
CMSC 23700
Autumn 2015

Introduction to Computer Graphics Project 5
November 15, 2015

Terrain Rendering (Part 1)
Due: Tuesday November 24 at 10pm

1 Summary

The final project involves rendering large-scale outdoor scenes. It will be split into two parts
(Projects 5 and 6). This assignment is the first part. The goal of this assignment is to get basic
infrastructure for the final project up and running. There are a lot of pieces and you may not get
all of them implemented, but do the best that you can. You will implement basic terrain rendering
using the so-called chunked-level-of-detail algorithm. For the second part (Project 6), you will be
responsible enhancing your implementation with various special effects of your choosing.

You may work in a group of two or three students for the final project (note that CMSC 33700
students must work individually). There is a web interface for creating groups at

https://work-groups.cs.uchicago.edu/pick_assignment/26901

It works by one person logging in and then sending invites to the other group members. After login,
the user will see a page where they can choose the assignment (there is only one), and then their
partner(s). All invitations to group must be acknowledged on the site before the group’s repository
is created. Any issues should be reported to techstaff@cs.uchicago.edu.

2 Heightfields

You were introduced to the idea of heightfields in Project 3. Recall that they are a special case
of mesh data structure, in which only one number, the height, is stored per vertex. The other two
coordinates are implicit in the grid position. If sh is the horizontal scale, sv the vertical scale, and
H a height field, then the 3D coordinate of the vertex in row i and column j is 〈shj, svHi,j , shi〉
(assuming that the upper-left corner of the heightfield hasX andZ coordinates of 0). By convention,
the top of the heightfield is north; thus, assuming a right-handed coordinate system, the positive X-
axis points east, the positive Y axis points up, and the positive Z-axis points south.

As discussed in the Project 4 description, heightfields are trivial to triangulate, but the naı̈ve
rendering of a heightfield mesh requires excessive resources (a relatively small 2049 × 2049 grid
has over eight-million triangles). To support using heightfields for large outdoor scenes, researchers
have developed many algorithms to reduce the number of triangles that are rendered in any given
frame. The goal is to pick a set of triangles that both minimizes rendering requirements and min-
imizes the screen-space error. Screen-space error is a metric that approximates the difference be-
tween the screen-space projection of the higher-detail geometry and the screen-space projection of

Level 2 Level 1 Level 0

Figure 1: Chunking of a heightfield

the lower-detail geometry. For this project, you will implement the rendering part of a position-
dependent algorithm called Chunked LOD.

3 Chunked LOD

The Chunked Level-of-Detail (or Chunked LOD) algorithm was developed by Thatcher Ulrich. This
algorithm uses precomputed meshes (called chunks) at varying levels of detail. For example, Fig-
ure 1 shows a 33 × 33 heightfield with three levels of detail (note that level 0 is the least detailed
level). The chunks of a heightmap form a complete quad tree. Each chunk has an associated ge-
ometric error, which is used to determine the screen-space error. Figure 2 shows how the chunks
at different levels of detail are combined to render the heightfield. In this example, we have taken
three chunks from Level 1 and four from Level 2. Because chunks at different levels of detail are
not guaranteed to match where they meet, the resulting rendering is likely to suffer from T-junctions
(these are circled in red in Figure 2), which can cause visible cracks. To avoid rendering artifacts that
might be caused because of T-junctions, each chunk has a skirt, which is a strip of triangles around
the edge of the chunk extending down below the surface. The skirts are part of the precomputed
triangle meshes.

As mentioned above, which level of detail to render for a chunk is determined by the screen-
space error of the chunk. For each chunk, we have precomputed the maximum geometric error
between it and the next higher level of detail. If δ is the precomputed error value, then the screen-
space error ρ can be conservatively approximated by the equation

ρ =

viewport-wid

2 tan
(

fov
2

)
 δ

D

where D is the distance from the viewer to the bounding box of the chunk and fov is the horizontal
field of view. Better approximations can be had by taking into account the viewing angle (for
example, if you are looking down on the terrain from above, then the projection of the vertical error
will be smaller). When ρ exceeds some error tolerance, then we need to replace the chunk by the

2

Figure 2: Rendering the heightfield from Figure 1

four chunks of the next higher level of detail.

4 Map format

The maps for this project are not restricted to being square. A map covers a w2m × h2n unit
rectangular area, which is represented by a (w2m + 1) × (h2n + 1) array of height samples. This
array is divided into a grid of square cells, each of which covers (2k+1)× (2k+1) height samples.
For example, Figure 3 shows a map that is 3 · 211× 212 units in area and is divided into 3× 2 square
cells, each of which is 211 units wide. The cells of the grid are indexed by (row , column) pairs,
with the north-west cell having index (0, 0).

