
CMSC 22600
Autumn 2016

Compilers for Computer Languages Homework 1
Due Friday Oct 7

Overview

For this assignment, you will implement a small Scheme-like language called µSCHEME. The
project consists of two main pieces: a parser that translates input into a tree representation and an
interpreter that executes the program. The main purpose of this assignment is to get your feet wet
with SML programming and to explore a simple example of end-to-end language implementation.

This rest of this document is organized into four parts: the specification of µSCHEME, some ex-
amples of µSCHEME programs, a discussion of how to implement the specification, and information
about submitting your work.

µSCHEME

This section describes the concrete syntax and dynamic semantics of µSCHEME.

Syntax

As is standard, we split the discussion of µSCHEME’s syntax into lexical issues (i.e., how the input
text is organized into tokens) and the syntactic structure of the tokens.

Lexical issues

µSCHEME programs are written using a subset of the ASCII (7-bit) character set. The sequence of
characters in a program are logically grouped into tokens (e.g., punctuation, identifiers, numbers,
etc.). Whitespace (i.e., sequences of space, tab, carrage return, and newline characters) may be used
to separate tokens.1 In addition to whitespace between tokens, a µSCHEME program may also have
comments, which consist of uninterpreted text beginning with the semicolon character (‘;’) and
ending with the next newline character.

µSCHEME has two punctuation symbols: left (‘(’) and right (‘)’) parentheses. In addition, it
has two classes of terminal symbols, which are specified as follows:

id ::= letter+

num ::= -?digit+

1In some cases, such as two identifier tokens in sequence, it is necessary to have separating whitespace.

Here the notation ‘letter+’ means one or more letters in sequence, and ‘-?’ means zero or one
occurrences of the character ‘-’. Two identifiers, ‘define’ and ‘lambda’, are reserved words
(a.k.a. keywords), which have special status in the syntax and cannot be used as variables.

µSCHEME’s grammar

A µSCHEME program consists of a sequence of zero or more definitions followed by an expression.
Expressions are either variables, numbers, applications, or λ abstractions. The following context
free grammar (CFG) specifies the syntax of µSCHEME programs:

prog ::= (define id exp) prog

| exp

exp ::= id

| num

| (exp+)

| (lambda (id∗) exp)

Note that the grammar is defined in terms of the language’s tokens; we do not mention whitespace
or comments, since that would just add noise to the grammar, but whitespace and/or comments may
occur between any two symbols in the grammar.

Dynamic semantics

We can specify the execution behavior of µSCHEME programs with a simple operational semantics.
You can think of such a semantics as an abstract description of an interpreter. Let us first define
some semantic domains with the following equations:

ρ ∈ ENV = IDENT
fin→ VALUE Environments

v ∈ VALUE = Z ∪ CLOS Values
〈Λ, ρ 〉 ∈ CLOS = LAMBDA × ENV Closures

n ∈ Z = {. . . ,−2,−1, 0, 1, 2, . . .} Integers
Λ ∈ LAMBDA Lambda expressions

Environments are finite maps from identifiers to runtime values, values are either integers or function
closures, and closures are a pair of a lambda expression and an environment that defines the free
variables of the expression.

The dynamic semantics of µSCHEME is given by the relation ρ ` e ⇓ v, which can be read as
saying that given an environment ρ, the expression e evaluates to the value v. Formally speaking,
this relation is defined as the least relation satisfying the rules given in Figure 1.

The µSCHEME basis

We use the term basis to describe the initial (or predefined) environment in which a µSCHEME

program executes. The basis maps identifiers to builtin operations that cannot be directly defined by
the above semantics. For µSCHEME, we define the following basis functions:

2

[ABS]
ρ ` Λ ⇓ 〈Λ, ρ 〉

[IDENT]
x ∈ dom(ρ)

ρ ` x ⇓ ρ(x)
[NUM]

ρ ` n ⇓ n

[APPLY]

ρ ` e0 ⇓ 〈(lambda(x1 · · · xn) e), ρ′ 〉
ρ ` e1 ⇓ v1 · · · ρ ` en ⇓ vn
ρ′[x1 7→ v1, . . . , xn 7→ vn] ` e ⇓ v

ρ ` (e0 e1 · · · en) ⇓ v

[DEF]
ρ ` e ⇓ v ρ[x 7→ v] ` p ⇓ v′

ρ ` (definex e) p ⇓ v′

Figure 1: Dynamic semantics for µSCHEME

• (add n1 · · · nk) where 0 ≤ k — integer addition.

