Homework 3

due Friday Oct 26 in class

- 1. Suppose L is a regular language with alphabet Σ . Give an algorithm to tell whether $L = \Sigma^*$, i.e., all strings over its alphabet.
- 2. Give an algorithm to tell whether two regular languages L_1 and L_2 have at least one string in common.
- 3. Consider the following transition table for a DFA.

	0	1
$\rightarrow A$	B	E
B	C	F
*C	D	H
D	E	H
E	F	I
*F	G	B
G	H	B
H	I	C
*I	A	$\mid E \mid$

- (a) Draw the table of distinguishabilities for this automaton.
- (b) Construct the minimum-state equivalent DFA.
- 4. Design context-free grammars for the following languages:
 - (a) $\{0^n 1^n \mid n \ge 1\}$
 - (b) $\{a^ib^jc^k \mid i \neq j \text{ or } j \neq k\}$
 - (c) The set of all strings of a's and b's that are not of the form ww, that is, note equal to any string repeated.
 - (d) The set of all strings with twice as many 0's as 1's.
- 5. Consider the following grammar.

$$\begin{array}{ccc} A & \rightarrow & A1B \\ A & \rightarrow & 0A \mid \epsilon \\ B & \rightarrow & 0B \mid 1B \mid \epsilon \end{array}$$

Give parse trees for each of the following strings:

- (a) 00101.
- (b) 1001.
- (c) 00011.