
Abstract Factory

Presented by John Collins
February 11th, 2011

Overview of Abstract Factory

Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

Clients only know and understand the interface and do not
have to know everything about the underlying concrete
class.

An Abstract Factory separates the implementation details of
objects from their general usage.

Applicability of Abstract Factory Pattern

The Abstract Factory Pattern Should be used:
When a system should be independent of how its products
are created, composed, and represented.

When a system should be configured with one of multiple
families of products or a developer needs to enforce a
family of related objects to be used together.

When a developer wants to provide just the interfaces of a
library of products.

Abstract Factory Analogy

An abstract factory is similar to a factory that can make train
cars. The train cars have all different types of specifications.
For example, a sleeper car is different from a diner car. The
main program running the factory does not need to keep track
of the differences between train cars, it only needs to know how
to make a train car. The different specifications between train
cars are stored in concrete factories. The abstract factory is the
interface that calls the concrete factories.

Positive Consequences of Abstract
Factories
1) An Abstract Factory isolates concrete classes by
encapsulating the process and responsibility of creating
objects.

2) Clients are only able to manipulate instances of objects
through the interface.

3) Abstract Factories limit hardware platform dependencies
because of the abstract interface.

4) Abstract Factories force consistency among products
because all object instances are accessed through the same
interface.

Negative Consequences of Abstract
Factories
1) Supporting new kinds of products is difficult because it
requires the extension of the entire interface. In other words,
the train factory now has to make boats, which have different
process of being made.

2) All of the product objects are returned to the client with the
same abstract interface as given by the return type. This
means that the client will not be able to access subclass-
specific operations through the abstract interface.

UML Layout explaination

AbstractFactory(Train Factory)
- delcares an interface for operations that create abstract
product objects.
ConcreteFactory (SleeperCarFactory and DinerCarFactory)
- implements the operations to create concrete product objects.

AbstractProduct (TrainCar)
- declares an interface for a type of product object.

UML Layout

ConcreteProduct (Sleeper Car and Diner Car)
- defines a product object to be created by the corresponding
concrete factory.
-implements the AbstractProduct interface.

Client - uses only interfaces declared by Abstract Factory and
AbstractProduct Classes

Abstract Factory UML

UML Diagram

Abstract Factory Java Pseudocode

public abstract class TrainFactory
{
 public abstract TrainCar createCar();
}

public class SleeperCarFactory extends TrainFactory
{
 public TrainCar createCar()
 {
 return new CreateSleeperCar();
 }
}

Continued

public class DinerCarFactory extends TrainFactory
{
 public TrainCar createCar()
 {
 return new CreateDinerCar();
 }
}

 public abstract class TrainCar
 {
 abstract void buildCar();
 }
}

Continued

public class SleeperCar extends TrainCar
{
 public void buildCar()
 { System.out.println(“I'm a SleeperCar.”); }
}

public class DinerCar extends TrainCar
{
 public void buildCar()
 { System.out.println(“I'm a DinerCar.”); }
}

Client Code

// The Client side main would look something like this.
public static void main(String[] args)
{
// This dictates which Concrete Factory is constructed.
TrainFactory = new SleeperCarFactory();
}

References:

Design Patterns -Elements of Reusable Object-Oriented
Software
by Gamma, Helm, Johnson and Vlissides

http://en.wikipedia.org/wiki/Abstract_factory_pattern