• (mul n1 · · · nk) where 0 ≤ k — integer multiplication.

• (equal n1 n2) — integer equality.

• (if n v1 v2) — conditional.

The semantics of these operations is given by the δ[[·]] function, which is defined as follows:

δ[[(add)]] ⇒ 0

δ[[(add n · · ·)]] ⇒ n+ δ[[(add · · ·)]]

δ[[(mul)]] ⇒ 1

δ[[(mul n · · ·)]] ⇒ n ∗ δ[[(mul · · ·)]]

δ[[(equal n n)]] ⇒ 1

δ[[(equal n1 n2)]] ⇒ 0 where n1 6= n2

δ[[(if n v1 v2)]] ⇒ v1 if n 6= 0

δ[[(if 0 v1 v2)]] ⇒ v2

Examples

In this section, we present a few simple examples of µSCHEME programs.

We can define a subtraction function using addition and multiplication:

(define sub (lambda (a b) (add a (mul -1 b))))

(sub 5 7)

3

We typically do not want to evaluate both arms of a conditional, so we can enclose them in λ
abstractions and then apply the result of the conditional by adding an extra set of enclosing paren-
theses:

((if (equal 1 2) (lambda () 3) (lambda () 4)))

While µSCHEME does not have recursion, we can define a fixed-point combinator to implement
recursion:

; fixed-point combinator
(define fix

(lambda (f) ((lambda (x) (f (lambda (v) ((x x) v))))
(lambda (x) (f (lambda (v) ((x x) v)))))))

; recursive factorial function defined using fix
(define fact

(fix
(lambda (rfact)
(lambda (n) ((if n

(lambda () (mul n (rfact (add n -1))))
(lambda () 1)))))))

(fact 5)

Implementation

Your assignment is to implement the specification from above. We will seed your phoenixforge
repository with a directory called hw1 that contains the following files:

• hw1.cm — the CM file for building your program

• eval.sml — the µSCHEME interpreter

• main.sml — the driver that connects the parser and interpreter together

• parser.sml — the µSCHEME parser

• print.sml — a printer for results

• tree.sml — a syntax-tree representation of µSCHEME programs

You will need to complete the code in eval.sml and parser.sml.

Program representation

Programs are represented as as syntax trees, which are directly encoded as the following SML
datatypes in the Tree structure (tree.sml):

4

type id = Atom.atom

datatype prog
= Define of id * exp * prog
| Exp of exp

and exp
= Var of id
| Num of IntInf.int
| Apply of exp * exp list
| Lambda of id list * exp

The Atom module provides a representation of strings that support fast (constant-time) compar-
isons and hashing.

Parsing

In SML, a reader is a function that takes an input stream and returns either NONE (for errors or
end-of-stream) or SOME(v,s), where v is a value and s is the rest of the stream.

type (’a, ’strm) reader = ’strm -> (’a * ’strm) option

The reader type is defined in the StringCvt structure in the SML Basis Library.

We structure the µSCHEME parser into three levels: the first classifies characters by type:

datatype chr_cls
= LP | RP | MINUS | SEMI (* ’(’, ’)’, ’-’, and ’;’ *)
| LETTER of char (* ’A’..’Z’ and ’a’..’z’ *)
| DIGIT of int (* ’0’..’9’ *)
| WS (* white space characters (other than ’\n’) *)
| EOL (* end-of-line ’\n’ *)
| OTHER (* any other character *)

We provide a function that given a character reader will return a chr_cls reader.

val getcc : (char, ’strm) CvtString.reader
-> (chr_cls, ’strm) CvtString.reader

On top of this layer, we define a representation of tokens:

datatype token
= LPAREN | RPAREN (* ’(’ and ’)’ *)
| LAMBDA (* ’lambda’ *)
| DEFINE (* ’define’ *)
| IDENT of Atom.atom (* identifiers *)
| INT of IntInf.int (* integer literals *)

You should define a function that takes a character reader and returns a token reader:

5

val getToken : (char, ’strm) CvtString.reader
-> (token, ’strm) CvtString.reader

Your implementation of this function should use the character-classifier that we provide.

Lastly, you will implement a parsing function that takes a character reader and a character stream
as inputs and returns a program:

val parseProg : (char, ’strm) CvtString.reader -> ’strm -> Tree.prog

as part of your implementation you will need to implement a function for parsing expressions (ei-
ther nested inside parseProg or defined at top level). For this assignment, we will implement the
simplest form of error handling. Namely, we will raise a Fail exception with a useful message
when we encounter a syntactic error in the input.

To parse the input, you will use a technique called recursive decent. Essentially, for each non-
terminal in the grammar (e.g., exp), there will be a function (e.g., parseExp) that takes the input
stream as an argument and returns the result of the parse and the remaining input. For example, if
the input was the string

(add 1 (mul 2 3)) ...

Then calling parseExp would return the syntax tree

Apply(Var(Atom.atom "add"), [
Num 1,
Apply(Var(Atom.atom "mul"), [
Num 2,
Num 3

])])

along with the remaining input (i.e., “...”). The parseExp function looks at the next token in the
input stream and then makes a decision about what it expects to parse.2

(* parse an expression *)
fun parseExp strm = (case getTok strm

of NONE => raise Fail "error: unexpected end of file"
| SOME(LPAREN, rest) =>

... (* parse application or lambda abstraction *) ...
| SOME(LAMBDA, rest) => raise Fail "error: unexpected ’lambda’"
| SOME(DEFINE, rest) => raise Fail "error: unexpected ’define’"
| SOME(RPAREN, rest) => NONE
| SOME(IDENT x, rest) => SOME(Tree.Var x, rest)
| SOME(INT n, rest) => SOME(Tree.Num n, rest)

(* end case *))

Here we are assuming that the getTok function is defined by applying getToken to the character
reader supplied to parseProg.

You will probably want to define additional functions for parsing applications and λ abstrac-
tions, etc..

2In the case of an application or λ abstraction, it must look at two tokens.

6

Evaluation

Once a program is parsed it can be evaluated. The eval function (defined in the Eval structure) has
the type

val eval : env * Tree.prog -> value

where the env type is defined to be

type env = value AtomMap.map

(i.e., a finite map from identifiers to values).

Runtime values are represented by the value type, which has the following definition in the
Eval structure (eval.sml):

datatype value
= NUM of IntInf.int
| CLOS of value list -> value

Note that we represent closures as SML functions. This representation allows us to handle builtin
functions using the same representation as for user-define λ abstractions For example, we can im-
plement the n-ary add function as

fun add args = let
fun add’ (NUM n, s) = (n + s)

| add’ (CLOS _, _) = raise Fail "add expects numbers, given closure"
in
NUM(List.foldl add’ 0 args)

end

and define an initial environment that maps predefined function names to the builtin functions

val basis = let
fun ins ((name, f), env) =

AtomMap.insert (env, Atom.atom name, CLOS f)
in
List.foldl ins AtomMap.empty [

("add", add),
("mul", mul),
...

]
end

Submission

We will seed your pheonixforge svn repository with a collection of source-code files that comprise
this project in a directory called hw1. You can check out a copy of your repository using the svn
command:

7

svn co https://phoenixforge.cs.uchicago.edu/svn/CNETID-cs226-aut-16 cs226

where CNETID is your University of Chicago login. Two of the files in the repository (hw1/parse.sml
and hw1/eval.sml) contain unimplemented functions that you will need to complete. Please
submit your solution by committing your changes to your pheonixforge svn repository. The assign-
ment is due at 11pm on Friday October 7.

History

2016-10-01 Fixed mismatched parentheses in AST example.

2016-09-28 Added repository URL.

2016-09-27 First version.

8

