DISCLAIMER: The solutions presented below are incomplete and might be insufficient to get full grade on the homework. They do not model acceptable solutions, but rather present an idea of how a certain problem can be approached. A diligent student should be able to work out complete solutions. Please report any mistakes that you find to the instructor and TA(s).

3. All subparts of problem 3 can be solved using the pumping lemma.

Let n be given by the pumping lemma. Choose string $w \in L$ s.t. $|w| \ge n$. Then by the pumping lemma, w can be broken into three strings w = xyz s.t. $y \neq \epsilon$, $|xy| \leq n$ and $\forall k \geq 0, xy^k z \in L.$

Below, see an example choice of w that will give the desired contradiction, namely that $xy^kz \notin L$ for some k.

(a)
$$w = 0^n 1^n, k = 0$$
 (c) $w = 0^n 10^n, k = 0$ (e) $w = 0^n 1^n, k = 2$

(c)
$$w = 0^n 10^n, k = 0$$

(e)
$$w = 0^n 1^n k = 2^n$$

(b)
$$w = {n \choose n}, k = 0$$

(d)
$$w = 0^n 1^n 2^n, k = 0$$

(b)
$$w = {n \choose n}^n, k = 0$$
 (d) $w = 0^n 1^n 2^n, k = 0$ (f) $w = 0^n 1^{2n}, k = 0$

4. All subparts of problem 4 can be solved using the pumping lemma. There are multiple possible choices of strings.

Let n be given by the pumping lemma. Choose string $w \in L$ s.t. $|w| \ge n$. Then by the pumping lemma, w can be broken into three strings w = xyz s.t. $y \neq \epsilon$, $|xy| \leq n$ and $\forall k \geq 0, xy^k z \in L.$

(a) $w = 0^{n^2}$. If k = 2, then $|w' = xy^2z| = n^2 + |y| \le n^2 + n$. Since $n^2 < n^2 + n < n$ $(n+1)^2$, then |w'| is not a perfect square and $w' \notin L$.

2 Review of Functions

(b) $w = 0^{n^3}$. If k = 2, then $|w' = xy^2z| = n^3 + |y| \le n^3 + n$. Since $n^3 < n^3 + n < (n+1)^3$, then |w'| is not a perfect cube and $w' \notin L$.

- (c) $w = 0^{2^n}$. If k = 2, then $|w' = xy^2z| = 2^n + |y| \le 2^n + n$. Since $2^n < 2^n + n < 2^{(n+1)}$, then |w'| is not a power of two and $w' \notin L$.
- (d) $w = 0^{n^2}$ is an example of this and was shown in part a not to be regular.
- (e) $w = 0^n 1$, so string $w' = ww = 0^n 10^n 1 \in L$. Consider k = 0.
- (f) $w = 0^n 1$, so string $w' = w w^R = 0^n 110^n \in L$. Consider k = 0.
- (g) $w = 0^n$, so string $w' = w\bar{w} = 0^n 1^n \in L$, which is known to be not regular.
- (h) $w = 0^n$ gives us $w1^n = 0^n1^n \in L$, but this known to be not regular.
- 5. Use the formula definition of a DFA to construct a DFA for the language of each of the following operations.
 - (a) Modify δ to remove all transitions leaving an accepting state.
 - (b) Remove all accepting states with a transition leaving the state non-accepting.
 - (c) Make all states leading to an accepting state an accepting state and make all accepting states without transitions non-accepting.