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1 Introduction

Background

The era of the mighty single-processor computer is over. Now, when more com-
puting power is needed, one does not buy a faster uniprocessor—one buys another
processor just like those one already has, or another hundred, or another million,
and connects them with a high-speed communication network. Or, perhaps, one
rents them instead, with a cloud computer. This gives one whatever quantity of
computer cycles that one can desire and afford.

Then, one has the problem of how to use those computer cycles effectively. Pro-
gramming a multiprocessor is far more agonizing than programming a uniproces-
sor. One can use models of computation which give somewhat of the illusion of
programming a uniprocessor. Unfortunately, the models which give the closest
imitations of uniprocessing are very expensive to implement, either increasing the
monetary cost of the computer tremendously, or slowing it down dreadfully.

One response to this problem has been to move to a fragmented memory model.
Multiple processors are programmed largely as if they were uniprocessors, but are
made to interact via a relatively language-neutral message-passing format such as
MPI [8]]. This model has enjoyed some success: several high-performance appli-
cations have been written in this style. Unfortunately, this model leads to a loss
of programmer productivity: the message-passing format is integrated into the
host language by means of an application-programming interface (API), the pro-
grammer must explicitly represent and manage the interaction between multiple
processes and choreograph their data exchange; large data-structures (such as dis-
tributed arrays, graphs, hash-tables) that are conceptually unitary must be thought
of as fragmented across different nodes; all processors must generally execute the
same code (in an SPMD fashion) etc.

One response to this problem has been the advent of the partitioned global address
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12 CHAPTER 1. INTRODUCTION

space (PGAS) model underlying languages such as UPC, Titanium and Co-Array
Fortran [3, 9]. These languages permit the programmer to think of a single com-
putation running across multiple processors, sharing a common address space. All
data resides at some processors, which is said to have affinity to the data. Each
processor may operate directly on the data it contains but must use some indirect
mechanism to access or update data at other processors. Some kind of global
barriers are used to ensure that processors remain roughly in lock-step.

X10 is a modern object-oriented programming language in the PGAS family. The
fundamental goal of X10 is to enable scalable, high-performance, high-productivity
transformational programming for high-end computers—for traditional numerical
computation workloads (such as weather simulation, molecular dynamics, particle
transport problems etc) as well as commercial server workloads.

X10 is based on state-of-the-art object-oriented programming ideas primarily to
take advantage of their proven flexibility and ease-of-use for a wide spectrum of
programming problems. X10 takes advantage of several years of research (e.g., in
the context of the Java Grande forum, [/, [1]) on how to adapt such languages to
the context of high-performance numerical computing. Thus X10 provides sup-
port for user-defined struct types (such as Int, Float, Complex etc), supports a
very flexible form of multi-dimensional arrays (based on ideas in ZPL [4]) and
supports IEEE-standard floating point arithmetic. Some capabilities for support-
ing operator overloading are also provided.

X10 introduces a flexible treatment of concurrency, distribution and locality, within
an integrated type system. X10 extends the PGAS model with asynchrony (yield-
ing the APGAS programming model). X10 introduces places as an abstraction for
a computational context with a locally synchronous view of shared memory. An
X10 computation runs over a large collection of places. Each place hosts some
data and runs one or more activities. Activities are extremely lightweight threads
of execution. An activity may synchronously (and atomically) use one or more
memory locations in the place in which it resides, leveraging current symmetric
multiprocessor (SMP) technology. An activity may shift to another place to exe-
cute a statement block. X10 provides weaker ordering guarantees for inter-place
data access, enabling applications to scale. Multiple memory locations in multi-
ple places cannot be accessed atomically. Immutable data needs no consistency
management and may be freely copied by the implementation between places.
One or more clocks may be used to order activities running in multiple places.
DistArrays, distributed arrays, may be distributed across multiple places and
support parallel collective operations. A novel exception flow model ensures that
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exceptions thrown by asynchronous activities can be caught at a suitable parent
activity. The type system tracks which memory accesses are local. The program-
mer may introduce place casts which verify the access is local at run time. Linking
with native code is supported.



2 Overview of X10

X10 is a statically typed object-oriented language, extending a sequential core
language with places, activities, clocks, (distributed, multi-dimensional) arrays
and struct types. All these changes are motivated by the desire to use the new
language for high-end, high-performance, high-productivity computing.

2.1 Object-oriented features

The sequential core of X10 is a container-based object-oriented language similar
to Java and C++, and more recent language such as Scala. Programmers write X10
code by defining containers for data and behavior called interfaces (§7), classes
(§8) and structs (§9). X10 provides inheritance and subtyping in fairly traditional
ways.

Example:

Normed describes entities with a norm() method. Normed is intended to be used
for entities with a position in some coordinate system, and norm() gives the dis-
tance between the entity and the origin. A Slider is an object which can be moved
around on a line; a PlanePoint is a fixed position in a plane. Both Sliders and
PlanePoints have a sensible norm() method, and implement Normed.

interface Normed {
def norm() :Double;
ks
class Slider implements Normed {
var X : Double = 0;
public def norm() = Math.abs(x);
public def move(dx:Double) { x += dx; }

14



2.1. OBJECT-ORIENTED FEATURES 15

}
struct PlanePoint implements Normed {
val x : Double, y:Double;
public def this(x:Double, y:Double) {
this.x = x; this.y = y;
}
public def norm() = Math.sqrt(xX*x+y*y);
ks

Interfaces An X10 interface specifies a collection of abstract methods; Normed
specifies justnorm(). Classes and structs can be specified to implement interfaces,
as Slider and PlanePoint implement Normed, and, when they do so, must
provide all the methods that the interface demands.

Interfaces are purely abstract. Every value of type Normed must be an instance
of some class like Slider or some struct like PlanePoint which implements
Normed; no value can be Normed and nothing else.

Classes and Structs There are two kinds of concrete containers: classes (§8)
and structs (§9). Concrete containers hold data in fields, and give concrete imple-
mentations of methods, as Slider and PlainPoint above.

Classes are organized in a single-inheritance tree: a class may have only a single
parent class, though it may implement many interfaces and have many subclasses.
Classes may have mutable fields, as S1lider does.

In contrast, structs are headerless values, lacking the internal organs which give
objects their intricate behavior. This makes them less powerful than objects (e.g.,
structs cannot inherit methods, though objects can), but also cheaper (e.g., they
can be inlined, and they require less space than objects). Structs are immutable,
though their fields may be immutably set to objects which are themselves mutable.
They behave like objects in all ways consistent with these limitations; e.g., while
they cannot inherit methods, they can have them — as PlanePoint does.

X10 has no primitive classes per se. However, the standard library x10.1lang
supplies structs and objects Boolean, Byte, Short, Char, Int, Long, Float,
Double, Complex and String. The user may defined additional arithmetic structs
using the facilities of the language.
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Functions. X10 provides functions (§I0) to allow code to be used as values.
Functions are first-class data: they can be stored in lists, passed between activities,
and so on. square, below, is a function which squares an Int. of4 takes an
Int-to-Int function and applies it to the number 4. So, fourSquared computes
of4(square), which is square (4), which is 16, in a fairly complicated way.

val square = (i:Int) => i*i;
val of4 = (f: (Int)=>Int) => f(4);
val fourSquared = of4(square);

They are used extensively in X10 programs. For example, the normal way to
construct an Array[Int] (1) — that is, a fixed-length array of numbers, like an
int[] in Java — is to pass two arguments to a factory method: the first argument
being the length of the array, and the second being a function which computes the
initial value of the i'" element. The following code constructs a 1-dimensional
array initialized to the squares of 0,1,...,.9: r(0) == 0, r(5)==25, etc.

val r : Array[Int] (1) = new Array[Int] (10, square);

Constrained Types X10 containers may declare properties, which are fields
bound immutably at the creation of the container. The static analysis system un-
derstands properties, and can work with them logically.

For example, an implementation of matrices Mat might have the numbers of rows
and columns as properties. A little bit of care in definitions allows the definition
of a + operation that works on matrices of the same shape, and * that works on
matrices with appropriately matching shapes.

abstract class Mat(rows:Int, cols:Int) {
static type Mat(r:Int, c:Int) = Mat{rows==r&&cols==c};
abstract operator this + (y:Mat(this.rows,this.cols))
:Mat(this.rows, this.cols);
abstract operator this * (y:Mat) {this.cols == y.rows}
:Mat(this.rows, y.cols);

The following code typechecks, but an attempt to compute axbl + bxc or bxc
* axb1l would result in a compile-time type error:

static def example(a:Int, b:Int, c:Int) {
val axbl : Mat(a,b) = makeMat(a,b);
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val axb2 : Mat(a,b)
val bxc : Mat(b,c)
val axc : Mat(a,c)

}

makeMat(a,b);
makeMat(b,c);
(axbl +axb2) * bxc;

The “little bit of care” shows off many of the features of constrained types. The
(rows:Int, cols:Int) in the class definition declares two properties, rows
and cols/]

A constrained type looks like Mat{rows==r && cols==c}: a type name, fol-
lowed by a Boolean expression in braces. The type declaration on the second
line makes Mat(r,c) be a synonym for Mat{rows==r && cols==c}, allowing
for compact types in many places.

Functions can return constrained types. The makeMat(r,c) method returns a
Mat(r,c) — a matrix whose shape is given by the arguments to the method. In
particular, constructors can have constrained return types to provide specific in-
formation about the constructed values.

The arguments of methods can have type constraints as well. The operator
this + line lets A+B add two matrices. The type of the second argument y is
constrained to have the same number of rows and columns as the first argument
this. Attempts to add mismatched matrices will be flagged as type errors at
compilation.

At times it is more convenient to put the constraint on the method as a whole, as
seen in the operator this * line. Unlike for +, there is no need to constrain
both dimensions; we simply need to check that the columns of the left factor match
the rows of the right. This constraint is written in {. ..} after the argument list.
The shape of the result is computed from the shapes of the arguments.

And that is all that is necessary for a user-defined class of matrices to have shape-
checking for matrix addition and multiplication. The example method compiles
under those definitions.

Generic types Containers may have type parameters, permitting the definition
of generic types. Type parameters may be instantiated by any X10 type. It is
thus possible to make a list of integers List[Int], a list of non-zero integers

I'The class is officially declared abstract to allow for multiple implementations, like sparse and
band matrices, but in fact is abstract to avoid having to write the actual definitions of + and *.



18 CHAPTER 2. OVERVIEW OF X10

List[Int{self != 0}], oralist of people List[Person]. In the definition of
List, T is a type parameter; it can be instantiated with any type.

class List[T] {
var head: T;
var tail: List[T];
def thiscCh: T, t: List[T]) { head = h; tail = t; }
def add(x: T) {
if (this.tail == null)
this.tail = new List(x, null);
else
this.tail.add(x);

}

The constructor (def this) initializes the fields of the new object. The add
method appends an element to the list. List is a generic type. When instances
of List are allocated, the type parameter T must be bound to a concrete type.
List[Int] is the type of lists of element type Int, List[List[String]] is the
type of lists whose elements are themselves lists of string, and so on.

