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“I don't know, it just seems like a "glorified" 

function call to me.”

..and that’s in-fact true!



Overview

• Decouples object that invokes the operation 
from the one that actually performs it

• Commands are first-class objects so they can be 
used like any other objects

• You can sequence them into macros

• Easy to add new commands without changing 
existing classes
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Paste-Command Example 



Applications 

• Used to implement an object oriented version of 
callbacks

• Specify, queue and execute requests at different 
times

• Support “Undo” feature 

• Support logging of changes so they can be 
reapplied after a system crash



Step 1: Define interface

• Define “Command” interface with method Execute()

• Define “UndoableCommand” with method Undo()  



Step 2: Implement concrete class

• Create derived class: BoldCommand

• Encapsulate: a receiver, a method, arguments (if any)
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Step 3: Manage commands

• Create a command manager for multiple commands
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MEMENTO

Store the internal state of Originator object

COMMAND

Encapsulate a function call into an object
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