Homework 4

due Friday Nov 2 in class

1. Consider the grammar

$$S \rightarrow aS \mid aSbS \mid \epsilon$$

This grammar is ambiguous. Show in particular that the string aab has two:

- (a) parse trees,
- (b) leftmost derivations,
- (c) rightmost derivations.
- 2. Prove that the above grammar from Exercise (1) generates all and only the strings of a's and b's such that every prefix has at least as many a's as b's.
- 3. Suppose the PDA $P=(\{q,p\},\{0,1\},\{Z_0,X\},\delta,q,Z_0,\{p\})$ has the following transition function:
 - $\delta(q, 0, Z_0) = \{(q, XZ_0)\}$
 - $\delta(q, 0, X) = \{(q, XX)\}\$
 - $\delta(q, 1, X) = \{(q, X)\}$
 - $\delta(q, \epsilon, X) = \{(p, \epsilon)\}$
 - $\delta(p, \epsilon, X) = \{(p, \epsilon)\}\$
 - $\delta(p, 1, X) = \{(p, XX)\}$
 - $\delta(p, 1, Z_0) = \{(p, \epsilon)\}$

Starting from the initial ID (q, w, Z_0) , show all the reachable ID's when the input w is

- (a) 01
- (b) 0011
- (c) 010
- 4. Design a PDA to accept each of the following languages. You may accept either by final state or by empty stack, whichever is more convenient.
 - (a) $\{0^n 1^n \mid n \ge 1\}$
 - (b) The set of all strings of 0's and 1's such that no prefix has more 1's than 0's
 - (c) The set of all strings of 0's and 1's with an equal number of 0's and 1's
- 5. Design a PDA to accept each of the following languages.
 - (a) $\{a^i b^j c^k \mid i = j \text{ or } j = k\}.$
 - (b) The set of all strings with twice as many 0's as 1's.