2.2 The sequential core of X10

The sequential aspects of X10 are mostly familiar from C and its progeny. X10 en-
joys the familiar control flow constructs: if statements, while loops, for loops,
switch statements, throw to raise exceptions and try. . .catch to handle them,
and so on.

X10 has both implicit coercions and explicit conversions, and both can be defined
on user-defined types. Explicit conversions are written with the as operation: n

as Int. The types can be constrained: n as Int{self != 0} converts n to a
non-zero integer, and throws a runtime exception if its value as an integer is zero.

2.3 Places and activities

The full power of X10 starts to emerge with concurrency. An X10 program is
intended to run on a wide range of computers, from uniprocessors to large clusters
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of parallel processors supporting millions of concurrent operations. To support
this scale, X10 introduces the central concept of place (§13). A place can be
thought of as a virtual shared-memory multi-processor: a computational unit with
a finite (though perhaps changing) number of hardware threads and a bounded
amount of shared memory, uniformly accessible by all threads.

An X10 computation acts on values(§8.1)) through the execution of lightweight
threads called activities(. An object has a small, statically fixed set of fields,
each of which has a distinct name. A scalar object is located at a single place and
stays at that place throughout its lifetime. An aggregate object has many fields
(the number may be known only when the object is created), uniformly accessed
through an index (e.g., an integer) and may be distributed across many places.
The distribution of an aggregate object remains unchanged throughout the com-
putation, thought different aggregates may be distributed differently. Objects are
garbage-collected when no longer useable; there are no operations in the language
to allow a programmer to explicitly release memory.

X10 has a unified or global address space. This means that an activity can refer-
ence objects at other places. However, an activity may synchronously access data
items only in the current place, the place in which it is running. It may atomi-
cally update one or more data items, but only in the current place. If it becomes
necessary to read or modify an object at some other place q, the place-shifting
operation at(q) can be used, to move part of the activity to g. It is easy to com-
pute across multiple places, but the expensive operations (e.g., those which require
communication) are readily visible in the code.

Atomic blocks. X10 has a control construct atomic S where S is a statement
with certain restrictions. S will be executed atomically, without interruption by
other activities. This is a common primitive used in concurrent algorithms, though
rarely provided in this degree of generality by concurrent programming languages.

More powerfully — and more expensively — X10 allows conditional atomic blocks,
when(B)S, which are executed atomically at some point when B is true. Condi-
tional atomic blocks are one of the strongest primitives used in concurrent algo-
rithms, and one of the least-often available.

Asynchronous activities. An asynchronous activity is created by a statement
async S, which starts up a new activity running S. It does not wait for the new
activity to finish; there is a separate statement (finish) to do that.
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2.4 Clocks

The MPI style of coordinating the activity of multiple processes with a single bar-
rier is not suitable for the dynamic network of heterogeneous activities in an X10
computation. X10 allows multiple barriers in a form that supports determinate,
deadlock-free parallel computation, via the Clock type.

A single Clock represents a computation that occurs in phases. At any given time,
an activity is registered with zero or more clocks. The X10 statement next tells
all of an activity’s registered clocks that the activity has finished the current phase,
and causes it to wait for the next phase. Other operations allow waiting on a single
clock, starting new clocks or new activities registered on an extant clock, and so
on.

Clocks act as barriers for a dynamically varying collection of activities. They gen-
eralize the barriers found in MPI style program in that an activity may use multiple
clocks simultaneously. Yet programs using clocks properly are guaranteed not to
suffer from deadlock.

2.5 Arrays, regions and distributions

X10 provides DistArrays, distributed arrays, which spread data across many
places. An underlying Dist object provides the distribution, telling which ele-
ments of the DistArray go in which place. Dist uses subsidiary Region objects
to abstract over the shape and even the dimensionality of arrays. Specialized X10
control statements such as ateach provide efficient parallel iteration over dis-
tributed arrays.

2.6 Annotations

X10 supports annotations on classes and interfaces, methods and constructors,
variables, types, expressions and statements. These annotations may be processed
by compiler plugins.
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2.7 Translating MPI programs to X10

While X10 permits considerably greater flexibility in writing distributed programs
and data structures than MPI, it is instructive to examine how to translate MPI
programs to X10.

Each separate MPI process can be translated into an X10 place. Async activities
may be used to read and write variables located at different processes. A single
clock may be used for barrier synchronization between multiple MPI processes.
X10 collective operations may be used to implement MPI collective operations.
X10 is more general than MPI in (a) not requiring synchronization between two
processes in order to enable one to read and write the other’s values, (b) permitting
the use of high-level atomic blocks within a process to obtain mutual exclusion
between multiple activities running in the same node (c) permitting the use of
multiple clocks to combine the expression of different physics (e.g., computa-
tions modeling blood coagulation together with computations involving the flow
of blood), (d) not requiring an SPMD style of computation.

2.8 Summary and future work

2.8.1 Design for scalability

X10 is designed for scalability, by encouraging working with local data, and lim-
iting the ability of events at one place to delay those at another. For example, an
activity may atomically access only multiple locations in the current place. Un-
conditional atomic blocks are dynamically guaranteed to be non-blocking, and
may be implemented using non-blocking techniques that avoid mutual exclusion
bottlenecks. Data-flow synchronization permits point-to-point coordination be-
tween reader/writer activities, obviating the need for barrier-based or lock-based
synchronization in many cases.

2.8.2 Design for productivity

X10 is designed for productivity.
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Safety and correctness. Programs written in X10 are guaranteed to be statically
type safe, memory safe and pointer safe.

Static type safety guarantees that every location contains only values whose dy-
namic type agrees with the location’s static type. The compiler allows a choice of
how to handle method calls. In strict mode, method calls are statically checked to
be permitted by the static types of operands. In lax mode, dynamic checks are in-
serted when calls may or may not be correct, providing weaker static correctness
guarantees but more programming convenience.

Memory safety guarantees that an object may only access memory within its rep-
resentation, and other objects it has a reference to. X10 does not permit pointer
arithmetic, and bound-checks array accesses dynamically if necessary. X10 uses
garbage collection to collect objects no longer referenced by any activity. X10
guarantees that no object can retain a reference to an object whose memory has
been reclaimed. Further, X10 guarantees that every location is initialized at run
time before it is read, and every value read from a word of memory has previously
been written into that word.

Because places are reflected in the type system, static type safety also implies
place safety. All operations that need to be performed locally are, in fact, per-
formed locally. All data which is declared to be stored locally are, in fact, stored
locally.

X10 programs that use only clocks and unconditional atomic blocks are guaran-
teed not to deadlock. Unconditional atomic blocks are non-blocking, hence cannot
introduce deadlocks. Many concurrent programs can be shown to be determinate
(hence race-free) statically.

Integration. A key issue for any new programming language is how well it can
be integrated with existing (external) languages, system environments, libraries
and tools.

We believe that X10, like Java, will be able to support a large number of libraries
and tools. An area where we expect future versions of X10 to improve on Java
like languages is native integration (§18)). Specifically, X10 will permit permit
multi-dimensional local arrays to be operated on natively by native code.
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2.8.3 Conclusion

X10 is considerably higher-level than thread-based languages in that it supports
dynamically spawning lightweight activities, the use of atomic operations for mu-
tual exclusion, and the use of clocks for repeated quiescence detection.

Yet it is much more concrete than languages like HPF in that it forces the pro-
grammer to explicitly deal with distribution of data objects. In this the language
reflects the designers’ belief that issues of locality and distribution cannot be hid-
den from the programmer of high-performance code in high-end computing. A
performance model that distinguishes between computation and communication
must be made explicit and transparentE] At the same time we believe that the
place-based type system and support for generic programming will allow the X10
programmer to be highly productive; many of the tedious details of distribution-
specific code can be handled in a generic fashion.

2In this X10 is similar to more modern languages such as ZPL [4].



3 Lexical and Grammatical
structure

Lexically a program consists of a stream of white space, comments, identifiers,
keywords, literals, separators and operators, all of them composed of Unicode
characters in the UTF-8 encoding.

Whitespace ASCII space, horizontal tab (HT), form feed (FF) and line termi-
nators constitute white space.

Comments All text included within the ASCII characters “/*”” and “*/” is con-
sidered a comment and ignored; nested comments are not allowed. All text from
the ASCII characters “//” to the end of line is considered a comment and is ig-
nored.

Identifiers Identifiers consist of a single letter followed by zero or more letters
or digits. The letters are the ASCII characters a through z, A through Z, and _.
Digits are defined as the ASCII characters ® through 9. Case is significant; a and
A are distinct identifiers, as is a keyword, but As and AS are identifiers. (However,
case is insignificant in the hexadecimal numbers, exponent markers, and type-tags
of numeric literals — Oxbabe = 0XBABE.)

24



Keywords X10 uses the following keywords:

abstract as assert
async at ateach
atomic break case
catch class clocked
continue def default
do else extends
false final finally
finish for goto
haszero here if
implements import in
instanceof interface native
new next null
offer offers operator
package private property
protected public resume
return self static
struct super switch
this throw transient
true try type

val var void
when while

25

Keywords in italics are soft keywords, which may also be used as identifiers. The
other keywords, in bold, are hard keywords and may not be used as identifiers.

Note that the primitive type names are not considered keywords.

