CMSC 23700 Introduction to Computer Graphics Handout 2
Autumn 2015 November 12

Notes on polygon meshes

1 Basic definitions

Definition 1 A polygon mesh (or polymesh) is a triple (V, E, F'), where

\% a set of vertices (points in space)
E c (VxV) asetofedges (line segments)
F C FE* a set of faces (convex polygons)

with the following properties:

1. forany v €V, there exists (vi,v2) € E such that v = vy or v = vs.
2. forand e € E, there exists a face f € F such that e is in f.

3. iftwo faces intersect in space, then the vertex or edge of intersection is in the mesh.

If all of the faces of a polygon mesh are triangles, then we call it a triangle mesh (trimesh). Polygons
can be fessellated to form triangle meshes.

Definition 2 We classify edges in a mesh based on the number of faces they are part of:

e A boundary edge is part of exactly one face.
e An interior edge is part of two or more faces.
e A manifold edge is part of exactly two faces.

e A junction edge is part of three or more faces.
Junction edges are to be avoided; they can cause cracks when rendering the mesh.

Definition 3 A polymesh is connected if the undirected graph G = (Vp, Eg), called the dual graph,
is connected, where

o Vi is a set of graph vertices corresponding to the faces of the mesh and

o FEp is a set of graph edges connecting adjacent faces.

Definition 4 A polyhedron is a polymesh that is

1. connected and

2. each edge is manifold.

Definition 5 A polytope is a polyhedron that encloses a convex region R of R? (i.e., any two points
in R are connected by a line segment that is wholly contained in R).

Definition 6 A connected mesh is manifold if every edge in the mesh is either a boundary edge or
a manifold edge.

For most computer graphic applications, we use manifold meshes.

Definition 7 A manifold mesh is closed if every edge is manifold and it is non-intersecting.

2 Orientation

The orientation of a face determines which side is the front and which side is the back. The orien-
tation can either be Counter Clockwise (CCW, which is the OpenGL default) or Clockwise (CW).

Definition 8 Two faces, f1 and fo, that share a common edge e are consistently oriented if the head
of ein fi is the tail of e in fo (and vice versa).

Definition 9 A manifold mesh is orientable if the vertex orderings of its faces can be chosen so that
adjacent faces have consistent orderings (i.e., all faces are either CW or CCW).

3 Data structures

The data structures used to represent meshes vary by application. For rendering purposes, one might
use a wireframe representation (just vertices and edges), or a trimesh representation (vertices and
triangles). If we want to do more substantial computation with the mesh, we need to be able to
efficiently answer geometric queries, such as

e find the edges or vertices of a face

find the neighboring vertices of a vertex

find the faces of an edge

find the edges of a vertex (c.f., silhouette edges)

find the next edge in a path around a face

3.1 Winged-edge model

One popular representation is the winged-edge data structure. In this representation, the edge is the
central part of the representation.

B R

In C, we might use the following pointer-based representation:

struct edge {
struct vertex *v0; /* endpoints of edge #*/
struct vertex *vl;
struct face *left; /+ face on left-hand-side of edge x/
struct face +*right; /* face on right-hand-side of edge x/
struct edge *1Pred; /+ left-most predecessor edge */

struct edge *rPred; /# right-most predecessor edge */
struct edge *1Succ; /+ left—-most successor edge #*/
struct edge *rSucc; /# right-most successor edge #*/

}i

struct vert {
struct edge =xe;

}i

struct face {
struct edge xe;

}i

In a graphical application, we will store other information with vertices and faces (colors, normals,
texture coordinates, ...), hence the “. . .” in the code. For models where the mesh is static, we
can use a table-based representation that is more compact (assuming that we can use the char or
short type as table indices).

3.2 Directed-edge model

The directed-edge (or half-edge) model splits the representation of each edge into two oriented
parts. Consider the following fragment of a mesh:

The half-edge representation uses two half-edges (e; and e,.) to represent the edge e. For e;, we
record the source vertex (u), the face to the left (L), the next half-edge in the CCW tour of L (ey),
and the other half of the edge (e,.). Likewise, for e, we record v, R, es, and ¢;. For a vertex we
record an edge that it is a source of, and for a face we record an edge that the face lies to the left of.
The C data structures for half-edges look like the following:

struct Edge {

Vertex xvert; // source vertex of edge
Face ~face; // face to left of edge
Edge «next; // next edge in tour around face
Edge «pair; // half-edge going the other way

}i

struct Vertex {
Edge ~edge; // An edge with this vertex as 1its source
vec3f v; // The position of the vertex

}i

struct Face {
Edge ~edge; // An edge of the face

}i

In this representation, boundary edges will have a null pair pointer.

When restricted to triangle meshes, the directed-edge model can be made very space efficient
(at a slight cost in time). Since each half-edge belongs to exactly one triangle, we can group them
in triplets and use arithmetic to determine the triangle of an edge, the edges of a triangle, and the

next and previous edges of a tour:

trile) = ediv3
edges(t) = (3t,3t+1,3t+2)

e+2 ifemod3=0
e —1 otherwise

prev(e)

next(c) = {6—2 1fem0d3—2}

e+ 1 otherwise

The edge representation can then become very compact:

struct Edge {

struct Vertex xvert; // source vertex of edge

int pair; // half-edge going the other way
}i

