
Interpreter
By

Sanket Sharma
Date: January 26, 2011



Intent
Given a language, define a representation for its 

grammar along with an interpreter that uses the 

representation to interpret sentences in the language.

Map a domain to a language, the language to a 

grammar, and the grammar to a hierarchical object-

oriented design.



Problem

A class of  problems occurs repeatedly in a well-

defined and well-understood domain. If  the domain 

were characterized with a “language”, then problems 

could be easily solved with an 

interpretation “engine”.



Example



Example

The Interpreter pattern defines a grammatical 

representation for a language and an interpreter to 

interpret the grammar. Musicians are examples of  

Interpreters. The pitch of  a sound and its duration 

can be represented in musical notation on a staff. This 

notation provides the language of  music. Musicians 

playing the music from the score are able to 

reproduce the original pitch and duration of  each 

sound represented.



Applicability

Use the Interpreter pattern when there is a language 

to interpret, and you can represent statements in the 

language as abstract syntax trees. The Interpreter 

pattern works best when

 the grammar is simple. For complex grammars, the 

class hierarchy for the grammar becomes large and 

unmanageable. 

 efficiency is not a critical concern. The most 

efficient interpreters are usually not implemented by 

interpreting parse trees directly but by first translating 

them into another form.



Structure

Interpreter suggests modeling the domain with a 

recursive grammar. Each rule in the grammar is either 

a „composite‟ (a rule that references other rules) or a 

terminal (a leaf  node in a tree structure). Interpreter 

relies on the recursive traversal of  the Composite 

pattern to interpret the „sentences‟ it is asked 

to process.



Structure



AbstractExpression

Declares an abstract Interpret operation that is 

common to all nodes in the abstract syntax tree



TerminalExpression

 Implements an Interpret operation associated with 

terminal symbols in the grammar

 an instance is required for every terminal symbol in 

a sentence.



NonterminalExpression

 one such class is required for every rule R ::= R1 R2 

... Rn in the grammar

 maintains instance variables of  type 

AbstractExpression for each of  the symbols R1 

through Rn.

 implements an Interpret operation for nonterminal 

symbols in the grammar. Interpret typically calls itself  

recursively on the variables representing R1 through 

Rn..



Context

contains information that's global to the interpreter.



Client
 builds (or is given) an abstract syntax tree 

representing a particular sentence in the language that 

the grammar defines. The abstract syntax tree is 

assembled from instances of  the 

NonterminalExpression and TerminalExpression 

classes.

 invokes the Interpret operation.



Collaborations
 The client builds (or is given) the sentence as an 

abstract syntax tree of  NonterminalExpression and 

TerminalExpression instances. Then the client 

initializes the context and invokes the Interpret 

operation.

 Each NonterminalExpression node defines 

Interpret in terms of  Interpret on each subexpression. 

The Interpret operation of  each TerminalExpression 

defines the base case in the recursion.

 The Interpret operations at each node use the 

context to store and access the state of  the interpreter.



Code Example



Benefits
 It's easy to change and extend the grammar. Because the 

pattern uses classes to represent grammar rules, you can use 

inheritance to change or extend the grammar. Existing 

expressions can be modified incrementally, and new 

expressions can be defined as variations on old ones.

 Implementing the grammar is easy. Classes defining 

nodes in the abstract syntax tree have similar 

implementations. These classes are easy to write, and often 

their generation can be automated with a compiler or parser 

generator.



Liabilities

Complex grammars are hard to maintain. The Interpreter 

pattern defines at least one class for every rule in the 

grammar. Hence grammars containing many rules can be 

hard to manage and maintain. Other design patterns can be 

applied to mitigate the problem. But when the grammar is 

very complex, other techniques such as parser or compiler 

generators are more appropriate.



References
 Design Patterns - Elements of Reusable Object-

Oriented Software

by Gamma, Helm, Johnson and Vlissides



http://sourcemaking.com/design_patterns/interprete

r

 http://en.wikipedia.org/wiki/Interpreter_pattern

http://sourcemaking.com/design_patterns/interpreter
http://sourcemaking.com/design_patterns/interpreter
http://sourcemaking.com/design_patterns/interpreter
http://en.wikipedia.org/wiki/Interpreter_pattern
http://en.wikipedia.org/wiki/Interpreter_pattern


Thanks