Literals Briefly, X10 v2.1 uses fairly standard syntax for its literals: integers,
unsigned integers, floating point numbers, booleans, characters, strings, and null.
The most exotic points are (1) unsigned numbers are marked by a u and cannot
have a sign; (2) true and false are the literals for the booleans; and (3) floating
point numbers are Double unless marked with an f for Float.
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Less briefly, we use the following abbreviations:

d = one or more decimal digits
ds = one or more octal digits
dig = one or more hexadecimal digits, using a-f or A-F for 10-15
i = d|0dg|0xds | 0Xdye
s = optional + or -
b = dl|d.|dd]|.d
r = (e|E)sd
f = bx

e true and false are the Boolean literals.
e null is a literal for the null value. It has type Any{self==null}.

e Int literals have the form si; e.g., 123, -321 are decimal Ints, 0123 and
-0321 are octal Ints, and 0x123, -0X321, 0xBED, and OXEBEC are hex-
adecimal Ints.

e Long literals have the form sil or siL. E.g., 1234567890L and OxBABEL
are Long literals.

e UInt literals have the form 7u or :U. E.g., 123u, 0123u, and OxBEAU are
UlInt literals.

e ULong literals have the form 7ul or ¢1u, or capital versions of those. For ex-
ample, 123ul, 0124567012ul, OxFLU, OXbaleful, and OxDecafCOffeefUL
are ULong literals.

e Short literals have the form sis or siS. E.g., 414S, OxACES and 7001s are
short literals.

e UShort literals form 7us or isu, or capital versions of those. For example,
609US, 107us, and OxBeaus are unsigned short literals.

e Byte literals have the form siy or siY. (The letter B cannot be used for
bytes, as it is a hexadecimal digit.) 50Y and OxBABY are byte literals.

e UByte literals have the form 7uy or ¢yu, or capitalized versions of those.
For example, 9uy and 0xBUY are UByte literals.
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e Float literals have the form s f f or s fF. Note that the floating-point marker
letter £ is required: unmarked floating-point-looking literals are Double.
E.g., 1f,6.023E+32f, 6.626068E-34F are Float literals.

e Double literals have the form sfﬂ, sfD, and sfd. E.g., 0.0, 0e100, 1. 3D,
229792458d, and 314159265e-8 are Double literals.

e Char literals have one of the following forms:

¢’ where c is any printing ASCII character other than \ or ’, repre-

senting the character c itself; e.g., ’ ! ’;
— "\b’, representing backspace;
— ’\t’, representing tab;
— ’\n’, representing newline;
— ’\f’, representing form feed;
— ’\r’, representing return;
- "\’’, representing single-quote;
— "\""’, representing double-quote;
- "\\’, representing backslash;
— ’\dd’, where dd is one or more octal digits, representing the one-byte

character numbered dd; it is an error if dd> 0377.

e String literals consist of a double-quote ", followed by zero or more of the
contents of a Char literal, followed by another double quote. E.g., "hi!",

Separators X10 has the following separators and delimiters:

¢y {r 01 5 ,

"Except that literals like 1 which match both i and f are counted as integers, not Double;
Doubles require a decimal point, an exponent, or the d marker.
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Operators X10 has the following operator, type constructor, and miscellaneous
symbols. (? and : comprise a single ternary operator, but are written separately.)

== = < > <= >=

& || & | "
<< >> 0 >>>

+ - /%
++ -- | -

The precedence of the operators is as follows. Earlier rows of the table have higher
precedence than later rows, binding more tightly. For example, a+b*c<d parses
as (a+(b*c))<d, and -1 as Byte parses as -(1 as Byte).

postfix ()

as T, postfix ++, postfix --

unary -, unary +, prefix ++, prefix --
|-

"

/ %
+ -
<< >> >>> ->
> >= < <= in instanceof
== 1=
&
I
&&
| |
?

=, *=, /=, %=, +=, -=, <<=, >>=, >>>=, &=, "=, | =
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3.1 Grammatical Notation

In this manual, ordinary BNF notation is used to specify grammatical construc-
tions, with a few minor extensions. Grammatical rules look like this:

Adj = Adv’ happy
| Adv’ sad
Adv = very
| Adv Adv

Terms in italics are called non-terminals. They represent kinds of phrases; for
example, ForStatement describes all for statements. Equation numbers
refer to the full X10 grammar, in The small example has two non-terminals,
Adv and Adj.

Terms in fixed-width font are terminals. They represent the words and sym-
bols of the language itself. In X10, the terminals are the words described in this
chapter.

A single grammatical rule has the form A ::= X;X,...X,,, where the X;’s are
either terminals or nonterminals. This indicates that the non-terminal A could be
an instance of X, followed by an instance of Xo, ..., followed by an instance of
X,,. Multiple rules for the same A are allowed, giving several possible phrasings
of A’s. For brevity, two rules with the same left-hand side are written with the
left-hand side appearing once, and the right-hand sides separated by |.

In the Adj example, there are two rules for Adv, Adv ::= very and Adv ::=
Adv Adv. So, an adverb could be very, or (by three uses of the rule) very very,
or, One or more Verys.

The notation A’ indicates an optional A. This is an ordinary non-terminal, defined
by the rules:
A’ =
| A

The first rule says that A” can amount to nothing; the second, that it can amount
to an A. This concept shows up so often that it is worth having a separate notation
for it. In the Adj example, an adjective phrase may be preceded by an optional
adverb. Thus, it may be happy, or very happy, or very very sad, etc.



4 Types

X10 is a strongly typed object-oriented language: every variable and expression
has a type that is known at compile-time. Types limit the values that variables can
hold.

X10 supports three kinds of runtime entities, objects, structs, and functions. Ob-
jects are instances of classes (§8). They may contain zero or more mutable fields,
and a reference to the list of methods defined on them.

An object is represented by some (contiguous) memory chunk on the heap. Enti-
ties (such as variables and fields) contain a reference to this chunk. That is, objects
are represented through an extra level of indirection. A consequence of this flex-
ibility is that an entity containing a reference to an object o needs only one word
of memory to represent that reference, regardess of the number of fields in 0. An
assignment to this entity simply overwrites the reference with another reference
(thus taking constant time). Another consequence is that every class type contains
the value null corresponding to the invalid reference. null is often useful as a
default value. Further, two objects may be compared for identity (==) in constant
time by simply comparing references to the memory used to represent the objects.
The default hash code for an object is based on the value of this reference. A
downside of this flexibility is that the operations of accessing a field and invoking
a method are more expensive than simply reading a register and invoking a static
function.

Structs are instances of struct types (§9). A struct is represented without the extra
level of indirection, with a memory chunk of size N words precisely big enough
to store the value of every field of the struct (modulo alignment), plus whatever
padding is needed. Thus structs cannot be shared. Entities (such as variables
and fields) refering to the struct must allocate N words to directly contain the
chunk. An assignment to this entity must copy the N words representing the
right hand side into the left hand side. Since there are no references to structs,

30
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null is not a legal value for a struct type. Comparison for identity (==) involves
examining N words. Additionally, structs do not have any mutable fields, hence
they can be freely copied. The payoftf for these restrictions lies in that fields can be
stored in registers or local variables, and and method invocation is implemented
by invoking a static function.

Functions, called closures or lambda-expressions in other languages, are instances
of function types (§10). A function has zero or more formal parameters (or argu-
ments) and a body, which is an expression that can reference the formal parameters
and also other variables in the surrounding block. For instance, (x:Int)=>x*y is
a unary integer function which multiplies its argument by the variable y from the
surrounding block. Functions may be freely copied from place to place and may
be repeatedly applied.

These runtime entities are classified by types. Types are used in variable decla-
rations, coercions and explicit conversions, object creation, array creation, static
state and method accessors, and instanceof and as expressions.

The basic relationship between values and types is the is an element of relation.
We also often say “e has type 7 to mean “e is an element of type 7. For
example, 1 has type Int (the type of all integers representible in 32 bits). It also
has type Any (since all entitites have type Any), type Int{self != 0} (the type
of nonzero integers), type Int{self == 1} (the type of integers which are equal
to 1, which contains only one element), and many others.

The basic relationship between types is subtyping: T <: U holds if every instance
of T is also an instance of U. Two important kinds of subtyping are subclassing
and strengthening. Subclassing is a familiar notion from object-oriented program-
ming. Here we use it to refer to the relationship between a class and another class it
extends, and the relationship between a class and another interface it implements.
For instance, in a class hierarchy with classes Animal and Cat such that Cat ex-
tends Mammal and Mammal extends Animal, every instance of Cat is by definition
an instance of Animal (and Mammal). We say that Cat is a subclass of Animal,
or Cat <: Animal by subclassing. If Animal implements Thing, then Cat also
implements Thing, and we say Cat <: Thing by subclassing. Strengthening

is an equally familiar notion from logic. The instances of Int{self == 1} are
all elements of Int{self != 0} as well, because self == 1 logically implies
self != 0;so Int{self == 1} <: Int{self !=0} by strengthening. X10

uses both notions of subtyping. See for the full definition of subtyping in
X10.



32 CHAPTER 4. TYPES

4.0.1 Type System

The types in X10 are as follows.

These are the elementary types. Other syntactic forms for types exist, but they are
simply abbreviations for types in the following system. For example, Array[Int] (1)
is the type of one-dimensional integer-valued arrays; it is an abbreviation for
Array[Int]{rank==1}.

Type :i=  FunctionType 20. 14,
| ConstrainedType
FunctionType = TypeParams® ( FormalParamList’ ) WhereClause® (20.15
Offers’ => Type
ConstrainedType = NamedType 20.18
| AnnotatedType

| (TDype)

Types may be given by name. For example, Int is the type of 32-bit integers.
Given a class declaration

class Triple { /* ... */ }

the identifier Triple may be used as a type.

The type TypeName [ Types® ] is an instance of a generic (or parameterized) type.
For example, Array[Int] is the type of arrays of integers. HashMap[String, Int]
is the type of hash maps from strings to integers.

The type Type { Constraint } refers to a constrained type. Constraint is a Boolean
expression — written in a very limited subset of X10 — describing the acceptable
values of the constrained type. For example, var n : Int{self != 0}; guar-
antees that n is always a non-zero integer. Similarly, var x : Triple{x !=
null}; defines a Triple-valued variable x whose value is never null.

The qualified type Type . Type refers to an instance of a nested type; that is, a
class or struct defined inside of another class or struct, and holding an implicit
reference to the outer. For example, given the type declaration

class Outer {
class Inner { /* ... */ }

}
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then (new Outer()).new Inner() creates a value of type Outer.Inner.

Type variables, TypeVar, refer to types that are parameters. For example, the
following class defines a cell in a linked list.

class LinkedList[X] {
val head : X;
val tail : LinkedList[X];
def this(head:X, tail:LinkedList[X]) {
this.head = head; this.tail = tail;
}
ks

It doesn’t matter what type the cell is, but it has to have some type. LinkedList[Int]
is a linked list of integers; LinkedList[LinkedList[String]] a list of lists of
strings. Note that LinkedList is not a type — it is missing a type parameter.

The function type ( Formals® ) => Type refers to functions taking the listed for-
mal parameters and returning a result of Type. In X10 v2.1, function types may
not be generic. The closely-related void function type ( Formals’ ) => void
takes the listed parameters and returns no value. For example, (x:Int) =>
Int{self != x} is the type of integer-valued functions which have no fixed
points. An example of such a function is (x:Int) => x+1.

4.1 Classes, Structs, and interfaces

4.1.1 Class types

A class declaration (§8)) declares a class type, giving its name, behavior, data, and
relationships to other classes and interfaces.

Example:
The Position class below could describe the position of a slider control

class Position {
private var x : Int = 0;
public def move(dx:Int) { x += dx; }
public def pos() : Int = x;

ks
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Class instances, also called objects, are created by constructor calls: new Position().
Class instances have fields and methods, type members, and value properties
bound at construction time. In addition, classes have static members: static val
fields, methods, type definitions, and member classes and member interfaces.

Classes may be generic, i.e., defined with one or more type parameters (§4.2)).

class Cell[T] {
var contents : T;
public def this(t:T) { contents = t;
public def putIn(t:T) { contents = t;
public def get() = contents;
}

}
}

X10 does not permit mutable static state. A fundamental principle of the X10
model of computation is that all mutable state be local to some place (, and,
as static variables are globally available, they cannot be mutable. When mutable
global state is necessary, programmers should use singleton classes, putting the
state in an object and using place-shifting commands (§13.3)) and atomicity (§14.6)
as necessary to mutate it safely.

Classes are structured in a single-inheritance hierarchy. All classes extend the
class x10.1lang.Object, directly or indirectly. Each class other than Object
extends a single parent class. Object provides no behaviors of its own, beyond
those required by Any.

The null value, represented by the literal null, is a value of every class type
C. The type whose values are all instances of C but not null can be defined as
C{self != null}.

4.1.2 Struct Types

A struct declaration §9|introduces a struct type containing all instances of the
struct. The Coords struct below gives an immutable position in 3-space:

struct Position {
public val x:Double, y:Double, z:Double;
def this(x:Double, y:Double, z:Double) {
this.x = x; this.y = y; this.z = z;
3
ks
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Structs have many capabilities of classes: they can have methods, implement in-
terfaces, and be generic. However, they have certain restrictions; for example,
they cannot contain mutable (val) fields, or inherit from superclasses. There is
no null value for structs. Due to these restrictions, structs may be implemented
more efficiently than objects.

4.1.3 Interface types

An interface declaration (7)) defines an interface type, specifying a set of methods
and properties which must be provided by any class declared to implement the
interface.

Interfaces can also have static members: static fields, type definitions, and mem-
ber classes, structs and interfaces. However, interfaces cannot specify that imple-
menting classes must provide static members or constructors.

Example: In the following interface, PI is a static field, Vec a static type
definition, Pair a static member class. It can’t insist that implementations provide
a static method like meth, or a nullary constructor.

interface Stat {
static val PI = 3.14159;
static type R = Double;
static class Pair(x:R, y:R) {}
// ERROR: static def meth():Int;
// ERROR: static def this(Q);
3
class Example {
static def example() {
val p : Stat.Pair = new Stat.Pair(Stat.PI, Stat.PI);
3
3

An interface may extend multiple interfaces.

interface Named {
def name():String;
}
interface Mobile {
def moveChowFar:Int):void;
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}
interface Person extends Named, Mobile {}
interface NamedPoint extends Named, Mobile {}

Classes and structs may be declared to implement multiple interfaces. Seman-
tically, the interface type is the set of all objects that are instances of classes or
structs that implement the interface. A class or struct implements an interface
if it is declared to and if it concretely or abstractly implements all the methods
and properties defined in the interface. For example, KimThePoint implements
Person, and hence Named and Mobile. It would be a static error if KimThePoint
had no name method, unless KimThePoint were also declared abstract.

class KimThePoint implements Person {
var pos : Int = 0;
public def name() = "Kim (" + pos + ")";
public def move(dPos:Int) { pos += dPos; }

4.1.4 Properties

Classes, interfaces, and structs may have properties, specified in parentheses after
the type name. Properties are much like public val instance fields. They have
certain restrictions on their use, however, which allows the compiler to understand
them much better than other public val fields. In particular, they can be used in
types. E.g., the number of elements in an array is a property of the array, and an
X10 program can specify that two arrays have the same number of elements.

Example:  The following code declares a class named Coords with proper-
ties x and y and a move method. The properties are bound using the property
statement in the constructor.

class Coords(x: Int, y: Int) {
def this(x: Int, y: Int)
Coords{self.x==x, self.y==y} = {
property(x, y);
3

def move(dx: Int, dy: Int) = new Coords(x+dx, y+dy);
}
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Properties, unlike other public val fields, can be used at compile time in con-
straints. This allows us to specify subtypes based on properties, by appending a
boolean expression to the type. For example, the type Coords{x==0} is the set
of all points whose x property is 0. Details of this substantial topic are found in

E

4.2 Type Parameters and Generic Types

A class, interface, method, or type definition may have type parameters. Type pa-
rameters can be used as types, and will be bound to types on instantiation. For ex-
ample, a generic stack class may be defined as Stack[T]{...}. Stacks can hold
values of any type; e.g., Stack[Int] is a stack of integers, and Stack[Point

{self!=null}] is a stack of non-null Points. Generics must be instantiated
when they are used: Stack, by itself, is not a valid type. Type parameters may be

constrained by a guard on the declaration (§4.3] §8.4.1/§10.2).

A generic class (or struct, interface, or type definition) is a class (resp. struct,
interface, or type definition) declared with £ > 1 type parameters. A generic class
(or struct, interface, or type definition) can be used to form a type by supplying
k types as type arguments within [ ...]. For example, Stack is a generic class,
Stack[Int] is a type, and can be used as one: var stack : Stack[Int];

A Cell[T] is a generic object, capable of holding a value of type T. For example,
a Cell[Int] can hold an Int, and a Cell1[Cell[Int{self!=03}]1] can hold a
Cell which in turn can only hold non-zero numbers.

class Cell[T] {
var x: T;
def this(x: T) { this.x = x; }
def get(): T = x;
def set(x: T) = { this.x = x; }
3

Cell[Int] is the type of Int-holding cells. The get method on a Cell[Int]
returns an Int; the set method takes an Int as argument. Note that Cell alone
is not a legal type because the parameter is not bound.

A class (whether generic or not) may have generic methods. Below, NonGeneric
has a generic method first[T] (x:List[T]). An invocation of such a method
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may supply the type parameters explicitly (e.g., first[Int](z)). In certain
cases (e.g., first(z)) type parameters may be omitted and are inferred by the
compiler (§4.1T].
class NonGeneric {
static def first[T](x:List[T]):T = x(0);
def m(z:List[Int]) {
val f = first[Int](2);
val g = first(z);
return f == g;
}
}

Limitation: X10 v2.1’s C++ back end requires generic methods to be static or
final; the Java back end can accomodate generic instance methods as well.

Unlike other kinds of variables, type parameters may not be shadowed. If name X
is in scope as a type, X may not be rebound as a type variable. For example, neither
class B nor class C[B] are allowed in the following code, because they both
shadow the type variable B.

class A[B] {

// ILLEGAL: class B{}

// ILLEGAL: class C[B]{?}
}

4.2.1 Use of Generics

An unconstrained type variable X can be instantiated any type. Within a generic
struct or class, all the operations of Any are available on a variable of type un-
constrained X. Additionally, variables of type X may be used with ==, !=, in
instanceof, and casts.

If a type variable is constrained, the operations implied by its constraint are avail-
able as well.

Example: The interface Named describes entities which know their own name.
The class NameMap[T] is a specialized map which stores and retrieves Named
entities by name. The call t .name () in put () is only valid because the constraint
{T <: Named} implies that T is a subtype of Named, and hence provides all the
operations of Named.
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interface Named { def name():String; }
class NameMap[T]{T <: Named} {
val m = new HashMap[String, T]1Q);
def put(t:T) { m.put(t.name(), t); }
def get(s:String):T = m.getOrThrow(s);

4.2.2 Variance of Type Parameters

Class, struct and interface definitions are permitted to specify a variance for
each type parameter. There are three variance specifications: + indicates co-
variance, - indicates contravariance and the absence of + and - indicates in-
variance. For a class (or struct or interface) S specifying that a particular param-
eter position (say, 1) is covariant means that if Si <: Ti then S[S1,...,Sn]
<: S[S1,..., Si-1,Ti,Si+1,... Sn]. Similarly, saying that position i is is
contravariant means thatif Si <: Ti thenS[S1,..., Si-1,Ti,Si+1,... Sn]
<: S[S1,...,Sn]. If the position is invariant, then no such relationship is as-
serted between Si <: Ti and S[S1,..., Si-1,Ti,Si+1,... Sn]. The com-
piler must perform several checks on the body of the class (or struct or interface)
to establish that type parameters with a variance are used in a manner that is con-
sistent with their semantics.

Limitation: The implementation of variance specifications suffers from various
limitations in X10 v2.1. Users are strongly encouraged not to use variance. (Some
classes, structs, and interfaces in the standard libraries use variance specifications
in a careful way that circumvents these limitations.)

4.3 Type definitions

A type definition can be thought of as a type-valued function, mapping type pa-
rameters and value parameters to a concrete type.

TypeDefDecl = Mods® +type Id TypeParams’ FormalParams® (20.4
WhereClause® = Type ;

TypeParams = [ TypeParamlList ] 20.2)5|

FormalParams = ( FormalParamList’ ) 20.26|

WhereClause ::=  DepParams 20.29
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During type-checking the compiler replaces the use of such a defined type with
its body, substituting the actual type and value parameters in the call for the for-
mals. This replacement is performed recursively until the type no longer contains
a defined type or a predetermined compiler limit is reached (in which case the
compiler declares an error). Thus, recursive type definitions are not permitted.

Thus type definitions are considered applicative and not generative — they do not
define new types, only aliases for existing types.

Type definitions may have guards: an invocation of a type definition is illegal
unless the guard is satisified when formal types and values are replaced by the
actual parameters.

Type definitions may be overloaded: two type definitions with the same name
are permitted provided that they have a different number of type parameters or
different number or type of value parameters.

Type definitions must appear as static members or in a block statement.

Use of type definitions in constructor invocations If a type definition has no
type parameters and no value parameters and is an alias for a class type, a new
expression may be used to create an instance of the class using the type definition’s
name. Given the following type definition:

type A = C[Ty, ..., Tpl{c};
where C[Ty, ..., Tx] is a class type, a constructor of C may be invoked with
new A(ey, ..., e,), if the invocation new C[Ty, ..., Tx1Cey, ..., e,) is

legal and if the constructor return type is a subtype of A.

Automatically imported type definitions The collection of type definitions in
x10.1lang._ is automatically imported in every compilation unit.

4.3.1 Motivation and use

The primary purpose of type definitions is to provide a succinct, meaningful name
for complex types and combinations of types. With value arguments, type ar-
guments, and constraints, the syntax for X10 types can often be verbose. For
example, a non-null list of non-null strings is
List[String{self!=null}]{self!=null}.
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We could name that type:
static type LnSn = List[String{self!=null}]{self!=null};

Or, we could abstract it somewhat, defining a type constructor Nonnull[T] for
the type of T’s which are not null:

class Example {
static type Nonnull[T]{T <: Object} = T{self!=null};
var example : Nonnull[Example] = new Example();

}

Type definitions can also refer to values, in particular, inside constraints. The type
of n-element Array[Int] (1)sis Array[Int] {self.rank==1 && self.size
== n} but it is often convenient to give a shorter name:

type Vec(n:Int) = Array[Int]{self.rank==1 && self.size == n};
var example : Vec(78);

The following examples are legal type definitions, given import x10.util.*:

class TypeExamples {
static type StringSet = Set[String];
static type MapToList[K,V] = Map[K,List[V]];
static type Int(x: Int) = Int{self==x};
static type Dist(r: Int) = Dist{self.rank==r};
static type Dist(r: Region) = Dist{self.region==r};
static type Redund(n:Int, r:Region){r.rank==n}
= Dist{rank==n && region==r};

}

The following code illustrates that type definitions are applicative rather than gen-
erative. B and C are both aliases for String, rather than new types, and so are
interchangeable with each other and with String. Similarly, A and Int are equiv-
alent.

def someTypeDefs () {
type A = Int;
type B String;
type C = String;
a: A = 3;

b: B = new C("Hi");
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c: C=b + ", Mom!";

4.4 Constrained types

Basic types, like Int and List[String], provide useful descriptions of data.

However, one frequently wants to say more. One might want to know that a
String variable is not null, or that a matrix is square, or that one matrix has the
same number of columns as another has rows (so they can be multiplied). In the
multicore setting, one might wish to know that two values are located at the same
processor, or that one is located at the same place as the current computation.

In most languages, there is simply no way to say these things statically. Program-
mers must made do with comments, assert statements, and dynamic tests. X10
programs can do better, with constraints on types, and guards on class, method
and type definitions,

A constraint is a boolean expression e attached to a basic type T, written T{e}.
(Only a limited selection of boolean expressions is available.) The values of type
T{e} are the values of T for which e is true. For example:

e String{self != null} is the type of non-null strings. self is a spe-
cial variable available only in constraints; it refers to the datum being con-
strained, and its type is the type to which the constraint is attached.

e [fMatrix has properties rows and cols, Matrix{self.rows == self.cols}
is the type of square matrices.

e One way to say that a has the same number of columns that b has rows (so
that a*b is a valid matrix product), one could say:

val a : Matrix = someMatrix() ;
var b : Matrix{b.rows == a.cols} ;

When constraining a value of type T, self refers to the object of type T
which is being constrained. For example, Int{self == 4} is the type of
Ints which are equal to 4 — the best possible description of 4, and a very
difficult type to express without using self.
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T{e} is a dependent type, that is, a type dependent on values. The type T is called
the base type and e is called the constraint. If the constraint is omitted, it is
true—that is, the base type is unconstrained.

Constraints may refer to immutable values in the local environment:

val n = 1;

var p : Point{rank == n};
In a variable declaration, the variable itself is in scope in its type. For example,
val nz: Int{nz != 0} = 1; declares a non-zero variable nz.

A constrained type may be constrained further: the type S{c}{d} is the same
as the type S{c,d}. Multiple constraints are equivalent to conjoined constraints:
S{c,d} in turn is the same as S{c && d}.

4.4.1 Syntax of constraints

Only a few kinds of expressions can appear in constraints. For fundamental rea-
sons of mathematical logic, the more kinds of expressions that can appear in con-
straints, the harder it is to compute the essential properties of constrained type —
in particular, the harder it is to compute A{c} <: B{d}. It doesn’t take much to
make this basic fact undecidable. In order to make sure that it stays decidable,
X10 places stringent restrictions on constraints.

Only the following forms of expression are allowed in constraints.
Value expressions in constraints may be:

1. Literal constants, like 3 and true;

2. Expressions computable at compile time, like 3%4+5;

3. Accessible and immutable variables and parameters;

4. Accessible and immutable fields of objects;

5. Properties of the type being constrained;

6. this, if the constraint is in a place where this is defined;

7. here, if the constraint is in a place where here is defined;
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8. self;

9. Calls to property methods, where the receiver and arguments must be value
expressions acceptable in constraints;

10. T haszero, if T is any type expression.

For an expression self.p to be legal in a constraint, p must be a property. How-
ever terms t.f may be used in constraints (where t is a term other than self and
f is an immutable field.

Constraints, and Boolean expressions in constraints may be any of the follow-
ing, where all value expressions are of the forms which may appear in constraints:

—

. Equalities e == f;
2. Inequalities of the form e != fﬂ

3. Conjunctions of Boolean expressions that may appear in constraints (but
only in top-level constraints, not in Boolean expressions in constraints);

4. Subtyping and supertyping expressions: T <: Uand T :> U;

9

. Type equalities and inequalities: T == Uand T != U;

All variables appearing in a constraint expression must be visible wherever that
expression can used. E.g., properties and public fields of an object are always per-
mitted, but private fields of an object can only constrain private members. (Con-
sider a class PriVio with a private field p and a public method m(x: Int{self
I= p}), and a call ob.m(10) made outside of the class. Since p is only visible
inside the class, there is no way to tell if 10 is of type Int{self != p} at the
call site.)

Limitation: Certain spurious syntactic forms —such as a+b,a*b, (c==a&&b) ,a
<b — are accepted by the compiler but treated incorrectly.

ICurrently inequalities of the form e < f are not supported.
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Semantics of constraints

An assignment of values to variables is said to be a solution for a constraint c
if under this assignment ¢ evaluates to true. For instance, the assignment that
maps the variables a and b to a value t is a solution for the constraint a==b. An
assignment that maps a to s and b to a distinct value t is a solution fora != b.

An instance o of C is said to be of type C{c} (or belong to C{c}) if the constraint c
evaluates to true in the current lexical environment augmented with the binding
self — o.

A constraint c is said to entail a constraint d if every solution for c is also a

solution for d. For instance the constraint x==y && y==z && z !=a entails x

I= a.

The constraint solver considers the assignment a to null to satisfy any constraint

of the form a. f==t. Thus, for instance, the assignment var x:Tree{self.home==p}=null
does not produce an error, since self==null is considered a solution for sel f.home==p.

To ensure that type-checking is decidable, we require that property graphs be
acyclic. The property graph, at an instant in an X10 execution, is the graph whose
nodes are all objects in existence at that instance, with an edge from z to y if x is
an object with a property whose value is y. The rules for constructors guarantee
this.

Constraints participate in the subtyping relationship in a natural way: S[S1,...,
Sm]{c} is a subtype of T[T1,..., Tn]{d} if S[S1,...,Sm] is a subtype of
T[T1,...,Tn] and c entails d.

For examples of constraints and entailment, see (§4.4.3)

4.4.2 Constraint solver: incompleteness and approximation

The constraint solver is sound in that if it claims that ¢ entails d then in fact it is
the case that every value that satisfies c satisfies d.

Limitation: X10’s Entailment Algorithm is Incomplete However, X10’s con-
straint solver is incomplete. There are situations in which c entails d but the
solver cannot establish it. For instance it cannot establishthata != b & a !=
c & b != centails falseif a, b, and c are of type Boolean.

Certain other constraint entailments are prohibitively expensive to calculate. The
issues concern constraints that connect different levels of recursively-defined types,
such as the following.
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class Listlike(x:Int) {
val kid : Listlike{self.x == this.x};
def this(x:Int, kid:Listlike) {
property(x);
this.kid = kid as Listlike{self.x == this.x};}
3

There is nothing wrong with Listlike itself, or with most uses of it; however, a
sufficiently complicated use of it could, in principle, cause X10’s typechecker to
fail. It is hard to give a plausible example of when X10’s algorithm fails, as we
have not yet observed such a failure in practice for a correct program.

The entailment algorithm of X10 2.0 imposes a certain limit on the number of
times such types will be unwound. If this limit is exceeded, the compiler will
print a warning, and type-checking will fail in a situation where it is semantically
allowed. In this case, insert a dynamic cast at the point where type-checking
failed.

Limitation: Support for comparisons of generic type variables is limited. This
will be fixed in future releases.

4.4.3 Example of Constraints
Example of entailment and subtyping involving constraints.

e Int{self == 3} <: Int{self != 14}. The only value of Int{self
==3} is 3. All integers but 14 are members of Int{self != 14}, and in
particular 3 is.

e Suppose we have classes Child <: Person, and Person has a long ssn
property. If rhys : Child{ssn == 123456789}, then rhys is also a
Person and still has ssn==123456789, sorhys : Person{ssn==123456789}
as well. So, Child{ssn == 123456789} <: Person{ssn == 123456789}.

e Furthermore, since 123456789 != 555555555, rhys : Person{ssn !=

555555555}, So,Child{ssn == 123456789} <: Person{ssn != 555555555}.

e T{e} <: T for any type T. That is, if you have a value v of some base
type T which satisfied e, then v is of that base type T (with the constraint
ignored).
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e If A <: B, then A{c} <: B{c} for every constraint {c} for which A{c}
and B{c} are defined. That is, if every A is also a B, and a : A{c}, then
a is an A and c is true of it. So a is also a B (and c is still true of it), so
a : B{c}.

Constraints can be used to express simple relationships between objects, enforcing
some class invariants statically. For example, in geometry, a line is determined by
two distinct points; a Line struct can specify the distinctness in a type constraint:E]

struct Position(x: Int, y: Int) {}
struct Line(start: Position, end: Position){start != end} {}

Extending this concept, a Triangle can be defined as a figure with three line
segments which match up end-to-end. Note that the degenerate case in which
two or three of the triangle’s vertices coincide is excluded by the constraint on
Line. However, not all degenerate cases can be excluded by the type system; in
particular, it is impossible to check that the three vertices are not collinear.

struct Triangle
(a: Line,
b: Line{a.end == b.start},
c: Line{b.end == c.start & c.end == a.start})

{}

The Triangle class automatically gets a ternary constructor which takes suitably
constrained a, b, and c and produces a new triangle.

4.5 Default Values

Some types have default values, and some do not. Default values are used in sit-
uations where variables can legitimately be used without having been initialized;
types without default values cannot be used in such situations. For example, a
field of an object var x:T can be left uninitialized if T has a default value; it can-
not be if T does not. Similarly, a transient (§8.2.3) field transient val x:Tis
only allowed if T has a default value.

2We call them Position to avoid confusion with the built-in class Point. Also, Position is
a struct rather than a class so that the non-equality test start != end compares the coordinates.
If Position were a class, start != end would check for different Position objects, which
might have the same coordinates.
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Default values, or lack of them, is defined thus:

e The fundamental numeric types (Int, UInt, Long, ULong, Float, Double)
all have default value O.

e Boolean has default value false.

e Char has default value "\0’.

e Struct types other than those listed above have no default value.
e A function type has a default value of null.

e A class type has a default value of null.

e The constrained type T{c} has the same default value as T if that default
value satisfies c. If the default value of T doesn’t satisfy c, then T{c} has
no default value.

For example, var x: Int{x != 4} has default value 0, which is allowed be-
cause O != 4 satisfies the constraint on Xx. var y : Int{y==4} has no default
value, because 0 does not satisfy y==4. The fact that Int{y==4} has precisely
one value, viz. 4, doesn’t matter; the only candidate for its default value, as for
any subtype of Int, is 0. y must be initialized before it is used.

The predicate T haszero tells if the type T has a default value. haszero may be
used in constraints.

Example:  The following code defines a sort of cell holding a single value of
type T. The cell is initially empty — that is, has T’s zero value — but may be filled
later.

class Cell®[T]{T haszero} {

public var contents : T;

public def put(t:T) { contents = t; }
ks

The built-in type Zero has the method get [T] () which returns the default value
of type T.

