
Command

Design Pattern

Rohan Bedarkar

CSPP 51023 - Winter 2011

“I don't know, it just seems like a "glorified"

function call to me.”

..and that’s in-fact true!

Overview

• Decouples object that invokes the operation
from the one that actually performs it

• Commands are first-class objects so they can be
used like any other objects

• You can sequence them into macros

• Easy to add new commands without changing
existing classes

Participants

Sequence of Operation

Paste-Command Example

Applications

• Used to implement an object oriented version of
callbacks

• Specify, queue and execute requests at different
times

• Support “Undo” feature

• Support logging of changes so they can be
reapplied after a system crash

Step 1: Define interface

• Define “Command” interface with method Execute()

• Define “UndoableCommand” with method Undo()

Step 2: Implement concrete class

• Create derived class: BoldCommand

• Encapsulate: a receiver, a method, arguments (if any)

Method

to invoke
“Undo”

“Do”
Method

to invoke

Receiver

Method

to invoke

Method

to invoke

Step 3: Manage commands

• Create a command manager for multiple commands

Stack of

undoable

commands

“do”

command

“undo”

command

MEMENTO

Store the internal state of Originator object

COMMAND

Encapsulate a function call into an object

Bibliography

• http://www.codeproject.com/KB/architecture/sharped.aspx

• http://johnlindquist.com/2010/09/09/patterncraft-command-pattern/

• http://www.javaworld.com/javatips/jw-javatip68.html?page=2

• http://home.earthlink.net/~huston2/dp/command.html