A map is represented in the file system as a directory. In the directory is a JSON file map.json
that documents various properties of the map. For example, here is the map.json file from a small
example map:

{
"name" : "Grand Canyon",
"h-scale" : 60,
"v-scale" : 10.004,
"base-elev" : 284,
"min-elev" : 414.052,
"max-elev" : 2154.75,
"width" : 4096,
"height" : 2048,
"cell-size" : 2048,
"color-map" : true,
"normal-map" : true,
"water-map" : false,
"grid" : ["00_00", "00_01"]

}

The map information includes the horizontal and vertical scales (i.e., meters per unit); the base,
minimum, and maximum elevation in meters; the total width and height of the map in height-field

3

2048×2048

6144

4096

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

Figure 3: Map grid

samples;1 the width of a cell; information about what additional data is available (color-map texture,
normal-map texture, and water mask); and an array of the cell-cell names in row-major order. Each
cell has its own subdirectory, which contains the data files for that cell. These include:

• hf.png — the cell’s raw heightfield data represented as a 16-bit grayscale PNG file.

• hf.cell — the cell’s heightfield organized as a level-of-detail chunks.

• color.tqt — a texture quadtree for the cell’s color-map texture.

• norm.tqt — a texture quadtree for the cell’s normal-map texture.

• water.png — a 8-bit black and white PNG file that marks which of the cell’s vertices are
water (black) and which are land (white).

Of these files, only the first two are guaranteed to be present.

The sample code includes support for reading the map.json file, as well as the other data
formats (.tqt and .cell files).

Because the map datasets are quite large (in the 100’s of megabytes), we have arranged for them
to be available on the CSIL Macs in the /data directory. You can also download the datasets from
the course webpage to use on your own machine, but please do not add them to your svn repository.

1Note that the width and height are one less than the number of vertices; i.e., in this example, the number of vertices
is 4097× 2049.

4

4.1 Map cell files

The .cell files provide the key geometric information about the terrain being rendered. Each file
consists of a complete quadtree of tiles. Each level of the quad tree defines a different level of detail
and consists of 2lod× 2lod tiles arranged in a grid (see Figure 1). The tiles are indexed by their level,
row, and column. A tile covers a square region of the cell and contains various bits of information,
including a chunk, which is the triangle mesh for that part of the cell’s terrain at the tile’s level of
detail.

Chunks are represented as a vertex array and an array of indices. The triangle meshes have been
organized so that they can be rendered as triangle strips (GL_TRIANGLE_STRIP). The mesh is
actually five separate meshes, one for the terrain and four skirts, and we use OpenGL’s primitive
restart mechanism to split them (the primitive restart value is 0xffff). Vertices in the mesh are
represented as

struct Vertex {
int16_t _x; // x coordinate relative to Cell’s NW

// corner (in hScale units)
int16_t _y; // y coordinate relative to Cell’s base

// elevation (in vScale units)
int16_t _z; // z coordinate relative to Cell’s NW

// corner (in hScale units)
int16_t _morphDelta; // y morph target relative to _y (in

// vScale units)
};

Note that the vertices’ x and z coordinates are relative the the cell’s coordinate system, not the world
coordinate system.

For large terrains, using single-precision floating point values for world coordinates can cause
loss of precision when the viewer is far from the world origin. One can avoid these problems by
splitting out the translation from model (i.e., cell) coordinates to camera-relative coordinates from
the rest of the model-view-projection transform. The transformation of the Vertex structure to
camera-relative coordinates in the vertex shader is straightforward. If we assume that 〈x, y, z,m〉 is
the 4-element Vertex,2 we compute

v = 〈sxx, syy + smm, szz〉+ ocell

where s = 〈sx, sy, sz, sm〉 is a uniform scaling vector and ocell is the camera-relative origin of the
cell. As described in Section 5.4 below, the morph delta (m) is being used to offset the altitude of
the vertex (the adjusted altitude is called the morph target). Notice that v is in a space where the
axes are aligned with the world-space axes, but the origin is at the camera.

The chunk data structure also contains the chunk’s geometric error in the Y direction, which is
used to compute screen-space error, and the chunk’s minimum and maximum Y values, which can
be used to determine the chunk’s AABB.