Example: A variant Cell1[T] which can be initialized with a value of an
arbitrary type T, or, if T has a default value, can be created with the default value,
is given below. Note that T haszero is a constraint on one of the constructors,
not the whole type:
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class Celll[T] {
public var contents: T;
def this(t:T) { contents = t; }
def this(Q{T haszero} { contents = Zero.get[T](); }
public def put(t:T) {contents = t;}

4.6 Function types

FunctionType = TypeParams’ ( FormalParamList’ ) WhereClause® (20.15
Offers’ => Type

For every sequence of types T1, ..., Tn,T, and n distinct variables x1,...,xn
and constraint c, the expression (x1:T1,...,xn:Tn){c}=>T is a function type.
It stands for the set of all functions £ which can be applied to a list of val-
ues (vl,...,vn) provided that the constraint c[v1l,...,vn,p/x1,...,xn] is
true, and which returns a value of type T[vl,...vn/x1,...,xn]. When c is
true, the clause {c} can be omitted. When x1,...,xn do not occur in c or T,
they can be omitted. Thus the type (T1,...,Tn)=>T is actually shorthand for
(x1:T1,...,xn:Tn) {true}=>T, for some variables x1,...,xn.

Limitation: Constraints on closures are not supported. They parse, but are not
checked.

X10 functions, like mathematical functions, take some arguments and produce a
result. X10 functions, like other X10 code, can change mutable state and throw
exceptions. Closures (§10) and method selectors (§10.3)) are of function type.
Typical functions are the reciprocal function:

val recip = (x : Double) => 1/x;

and a function which increments element i of an array r, or throws an exception
if there is no such element, where, for the sake of example, we constrain the type
of i:
val inc = (r:Array[Int](1), i: Int{i != r.size}) => {
if (1 <0 || i >= r.size) throw new DoomExn();
r(i)++;

}s
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In general, a function type needs to list the types T; of all the formal parameters,
and their distinct names x; in case other types refer to them; a constraint c on the
function as a whole; a return type T.

(x1: Ty, ..., X0 T){c} =T

The names x; of the formal parameters are not relevant. Types which differ only
in the names of formals (following the usual rules for renaming of variables, as in
a-renaming in the A calculus ) are considered equal. E.g., the two function types
(a:Int, b:Array[String] (1){b.size==a}) => Boolean and

(b:Int, a:Array[String](1){a.size==b}) => Boolean are equivalent.

Limitation:  This is not currently implemented properly; these two types are
presently considered different.

The formal parameter names are in scope from the point of definition to the end of
the function type—they may be used in the types of other formal parameters and
in the return type. Value parameters names may be omitted if they are not used;
the type of the reciprocal function can be written as (Double)=>Double.

A function type is covariant in its result type and contravariant in each of its
argument types. That is, let S1,...,Sn,S,T1,...Tn,T be any types satisfy-
ing Si <: Tiand S <: T. Then (x1:T1,...,xn:Tn){c}=>S is a subtype of
(x1:S1,...,xn:Sn) {c}=>T.

A class or struct definition may use a functiontype F = (x1:T1,...,xn:Tn){c}=>T
in its implements clause; this is equivalent to implementing an interface requiring

the single method def apply(x1:T1,...,xn:Tn){c}:T. Similarly, an inter-
face definition may specify a function type F in its extends clause. Values of a
class or struct implementing F can be used as functions of type F in all ways. In
particular, applying one to suitable arguments calls the apply method.

Limitation: A class or struct may not implement two different instantiations of a
generic interface. In particular, a class or struct can implement only one function

type.

A function type F is not a class type in that it does not extend any type or im-
plement any interfaces, or support equality tests. F may be implemented, but not
extended, by a class or function type. Nor is it a struct type, for it has no predefined
notion of equality.
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4.7 Annotated types

Any X10 type may be annotated with zero or more user-defined type annotations
(gL7).

Annotations are defined as (constrained) interface types and are processed by
compiler plugins, which may interpret the annotation symbolically.

A type T is annotated by interface types A4, ..., A, using the syntax @A; ... @A,
T.

4.8 Subtyping and type equivalence

Intuitively, type T, is a subtype of type Ty, written T; <: Ts, if every instance of
T is also an instance of To. For example, Child is a subtype of Person (assuming
a suitably defined class hierarchy): every child is a person. Similarly, Int{self
I= 0} is a subtype of Int — every non-zero integer is an integer.

This section formalizes the concept of subtyping. Subtyping of types depends on
a type context, viz.. a set of constraints on type parameters and variables that occur
in the type. For example:

class ConsTy[T,U] {
def upcast(t:T){T <: U} :U =
}

Inside upcast, T is constrained to be a subtype of U, and so T <: Uis true, and t
can be treated as a value of type U. Outside of upcast, there is no reason to expect
any relationship between them, and T <: U may be false. However, subtyping of
types that have no free variables does not depend on the context. Int{self !=
0} <: Intis always true.

Limitation: Subtyping of type variables does not currently work.
o Reflexivity: Every type T is a subtype of itself: T <: T.

e Transitivity: If T <: UandU <: V,thenT <: V.

e Direct Subclassmg Let X be a (possibly empty) vector of type variables,
and Y, Y; be vectors of type terms over X. Let T be an instantiation of X,
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and U , (jl the corresponding instantiation of }7, }7, Let c be a constraint,
and ¢’ be the corresponding instantiation. We elide properties, and interpret
empty vectors as absence of the relevant clauses. Suppose that C is declared
by one of the forms:

1. class C[X]{c} extends D[Y]{d} implements I;[Y;]{i},...,I,]
2. interface C[X]1{c} extends I;[Y;|{ii},...,I.[V,]{i.}{
3. struct C[X]{c} implements I;[Y;|{ii},...,I.[V,]{i.}{

Then:

1. C[T] <: DLU]{d} foraclass
2. C[f] <: I [[71-] {i,} for all cases.
3. C[T] <: C[T1{c'} for all cases.
Function types: (x;: Ty, ..., X,: T,){c} => Tisasubtypeof (x]:
T, ..., x,: T){c} =T if:
1. EachT; <: Tj;
2. centails c’;
3. T <: T;
Constrained types: T{c} is a subtype of T{d} if c entails d.
Any: Every type T is a subtype of x10.1lang.Any.

Type Variables: Inside the scope of a constraint ¢ which entails A <: B,
we have A <: B. e.g., upcast above.

Covariant Generic Types: If C is a generic type whose ith type parameter
is covariant, and T, <: T; and T;- == T, for all j # ¢, then C[T}, ...,
T] <: C[T}, ..., T,]. Eg,class C[T1, +T2, T3] withi = 2, and
U2 <: T2,thenC[T1,U2,T3] <: C[T1,T2,T3].

Contravariant Generic Types: If Cis a generic type whose ith type param-
eter is contravariant, and T, <: T, and T} == T, for all j # ¢, then C[T},

., TW1 > C[T}, ..., T.1. E.g, class C[T1, -T2, T3] withi =
2,and U2 <: T2,thenC[T1,U2,T3] :> C[T1,T2,T3].

Two types are equivalent, T == U,if T <: UandU <: T.

—

W {inH
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4.9 Common ancestors of types

There are several situations where X 10 must find a type T that describes values of
two or more different types. This arises when X10 is trying to find a good type to
describe:

e Conditional expressions, like test ? 0 : "non-zero" or even test ?
0 : 1;

e Array construction, like [@, '"non-zero"] and [0,1];

e Functions with multiple returns, like

def f(a:Int) {
if (a == 0) return 0;
else return "non-zero";

}

In some cases, there is a unique best type describing the expression. For example,
if B and C are direct subclasses of A, pick will have return type A:

static def pick(t:Boolean, b:B, c:C) =t ? b : c;

However, in many common cases, there is no unique best type describing the ex-
pression. For example, consider the expression £ =b 7 0 : 1. The best type
of 0 is Int{self==0}, and the best type of 1 is Int{self==1}. Certainly £
could be given the type Int, or even Any, and that would describe all possible re-
sults. However, we actually know more. Int{self != 2} is a better description
of the type of E—=certainly the result of  can never be 2. Int{self != 2,
self != 3} is an even better description; £ can’t be 3 either. We can continue
this process forever, adding integers which £ will definitely not return and getting
better and better approximations. (If the constraint sublanguage had | |, we could
give it the type Int{self == 0 || self == 1, which would be nearly perfect.
But | | makes typechecking far more expensive, so it is excluded.) No X10 type
is the best description of F; there is always a better one.

Similarly, consider two unrelated interfaces:

interface I1 {}
interface I2 {}
class A implements I1, I2 {}
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class B implements I1, I2 {}
class C {

static def example(t:Boolean, a:A, b:B) =t ? a : b;
}

I1 and I2 are both perfectly good descriptions of t ? a : b, but neither one is
better than the other, and there is no single X10 type which is better than both.
(Some languages have conjunctive types, and could say that the return type of
example was I1 && I2. This, too, complicates typechecking.)

So, when confronted with expressions like this, X10 computes some satisfactory
type for the expression, but not necessarily the best type. X10 provides certain
guarantees about the common type V{v} computed for T{t} and U{u}:

o If T{t} == U{u}, then V{v} == T{t} == U{u}. So, if X10’s algorithm
produces an utterly untenable type fora ? b : c, and you want the result
to have type T{t}, you can (in the worst case) rewrite it to a 7 b as
T{t} : c as T{t}.

o If T == U, then V == T == U. For example, X10 will compute the type
ofb ? 0 : 1as Int{c} for some constraint c—perhaps simply picking
Int{true}, viz., Int.

e X10 preserves place information about GlobalRefs, because it is so im-
portant. If both t and u entail self.home==p, then v will also entail
self.home==p.

e X10 similarly preserves nullity information. If t and u both entail x ==
null or x !'= null for some variable x, then v will also entail it as well.

4.10 Fundamental types

Certain types are used in fundamental ways by X10.
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4.10.1 The interface Any

It is quite convenient to have a type which all values are instances of; that is, a
supertype of all typesE] X10’s universal supertype is the interface Any.

package x10.lang;

public interface Any {
def toString():String;
def typeName():String;
def equals(Any) :Boolean;
def hashCode():Int;

}

Any provides a handful of essential methods that make sense and are useful for ev-
erything. a.toString () produces a string representation of a, and a. typeName ()
the string representation of its type; both are useful for debugging. a.equals(b)
is the programmer-overridable equality test, and a.hashCode () an integer useful
for hashing.

4.10.2 The class Object

The class x10.1lang.Object is the supertype of all classes. A variable of this
type can hold a reference to any object. Object implements Any.

4.11 Type inference

X10 v2.1 supports limited local type inference, permitting certain variable types
and return types to be elided. It is a static error if an omitted type cannot be
inferred or uniquely determined. Type inference does not consider coercions.

