For this homework, you may want to review the "Notes on polygon meshes," which are available from the course web page.

1. Given a direction vector \mathbf{d} , we say that an edge e separating two faces, F_l and F_r , with normals $\text{norm}(F_l)$ and $\text{norm}(F_r)$ is a *silhouette edge* if

$$sign(\mathbf{d} \cdot norm(F_l)) \neq sign(\mathbf{d} \cdot norm(F_r))$$

A *silhouette loop* is a connected loop of silhouette edges. Give an algorithm for computing the silhouette loop when given a polytope mesh M and \mathbf{d} . You should assume the mesh is represented using a winged-edge data structure.

2. One way to make level-of-detail (LOD) transitions is to use an α fade, where you lerp the α channel to blend the two LODs. For example, assume that you have a triangle $\triangle \langle \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \rangle$ and a vertex \mathbf{q} that splits the triangle into two triangles $\triangle \langle \mathbf{p}_1, \mathbf{p}_2, \mathbf{q} \rangle$ and $\triangle \langle \mathbf{p}_1, \mathbf{q}, \mathbf{p}_3 \rangle$ as follows:

At the coarse LOD, we just render $\triangle\langle \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \rangle$, and at the fine LOD, we render both $\triangle\langle \mathbf{p}_1, \mathbf{p}_2, \mathbf{q} \rangle$ and $\triangle\langle \mathbf{p}_1, \mathbf{q}, \mathbf{p}_3 \rangle$, but in between we render all three triangles and use alpha blending to smooth the transition.

Assuming that $0 \le t \le 1$, give the blending equation that describes how to combine the two images as a function of t. It should be the case that when t = 0, just the coarse LOD is rendered and when t = 1, just the fine LOD is rendered.

3. An axis-aligned bounding box (AABB) in 2D is defined by four scalar values:

$$\langle minX, maxX, minY, maxY \rangle$$

We use (1, -1, 1, -1) to denote the empty AABB. Let

$$bb_1 = \langle minX_1, maxX_1, minY_1, maxY_1 \rangle$$

and

$$bb_2 = \langle minX_2, maxX_2, minY_2, maxY_2 \rangle$$

be two non-empty AABBs.

- (a) What is the minimum AABB that contains the union of bb_1 and bb_2 ?
- (b) What is the minimum AABB that contains the intersection of bb_1 and bb_2 ?
- (c) What is the minimum AABB that contains the difference of bb_1 and bb_2 (i.e., $bb_1 \setminus bb_2$).?