4.2 Texture Quad Trees

For each map cell, there are also two texture quad trees (TQTs) for the cell’s color and normal
maps. TQTs provide a parallel structure to the tile quad tree and use the same indexing scheme.

2The vertex fetch on the GPU will convert the 16-bit integers to floats.

5

Note, however, that some maps (e.g., gcanyon) may have more levels of detail in the tile quad tree
than in the TQTs. In this case, you will need to spread the texture over multiple chunks.

5 Rendering

The first part of this project is to implement a basic renderer on top of the Chunked-LOD imple-
mentation. You solution should address the issues described in the remainder of this section, as well
as the UI controls described in Section 6. Your fragment shader should use the color and normal
textures if they are available in the scene.

The features are listed in order of importance. At a minimum, you should get the first two done
for this project, but try to make as much progress as possible, since that will give you more time to
work on Project 6.

5.1 Basic rendering

Your implementation should support basic rendering of the heightfield in both wireframe and shaded
modes. You will need to compute the screen-space error of chunks and to choose which chunks to
render based on screen-space error. We recommend that you structure the rendering of the terrain
mesh as two passes over each cell’s tile quadtree. The first pass should determine visibility informa-
tion, level of detail, and manage the acquiring and releasing of resources (i.e., VAOs and textures).
The second pass can then render the visible chunks.

5.2 Lighting

You should support a single directional light that represents the sun and diffuse shading of the
heightfield. The map file format will include a specification of the direction of the light.

5.3 View frustum culling

Your implementation should support view-frustum culling. You can implement this feature by test-
ing for intersection between the view frustum with the chunk’s axis-aligned bounding box.

5.4 Morphing between levels of detail

To avoid popping when transitioning between levels of detail, your implementation should morph
vertex positions over several frames (the morphing can be done in the vertex shader). Each vertex in
a chunk is represented by four 16-bit integers. The first three represent the coordinates of the vertex
(before scaling) and the fourth hold the difference between the vertex’s Y position and its morph
target. If the vertex is present in the next-lower level of detail, then the morph target is just its Y
value, but if the vertex is omitted, then it is the Y-value of the projection of the vertex onto the edge
in the next LOD as is shown in the following diagram:

6

Morph target

Morph delta

5.5 Fog

Fog adds realism to outdoor scenes. It can also provide a way to reduce the amount of rendering by
allowing the far plane to be set closer to the view. The map file may optionally include a specification
of the fog colorCfog and density ρfog. In your fragment shader, you should compute a distance-based
fog factor as follows

ffog =
1

e(ρfogd)2
(1)

where d is the distance from the viewer to the fragment. One then uses the fog factor to compute
the resulting color as follows:

Cframebuffer = (1− ffog)Cfog + ffogCfragment

5.6 Details

Note that when the fog factor is close to one, the color will essentially be Cfog. Therefore, you
should use the fog color as the background clear color so that the objects at a distance fade into
the background. If you decide to add a skybox (in Project 6), you will want to add an altitude
component to your fog computation so that the skybox blends into the fog at the horizon.

Calling the function exp for every fragment can be a performance hit. There are a couple of
ways that you can make this faster, if performance is a problem. First, we can rewrite Equation 1 as

ffog = 2k(ρfogd)
2

(2)

where k = −1
ln 2 (about −1.442695). This form of the fog equation allows us to take advantage of

the fact that the GLSL function exp2 is typically faster than exp. Second, we can compute the fog
factor in the vertex shader and let the rasterizer interpolate it for us. The disadvantage of the second
approach is that it may result in changes to the fog as the tessellation changes between levels of
detail and it does not model work well when the terrain mesh has large triangles.

6 User interface

We leave the details of your camera control unspecified. The main requirements is that it be pos-
sible using either the keyboard or mouse to change the direction and position of the viewpoint.
Furthermore, you should support the following keyboard commands:

7

f toggle fog
l toggle lighting
w toggle wireframe mode
+ increase screen-space error tolerance (by

√
2)

- decrease screen-space error tolerance (by
√
2)

q quit the viewer

6.1 Submission

Project 5 is due on Tuesday November 24. As part of your submission, you should include a text
file named PROJECT-5 that describes your plans for Project 6 (more information about Project 6
will be posted soon).

History

2015-11-24 Revised the discussion Section 4.1 and added some discussion about TQTs.

2015-11-22 Added discussion about transforming mesh vertices.

2015-11-21 Added more details about fog.

2015-11-17 Fixed due date.

2015-11-15 Original version.

8