4.11.1 Variable declarations

The type of a val variable declaration can be omitted if the declaration has an
initializer. The inferred type of the variable is the computed type of the initializer.

3Java, for one, suffers a number of inconveniences because some built-in types like int and
char aren’t subtypes of anything else.
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For example, val seven = 7; is identical to val seven: Int{self==7} =
7; Note that type inference gives the most precise X10 type, which might be more
specific than the type that a programmer would write.

Limitation: At the moment, var declarations may not have their types elided in
this way.

4.11.2 Return types

The return type of a method can be omitted if the method has a body (i.e., is
not abstract or native). The inferred return type is the computed type of
the body. In the following example, the return type inferred for isTriangle
is Boolean{self==false}

class Shape {
def isTriangle() = false;
}

Note that, as with other type inference, methods are given the most specific type.
In many cases, this interferes with subtyping. For example, if one tried to write:

class Triangle extends Shape {
def isTriangle() = true;

}

the X10 compiler would reject this program for attempting to override isTriangle ()
by a method with the wrong type, viz., Boolean{self==true}. In this case, sup-
ply the type that is actually intended for isTriangle, such asdef isTriangle()
:Boolean =false;.

The return type of a closure can be omitted. The inferred return type is the com-
puted type of the body.

The return type of a constructor can be omitted if the constructor has a body.
The inferred return type is the enclosing class type with properties bound to the
arguments in the constructor’s property statement, if any, or to the unconstrained
class type. For example, the Spot class has two constructors, the first of which
has inferred return type Spot{x==0} and the second of which has inferred return
type Spot{x==xx}.

class Spot(x:Int) {
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def this() {property(®);}
def this(xx: Int) { property(xx); }
}

A method or closure that has expression-free return statements (return; rather
than return e;) is said to return void. void is not a type; there are no void
values, nor can void be used as the argument of a generic type. However, void
takes the syntactic place of a type. A method returning void can be specified by
def m(Q):void:

val £ : O => void = O => {return;};

By a convenient abuse of language, void is sometimes lumped in with types; e.g.,
we may say “return type of a method” rather than the formally correct but rather
more awkward “return type of a method, or void”. Despite this informal usage,
void is not a type. For example, given

static def eval[T] (£f:O=T):T = £Q;

The call eval[void] (£) does not typecheck; void is not a type and thus cannot
be used as a type argument. There is no way in X10 to write a generic function
which works with both functions which return a value and functions which do not.
In most cases, functions which have no sensible return value can be provided with
a dummy return value.

4.11.3 Inferring Type Arguments

A call to a polymorphic method may omit the explicit type arguments. If the
method has a type parameter T, the type argument corresponding to T is inferred
to be a common ancestor of the types of any formal parameters of type T.

(Exception: it is an error if the method call provides no information about a type
parameter that must be inferred. For example, given the method definition def
m[T]O{...}, an invocation m() is considered a static error. The compiler has
no idea what T the programmer intends.)

Consider the following method, which chooses one of its arguments. (A more
sophisticated one might sometimes choose the second argument, but that does not
matter for the sake of this example.)

static def choose[T](a: T, b: T): T = a;
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The type argument T can always be supplied: choose[Int] (1, 2) picks an
integer, and choose[Any] (1, "yes") picks a value that might be an integer or
a string. However, the type argument can be elided. Suppose that Sub <: Super;
then the following compiles:

static def choose[T](a: T, b: T): T = a;
static val j : Any = choose("string", 1);
static val k : Super = choose(new Sub(), new Super());

Sketch of X10 Type Inference for Method Calls

When the X10 compiler sees a method call a.m(b;, ...,b,), and attempts to
infer type parameters to see if it could be use of a method def m[X;, ...,
X;1(yi: Si, ..., Vn:S,),itreasons as follows.

Suppose that b; has type T;. Then, X10 is seeking a set of type B bindings X;
= Uj, for1 < j <t¢,suchthat T, <: Sj for1 <4 < n, where S* is S with each
type variable X; replaced by the corresponding U;. If it can find such a B, it has
a usable choice of type arguments and can do the type inference. If it cannot find
B, then it cannot do type inference. (Note that X10’s type inference algorithm is
incomplete — there may be such a B that X10 cannot find. If this occurs in your
program, you will have to write down the type arguments explicitly.)

Let By be the set {T; <: S;|1 < i < n}. Let B, be B, with one element
F <: Gor F == G removed, and C(F <: G) or C(F == @) (defined below)
added. Repeat this until B,, consists entirely of comparisons with type variables
(viz., Y; == U, Y; <: U, and Y; :> U), or until some n exceeds a predefined
compiler limit.

The candidate inferred types may be read off of B,,. The guessed binding for X;
is:

o If there is an equality X;==W in [3,,, then guess the binding X;=W. Note that
there may be several such equalities with different choices of W, but, if the
inference is to work, all the choices of W must be equal types anyways.

e Otherwise, if there is one or more upper bounds X; <: Vj in B, guess the
binding X; = V., where V is the computed lower bound of all the V’s.

e Otherwise, if there is one or more lower bounds R, <: X;, guess that X;
= R, where R, is the computed upper bound of all the R’s.
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If this does not yield a binding for some variable X;, then type inference fails.
Furthermore, if every variable X; is given a binding U;, but the bindings do not

work — that is, if a.m[U;, ..., U;](by, ...,b,) is not a call of the original
method def m[X;, ..., X, J(y1: Si, ..., ¥n:S,) — then type inference also
fails.

Computation of the Replacement Elements Given a type relation r of the
form F' <: G or F' == (G, we compute the set C'(r) of replacement constraints.
There are a number of cases; we present only the interesting ones.

e If F' has the form F’{c}, then C(r) is defined to be F' == G if r is an
equality, or F’ <: G if r is a subtyping. That is, we erase type constraints.
Validity is not an issue at this point in the algorithm, as we check at the
end that the result is valid. However, in important cases, the replacement
is valid, in the sense that the solutions of By, are precisely the solutions
of By. Specifically, if the equation had the form Z{c} == A, it could be
solved by Z==A or by Z = A{c}. By dropping constraints in this rule, we
choose the former solution.

e Similarly, we drop constraints on GG as well.

e If F' has the form K[F;, ..., F.] and G has the form K[G;, ..., G.],
then C'(r) has one type relation comparing each parameter of F' with the
corresponding one of G.

If r is a type equality F' == G, then C(r) = {F; == Gi|1 <[ < k.

If r is a type comparison, and the /' type parameter of K is invariant (resp.

covariant or contravariant), then C(r) has F; == G, (resp. F; <: G, or
Gl <: E)
For example, the constraint List [X] == List[Y] produces the constraint

X==Y, because List is nonvariant. If Contra[X] is contravariant, the con-
straint Contra[X] <: Contra[List[Y]] produces the constraint List[Y]
<: X.

e Other cases are fairly routine. E.g., if F' is a type-defined abbreviation, it
is expanded.

Example: Suppose we have:
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import x10.util.*;
class C1[C1, +C2, -C3]1{}
class Example {
static def me[X1, X2](Cl[Int, X1, X2]) =
new C1[X1, X2, Point](Q;
static def example() {
val a = new Cl[Int, Boolean, String]();

val b : Cl[Boolean, String, Point] = me[Boolean, String](a);

4.12 Type Dependencies

Type definitions may not be circular, in the sense that no type may be its own
supertype, nor may it be a container for a supertype. This forbids interfaces like
interface Loop extends Loop, andindirect self-references such as interface
A extends B.C where interface B extends A.

The formal definition of this is based on Java’s.
An entity type is a class, interface, or struct type.

Entity type E directly depends on entity type F'if F' is mentioned in the extends
or implements clause of I, either by itself or as a qualifier within a super-entity-
type name. e.g. In the following, A directly depends on B, C, D, E, and F. It does
not directly depend on G.

class A extends B.C implements D.E, F[G] {}

It is an ordinary programming idiom to use A as an argument to a generic interface
that A implements. For example, ComparableTo[T] describes things which can
be compared to a value of type T. Saying that A implements ComparableTo[A]
means that one A can be compared to another, which is reasonable and useful:

interface ComparableTo[T] {
def eq(T):Boolean;
}
class A implements ComparableTo[A] {
public def eq(other:A) = this.equals(other);
}
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Entity type E depends on entity type F' if either E directly depends on [, or
E directly depends on an entity type that depends on F'. That is, the relation
“depends on” is the transitive closure of the relation “directly depends on”.

It is a static error if any entity type £ depends on itself.



5 Variables

A variable is an X10 identifier associated with a value within some context. Vari-
able bindings have these essential properties:

e Type: What sorts of values can be bound to the identifier;

e Scope: The region of code in which the identifier is associated with the
entity;

e Lifetime: The interval of time in which the identifier is associated with the
entity.

e Visibility: Which parts of the program can read or manipulate the value
through the variable.

X10 has many varieties of variables, used for a number of purposes.

e Class variables, also known as the static fields of a class, which hold their
values for the lifetime of the class.

e Instance variables, which hold their values for the lifetime of an object;

e Array elements, which are not individually named and hold their values for
the lifetime of an array;

e Formal parameters to methods, functions, and constructors, which hold their
values for the duration of method (etc.) invocation;

e [ocal variables, which hold their values for the duration of execution of a
block.

62
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e Exception-handler parameters, which hold their values for the execution of
the exception being handled.

A few other kinds of things are called variables for historical reasons; e.g., type
parameters are often called type variables, despite not being variables in this sense
because they do not refer to X10 values. Other named entities, such as classes and
methods, are not called variables. However, all name-to-whatever bindings enjoy
similar concepts of scope and visibility.

Example: [In the following example, n is an instance variable, and nxt is a local
variable defined within the method bump ||

class Counter {
private var n : Int = 0;
public def bump() : Int {
val nxt = n+1;

n = nxt;
return nxt;
3

}

Both variables have type Int (or perhaps something more specific). The scope of
n is the body of Counter; the scope of nxt is the body of bump. The lifetime of n
is the lifetime of the Counter object holding it; the lifetime of nxt is the duration
of the call to bump. Neither variable can be seen from outside of its scope.

Variables whose value may not be changed after initialization are said to be im-
mutable, or constants (§5.1]), or simply val variables. Variables whose value may
change are mutable or simply var variables. var variables are declared by the
var keyword. val variables may be declared by the val keyword; when a vari-
able declaration does not include either var or val, it is considered val.

A variable—even a val — can be declared in one statement, and then initialized
later on. It must be initialized before it can be used (§19)).

Example: The following example illustrates many of the variations on variable
declaration:

val a : Int = O; // Full ’val’ syntax
b : Int = 0; // ’val’ implied

I'This code is unnecessarily turgid for the sake of the example. One would generally write
public def bump() = ++n;.



