
CMSC 23700
Autumn 2015

Introduction to Computer Graphics Project 4
November 3, 2015

Deferred Rendering
Due: Monday November 16 at 10pm

1 Summary

This assignment uses the same application architecture as the earlier projects, but it replaces the
forward rendering approach with deferred rendering.

2 Description

The rendering techniques that you have implemented in the previous projects is sometimes called
forward rendering. While it is very effective for many applications, it does not handle large numbers
of light sources well. In a scene with many lights (e.g., street lights going down a highway), we
might have to run a forward-rendering pass per light (or fixed-size group of lights) resulting in
substantial extra work. Furthermore, we may have to compute lighting for many fragments that are
later overdrawn by other, closer, fragments. (Note: some hardware uses an early Z-buffer test to
avoid running the fragment shader on fragments that will be discarded later, but this optimization
only helps with fragments that are further away from the ones already drawn).

2.1 Basic technique

The idea of deferred shading (or deferred rendering) is to do one pass of geometry rendering, storing
the resulting per-fragment geometric information in the G-buffer. A G-buffer is essentially a frame
buffer with multiple attachments or Multiple Render Targets (MTR). These include

• fragment positions (i.e., world space coordinates)

• the diffuse surface color without lighting

• the specular surface color and exponent without lighting

• world-space surface normals

• depth values

We then use additional passes (typically one per light) to compute lighting information and to blend
the results into the final render target. Figure 1 shows the G-buffer contents and final result for a
G-buffer with four components (color, normal, and depth).



Color buffer

Normal buffer

Depth buffer

Final result

Figure 1: The G Buffer contents and final result

In the remainder of this section, we describe deferred rendering in more detail. You can also
find additional information in Chapter 13 of the OpenGL SuperBible (pp. 613–624).

2.1.1 The Geometry Pass

The first pass is called the geometry pass and consists of a vertex shader that transforms the ver-
ticesas usual, but also outputs the world-space coordinates, and a fragment shader that writes the
various pieces of information that we need to compute lighting to the G-buffer.

Vertex 
Shader Rasterizer

G Buffer

Diffuse

Position

Normal

Depth

. . .

Fragment 
Shader

Scene 
objects

2.1.2 Lighting passes

The second phase of the technique is to run a rendering pass for each light in the scene. This pass
renders a mesh that encompasses the light volume (in the case of directional lights, we can render

2



the screen quad). The vertex shader for the lighting pass is trivial; it just transforms the vertex into
clip-space coordinates, which are used to generate fragments that provide the iteration structure for
doing the lighting calculation. We blend the output of each lighting pass into buffers for the diffuse
and specular illumination components.

Vertex 
Shader Rasterizer

Vertex 
Shader Rasterizer

Vertex 
Shader Rasterizer

G Buffer

Render 
Buffer

Fragment 
Shader

Fragment 
Shader

Fragment 
Shader

Fragment 
Shader

Specular 
Buffer

Diffuse 
Buffer

Light 1 
object

Light 2 
object

Light 3 
object

Vertex 
Shader RasterizerScreen 

quad

At this point, we might also compute screen-space ambient occlusion in a separate pass (see
Section 4 below).

2.1.3 Final blending

The final phase is to combine the diffuse and specular buffers from the lighting passes and write
them to the default framebuffer for display on the screen. We do this by drawing a screen-sized
quad (i.e., two triangles) and using the generated fragment coordinates to drive the blending of the
lighting information with the diffuse color information in the G-buffer.

2.2 Implementation details

There is also the problem of computing lighting effects that cannot have any impact (because of
attenuation). We need limit the lighting calculations to those fragments that are actually affected by
the light. Furthermore, since the only fragments represented by the G-buffer are visible, we would
like to avoid computing lighting information for occluded fragments.

The basic idea is to render point lights and spot lights as geometric objects representing the light
volume (i.e., spheres and cones), where we use the light’s attenuation factor to determine the size of
the volume. In the case of point lights, we can determine the sphere’s radius as follows. Let

Imax = max(Ir, Ig, Ib) maximum per-channel intensity for the light
At(d) = 1

ad2+bd+c
attenuation as function of distance d (1)

3



Assuming that we have 8-bits per channel, want to solve for d (assuming a 6= 0)

At(d)Imax =
1

255
255Imax = ad2 + bd+ c

0 = ad2 + br + (c− 255Imax)

d =
−b+

√
b2 − 4a(c− 255Imax)

2a

Say a = 0.3, b = 0, and c = 0, then we get d ≈ 29. The lights in the project are spot lights, so they
will be represented as cones (there is a type cs237::Cone in the common code that can be used to
generate the mesh representation of a spot-light volume).

When rendering the light-volume triangles, we have a situation like the following figure:

Light

Color
Buffer

In this example, we would compute lighting information for all of the fragments in the yellow region
of the screen. In this case, only the region covered by the blue object would have non-zero lighting,
since all of the other fragments are outside the light volume and thus the light does not affect them.

This technique reduces the number of fragments for which we must compute lighting informa-
tion, but it can still result in unnecessary lighting computations. For example, the green object is
outside the light volume, but we would still spend time computing lighting for it. We can use a
technique similar to stencil shadows to further reduce the lighting work. The basic idea is to do two
passes for the light. The first puts non-zero values into the stencil buffer for those fragments whose
world-space position is inside the light volume. The second pass uses this stencil information to
discard fragments before lighting.

Specifically, we do the following for each point light or spot light in the scene:1

1Since the directional light affects the entire scene, there is little benefit in this technique for it.

4



1. Clear the stencil buffer.

2. Enable stencil test (GL_ALWAYS) and depth tests (GL_LESS) against the depth buffer com-
puted in the geometry pass. We also disable culling so that both front and back-facing trian-
gles are rendered.

3. Set the stencil operations as follows:

Face Stencil-test Fail Depth-test Fail Depth-test Pass
Front Keep Keep +1
Back Keep Keep −1

4. Render the light-volume mesh using a null fragment shader.

5. Disable the depth test and enable front face culling2

6. Set the stencil test to 6=0.

7. Render the light-volume polygons and compute lighting effects in the fragment shader, blend-
ing them into the result. The stencil test will cause fragments to be discarded after rasteriza-
tion, but prior to the fragment shader, which will save unnecessary computation.

The following figure illustrates how this technique works. Light rays that pass through the light
volume without hitting an object produce a stencil value of 0, whereas light rays that hit an object
inside the light volume produce a stencil value greater than 0.

Light

0

+1

0

Color
Buffer

For a discussion of the stencil buffer operations, see Chapter 9 of the OpenGL SuperBible (pp.
372–376).

2We need to render the back face polygons to handle the case where the eye is in the light sphere.

5



Deferred rendering consumes a lot of memory bandwidth (especially during the geometry pass,
where we are writing out multiple screen-sized render buffers). To reduce that cost, one can pack
data into fewer targets using half floats, combining multiple logical buffers into a single render
buffer, etc. See the SuperBible discussion for an example.

3 Project details

For this project, you will be implementing a variation of deferred rendering in a viewer that is
similar to that of Projects 1–3. We will provide code for the viewer UI and and a forward-renderer
that supports wireframe and texture rendering.

3.1 Scenes

The structure of scenes is similar to that of projects 1–3, but we have added spotlight objects to the
scene, in addition to the directional and ambient light sources. The objects are in an array inside the
lighting object in the scene descriptiom./ They have the following fields:

1. The name field provides a unique name for the light for debugging purposes.

2. The pos field specifies the world-space coordinates of the light.

3. The direction field is a vector that specifies the direction of the light that the light is
pointing.

4. The cutoff field specifies the angle between the light’s direction vector and the edge of the
light cone (in degrees).

5. The exponent field specifies the fall off in intensity from the center of the light’s beam.

6. The intensity field is an RGB triple that specifies the intensity of the light.

7. The attenuation field is a JSON object with three fields — constant, linear, and
quadratic — that specifies the attenuation characteristics of the light. These values corre-
spond (respectively) to the parameters c, b, and a from Equation 1 above.

3.2 Rendering

For this project, your renderer should support the following lighting mechanisms:

• Ambient lighting based on a global ambient light level, which is given in the scene descrip-
tion.

• Diffuse lighting based on the diffuse color of surfaces and the lights in the scene.

• Specular lighting based on the specular coefficient and exponent of surfaces and the lights in
the scene. You should use the Phong-Blinn model for computing the specular illumination.

• Normal mapping for those surfaces that have a normal map.

6



• Texture mapping for those surfaces that have a diffuse or specular texture.

The lights of the scene include a single directional light (as before), plus additional spot lights.

Note that unlike the previous projects, objects vary in their materials, with some objects having
textures and others having uniform color. In fact, some objects use different materials for different
groups in their model. The sample code supports this variety, but you will need to accommodate it
in your shader code.

3.3 Spot lights

The semantics of spotlights is based on the classic OpenGL model. Each spotlight has a number of
properties (listed above) that controls how it contributes to the illumination of a fragment. Consider
a spotlight at position p and a fragment at position q. Let l be the light’s direction vector and let
v = q−p be the vector from the light to the fragment position as illustrated in the following figure:

Light direction l

Cutoff angle

Spot light ϴ
Fragment
position

p

q
v

The intensity of the light on the fragment is given by the following equation:

I =

{
At(‖v‖)(cos θ)e if θ ≤ cutoff
0 if θ > cutoff

(Recall that cos θ = v·l
‖v‖ .) In the case where θ is greater than the light’s cutoff, there is no illumina-

tion. Otherwise the illumination is scaled by distance-based attenuation (as defined above) and the
cosine of θ raised to the power e. Note also that we can avoid having to compute cos−1

(
v·l
‖v‖

)
in

the shader by precomputing cos(cutoff) for the light.

3.4 User interface

The sample code implements the following controls:

7



a A toggle the display of the world-space axes
d D switch to deferred-rendering mode
q Q quit the viewer.
t T switch to textured mode
w W switch to wireframe mode
- move the view toward the look-at point
+ move the view away from the look-at point

left arrow rotate the view to the left
right arrow rotate the view to the right
up arrow rotate the view up

down arrow rotate the view down

Deferred-rendering mode is mapped to texturing mode in the sample code, you should modify the
View object initialization to hook in your rendering code for this mode.

4 Screen-space ambient occlusion

Students who are enrolled in the graduate track (CMSC 33700) should include support for screen-
space ambient occlusion. Students who are enrolled in the undergraduate track (CMSC 23700) may
add this feature to their projects for extra credit. A separate document will be posted to the project
website with information about how to implement this effect, but we will be using a variation of the
algorithm described in Chapter 13 of the OpenGL SuperBible (pp. 624–631).

5 Shadow mapping

It is also possible to combine deferred rendering with the shadow mapping technique that you im-
plemented in Project 3. The basic idea is that for each light pass, you add a pass to compute the
shadow map from the point of view of the light, which is then used during the lighting pass for the
light. One can speed up this process by culling objects outside the light volume when construct-
ing the shadow map. For extra credit, you may add shadow mapping to your implementation (this
includes students who are enrolled in CMSC 33700).

6 Sample code

To get you started, we will seed your repository with sample code. The code will be organized into
a directory called proj4 with four subdirectories:

• build, which contains a Makefile for compiling your project.

• shaders, which is where you should put your shader source files.

• src, which will hold the C++ source code for your project. We have seeded it with code for
loading scenes and for rendering scenes in wireframe and textured modes (i.e., using forward
rendering).

• scenes, which contains a simple scene for testing purposes. More complex scenes will be
posted to the project web page.

8



7 Hints

• As a preliminary step, you may want to implement standalone renderers to test the shader
code for each of the G-buffer components. These renderers would display their output to the
screen (as in Figure 1). They will let you verify that your individual computations for the
geometry pass are correct before you implement the lighting phases.

• You may also want to add code to render the light volumes in either the wireframe or texture
rendering modes as a way to visualize what parts of the scene are affected by which lights.

8 Submission

We have set up an svn repository for each student on the phoenixforge.cs.uchicago.edu
server and we will populate your repository with the sample code. You should commit the final
version of your project by 10:00pm on Monday November 16. Remember to make sure that your
final version compiles before committing!

History

2015-11-05 Fixed a couple of typos in the equations and reduced the size of a couple of the figures
to waste less space.

2015-11-04 Original version.

9


