
CMSC 28000: Introduction to Formal Languages Fall 2012

Homework 6 Solutions

DISCLAIMER: The solutions presented below are incomplete and might
be insufficient to get full grade on the homework. They do not model
acceptable solutions, but rather present an idea of how a certain problem
can be approached. A diligent student should be able to work out complete
solutions. Please report any mistakes that you find to the instructor and
TA(s).

1. (a)
δ(q0, $) = (q0, $, R)
δ(q0, 1) = (q0, 1, R)
δ(q0, 0) = (q0, 0, R)
δ(q0, B) = (q1, B, L)
δ(q1, 0) = (q2, 1, L)
δ(q1, 1) = (q1, 0, L)
δ(q1, $) = (q2, 1, L)
δ(q2, 0) = (q2, 0, L)
δ(q2, 1) = (q2, 1, L)
δ(q2, $) = (qf , $, R)
δ(q2, B) = (qf , B,R)

Where q0 is the state responsible for moving the reading head to the right,
q1 is responsible for addition of 1 (in particular it also handles the carry
bit), q2 is responsible for moving the reading head to the left, qf is the
accepting state.

(b) q0$111 ` $q0111 ` $1q011 ` $11q01 ` $111q0B ` $11q11 ` $1q110 `
$q1100 ` q1$000 ` q2B1000 ` qf 1000.

2. The language accepted by this NTM is all binary strings beginning with 0.

3. It suffices to show that a two-dimensional Turing Machine M can be simulated
by a two-tape one-dimensional Turing Machine M ′, since we already know that
any two-tape TM can be simulated by a single-tape TM.

A particular state of M can be viewed as a finite rectangular box and a position
of the head in a particular state within that box. This is because at any time of
execution of M , it can only examine a finite number of cells. We can represent
this state in M ′ in row-major form, separating rows with a new symbol, say, *.

For example, suppose that M is in the following state

...
...

...
...

. . . 0 1 B 0 . . .

. . . 1 B B B . . .

. . . 0 0 0 1 . . .
...

...
...

...

These contents of 2D tape will be captured on 1D tape in M ′ as follows:

. . . B ∗ 0 1 B 0 ∗ 1 B B B ∗ 0 0 0 1 ∗ B . . .

Now, ifM ’s head was in row 2 and column 2 in state q, thenM ′ will be positioned
on the second symbol of the second interval in between two stars, also in state

1

CMSC 28000: Introduction to Formal Languages Fall 2012

q. If the head moves left or right in M , then it also does so in M ′. If the head
moves up (down), then in M the head has to relocate to the nearest left (right)
interval between the stars, positioning in the correct symbol from the right of
the star.

There are two more technical points. Suppose that the head in M moves up
and leaves the rectangle, then in M ′ we need to prepend a fresh new interval
(adding a new star to the correct location) immediately to the left of its tape
contents, i.e. add a new row to the simulation. Similarly, when M moves down
off the rectangle. When M moves right off the rectangle, we have to increase
the size of each row in simulation in M ′. This amounts to lots of shifting of
contents.

It is easy to see that all the above steps can be accomplished with an aid of the
second tape, completing our argument.

Note: other solutions exist. One other nice approach is to map indices of cells
in each quadrant using the enumeration from a proof that N × N has the same
cardinality as N, i.e., the proof that the set of rationals is countable.

4. Much of the solution to this question arises from understanding the hint. Let
M be a DPDA for language L. Our goal is to build DPDA M ′ for language
L/a. The idea is to make M ′ “look ahead”. Let’s see what this means. Suppose
that the machine M ′ has seen input w so far. It then should pretend that it is
the end of the input and check whether wa would be accepted by machine M .
However, while performing this verification, the machine should not destroy the
contents of the stack or alter its state, because it might be feeded with extra
characters later (w might not be the end of the entire input). In other words,
this verification procedure has to be performed “on-line”. Formally we have the
following.

Let M = (Q,Σ,Γ, δ, g0, Z0, F) be the DPDA, as above. We shall define M ′ =
(Q′,Σ,Γ′, δ′, q′

0, Z
′
0, F

′) to be the following:

• Γ′ = Γ × 2Q - as per the hint, we shall represent stack X1, . . . , Xn by
(X1, S1), . . . , (Xn, Sn) such that Si is the set of states q such that M ac-
cepts from ID (q, a,Xi . . . Xn).

• Q′ = Q× 2Q - the states of new DPDA record the current state of M and
the set of states S1, which appears as the second component of an element
at the top of the stack.

• Letting S0 := {q ∈ Q | M accepts from ID (q, a, Z0)}, we set Z′
0 =

(Z0, S0).

• With S0 defined as above, we let q′
0 = (q0, S0).

• F ′ = {(q, S) | q ∈ F ∩ S}.
• Lastly, we define δ′. Suppose that δ(q, a,X) = (p, ε), then we define
δ′((q, S), a, (X,S)) = ((p, S), ε). Also, for all q ∈ Q, S, S′ ⊆ Q with
S 6= S′ and X ∈ Γ we introduce δ′((p, S), ε, (X,S′)) = ((p, S′), (X,S′))
- this rule serves as updating the buffer in the state holding the current
set of states on top of stack. If δ(q, a,X) = (p, Y X), then we introduce
δ′((q, S), a, (X,S)) = ((p, S′), (Y, S′)(X,S)), where S′ consists of two kinds
of states:

– states g such that beginning from ID (g, a, Y X) DPDA M pops Y
without reading a and finding itself in a state from S, and

2

CMSC 28000: Introduction to Formal Languages Fall 2012

– states g such that beginning from ID (g, a, Y X) DPDA M accepts
without popping Y .

It is easy to extend the above definition of δ′ to the strings γ ∈ Γ, so
we leave it as an exercise. (Note that here we don’t allow M to accept
immediately after ε-moves. Allowing such acceptance is a straitforward
modification of the above construction).

With the above construction it is easy to see that the semantic description of the
invariant described in Γ′ actually holds for M ′. The correctness of the simulation
follows from this and the definition of F ′.

3