64 CHAPTER 5. VARIABLES

val ¢ = 0; // Type inferred

var d : Int = 0; // Full ’var’ syntax
var e : Int; // Not initialized
var £ : Int{self != 100} = 0; // Constrained type
val g : Int; // Init. deferred

2; // Init. done here.

if (a>b) g=1; else g

5.1 Immutable variables

LocalVariableDeclStatement LocalVariableDecl ;
LocalVariableDecl ::= Mods’ VarKeyword VariableDeclarators
| Mods’ VariableDeclaratorsWithType
| Mods’ VarKeyword FormalDeclarators

An immutable (val) variable can be given a value (by initialization or assignment)
at most once, and must be given a value before it is used. Usually this is achieved
by declaring and initializing the variable in a single statement, such as val x
= 3, with syntax using the VariableDeclarators or VariableDeclarator-
sWithType alternatives.

Example: After these declarations, a and b cannot be assigned to further, or
even redeclared:

val a : Int = 10;

val b = (a+1)*(a-1);

// NO: a = 11; --- vals cannot be assigned to.
// NO: val a = 11; --- no redeclaration.

In two special cases, the declaration and assignment are separate. One case is how
constructors give values to val fields of objects. In this case, production (20.156)
is taken, with the FormalDeclarators option, such as var n:Int;.

Example: The Example class has an immutable field n, which is given different
values depending on which constructor was called. n can’t be given its value by
initialization when it is declared, since it is not knowable which constructor is
called at that point.

class Example {
val n : Int; // not initialized here

20.15)5]

20.156
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def this() { n=1; }
def this(dummy:Boolean) { n = 2;}
ks

The other case of separating declaration and assignment is in function and method
call, described in The formal parameters are bound to the corresponding
actual parameters, but the binding does not happen until the function is called.

Example: [In the code below, x is initialized to 3 in the first call and 4 in the
second.

val sq = (x:Int) => x*X;

x10.i0.Console.OUT.println("3 squared
x10.i0.Console.OUT.println("4 squared

"+ sa(3));
"+ sq(4));

5.2 Initial values of variables

Every assignment, binding, or initialization to a variable of type T{c} must be an
instance of type T satisfying the constraint {c}. Variables must be given a value
before they are used. This may be done by initialization — giving a variable a value
as part of its declaration.

e.g. These variables are al initialized:

val immut : Int = 3;
var mutab : Int = immut;
val use = immut + mutab;

Or, a variable may be given a value by an assignment. var variables may be
assigned to repeatedly. val variables may only be assigned once; the compiler
will ensure that they are assigned before they are used.

e.g. The variables in the following example are given their initial values by as-
signment. Note that they could not be used before those assignments, nor could
immu be assigned repeatedly.

var muta : Int;

// ERROR: println(muta);
muta = 4;

val use2A = muta * 10;



66 CHAPTER 5. VARIABLES

val immu : Int;

// ERROR: println(immu);
if (cointoss()) {immu
else {immu
val use2B = immu * 10;
// ERROR: immu = 5;

1;}
use2A;}

Every class variable must be initialized before it is read, through the execution of
an explicit initializer. Every instance variable must be initialized before it is read,
through the execution of an explicit or implicit initializer or a constructor. Implicit
initializers initialize vars to the default values of their types (§4.5)). Variables of
types which do not have default values are not implicitly initialized.

Each method and constructor parameter is initialized to the corresponding argu-
ment value provided by the invoker of the method. An exception-handling param-
eter is initialized to the object thrown by the exception. A local variable must be
explicitly given a value by initialization or assignment, in a way that the compiler
can verify using the rules for definite assignment

5.3 Destructuring syntax

X10 permits a destructuring syntax for local variable declarations with explicit
initializers, and for formal parameters, of type Point, A point is a sequence
of zero or more Int-valued coordinates. It is often useful to get at the coordinates
directly, in variables.

VariableDeclarator ::=  Id HasResultType® = Variablelnitializer
| [ IdList 1 HasResultType® = Variablelnitializer
| Id [ IdList ] HasResultType? = Variablelnitializer

The syntax val [a;, ..., a,] = e; declaresn Int variables, bound to the first
n components of the Point value of e; it is an error if e is not a Point with at
least n components. The syntax val p[a;, ..., a,] = e; is similar, but also
declares the variable p as Point.

Example: The following code makes an anonymous point with one coordinate
11, and binds i to 11. Then it makes a point with coordinates 22 and 33, binds p
to that point, and j and k to 22 and 33 respectively.

20.153
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val [i] : Point = Point.make(11);
val p[j,k] = Point.make(22,33);
val q[l,m] = [44,55]; // coerces an array to a point.

A useful idiom for iterating over a range of numbers is:

var sum : Int = 0;
for ([i] in 1..100) sum += i;

The brackets in [1] introduce destructuring, making X10 treat i as an Int; with-
out them, it would be a Point.

5.4 Formal parameters

Formal parameters are the variables which hold values transmitted into a method
or function. They are always declared with a type. (Type inference is not available,
because there is no single expression to deduce a type from.) The variable name
can be omitted if it is not to be used in the scope of the declaration, as in the type
of the method static def main(Array[String]) :void executed at the start
of a program that does not use its command-line arguments.

var and val behave just as they do for local variables, In particular, the
following inc method is allowed, but, unlike some languages, does not increment
its actual parameter. inc(j) creates a new local variable i for the method call,
initializes i with the value of j, increments i, and then returns. j is never changed.

static def inc(var i:Int) { i += 1; }

5.5 Local variables and Type Inference

Local variables are declared in a limited scope, and, dynamically, keep their values
only for so long as the scope is being executed. They may be var or val. They
may have initializer expressions: var i:Int = 1; introduces a variable i and
initializes it to 1. If the variable is immutable (val) the type may be omitted and
inferred from the initializer type (§4.11).

The variable declaration val x:T=e; confirms that e’s value is of type T, and
then introduces the variable x with type T. For example, consider a class Tub with

a property p.
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class Tub(p:Int){
def this(pp:Int):Tub{self.p==pp} {property(pp);}
def example() {
val t : Tub = new Tub(3);
}
}

produces a variable t of type Tub, even though the expression new Tub(3) pro-
duces a value of type Tub{self.p==3} — that is, a Tub whose p field is 3. This
can be inconvenient when the constraint information is required.

Including type information in variable declarations is generally good program-
ming practice: it explains to both the compiler and human readers something of
the intent of the variable. However, including types in val t:T=e can obliterate
helpful information. So, X10 allows a documentation type declaration, written
val t <: T = e. This has the same effect as val t = e, giving t the full type
inferred from e; but it also confirms statically that that type is at least T.

Example: The following gives t the type Tub{self.p==3} as desired. However,
a similar declaration with an inappropriate type will fail to compile.

val t <: Tub = new Tub(3);
// ERROR: val u <: Int = new Tub(3);
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5.6 Fields

FieldDeclarators ::= FieldDeclarator
| FieldDeclarators , FieldDeclarator
FieldDecl ::=  Mods’ FieldKeyword FieldDeclarators ;
| Mods’ FieldDeclarators ;
FieldDeclarator ::= Id HasResultType
| Id HasResultType® = Variablelnitializer
HasResultType m= : Type
| <: Type
FieldKeyword n= val
| var
Mod = abstract
| Annotation
| atomic
| final
| native
| private
|  protected
| public
| static
| transient
| clocked

Like most other kinds of variables in X10, the fields of an object can be either
val or var. Fields can be static (§8.2). Field declarations may have optional
initializer expressions, as for local variables, @ var fields without an initializer
are initialized with the default value of their type. val fields without an initializer
must be initialized by each constructor.

For val fields, as for val local variables, the type may be omitted and inferred
from the initializer type (§4.11). var fields, like var local variables, must be
declared with a type.
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6 Names and packages

6.1 Names

An X10 program consists largely of giving names to entities, and then manip-
ulating the entities by their names. The entities involved may be compile-time
constructs, like packages, types and classes, or run-time constructs, like numbers
and strings and objects.

X10 names can be simple names, which look like identifiers: vj, x10, AndSoOn.
Or, they can be qualified names, which are sequences of two or more identifiers
separated by dots: x10.lang.String, somePack.someType, a.b.c.d.e.f.
Some entities have only simple names; some have both simple and qualified
names.

Every declaration that introduces a name has a scope: the region of the program
in which the named entity can be referred to by a simple name. In some cases,
entities may be referred to by qualified names outside of their scope. E.g., a
public class C defined in package p can be referred to by the simple name C
inside of p, or by the qualified name p.C from anywhere.

Many sorts of entities have members. Packages have classes, structs, and inter-
faces as members. Those, in turn, have fields, methods, types, and so forth as
members. The member x of an entity named E (as a simple or qualified name) has
the name E. x; it may also have other names.

6.1.1 Shadowing

One declaration d may shadow another declaration d’ in part of the scope of d’, if
d and d’ declare variables with the same simple name n. When d shadows d’, a
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use of n might refer to d’s n (unless some d” in turn shadows d), but will never
refer to d’’s n.

X10 has four namespaces:

e Types: for classes, interfaces, structs, and defined types.

e Values: for val- and var-bound variables; fields; and formal parameters of
all sorts.

e Methods: for methods of classes, interfaces, and structs.

e Packages: for packages.

A declaration d in one namespace, binding a name n to an entity e, shadows
all other declarations of that name n in scope at the point where d is declared.
This shadowing is in effect for the entire scope of d. Declarations in different
namespaces do not shadow each other. Thus, a local variable declaration may
shadow a field declaration, but not a class declaration.

Declarations which only introduce qualified names — in X10, this is only package
declarations — cannot shadow anything.

The rules for shadowing of imported names are given in

6.1.2 Hiding

Shadowing is ubiquituous in X10. Another, and considerably rarer, way that one
definition of a given simpl ename can render another definition of the same name
unavailable is hiding. If a class Super defines a field named x, and a subclass Sub
of Super also defines a field named x, then, for Subs, references to the x field get
Sub’s x rather than Super’s. In this case, Super’s x is said to be hidden.

Hiding is technically different from shadowing, because hiding applies in more
circumstances: a use of class Sub, such as sub. x, may involve hiding of name x,
though it could not involve shadowing of x because x is need not be declared as a
name at that point.
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6.1.3 Obscuring

The third way in which a definition of a simple name may become unavailable is
obscuring. This well-named concept says that, if n can be interpreted as two or
more of: a variable, a type, and a package, then it will be interpreted as a variable
if that is possible, or a type if it cannot be interpreted as a variable. In this case,
the unavailable interpretations are obscured.

Example: [In the example method of the following code, both a struct and a
local variable are named eg. Following the obscuring rules, The call eg.ow() in
the first assert uses the variable rather than the struct. As the second assert
demonstrates, the struct can be accessed through its fully-qualified name. Note
that none of this would have happened if the coder had followed the convention
that structs have capitalized names, Eg, and variables have lower-case ones, eg.

package obscuring;
struct eg {
static def ow()= 1;
static struct Bite {
def ow() = 2;
}
def example() {
val eg = