a type variable has NUMKIND kind, then it
can only be unified with other type variables or with numeric base types.


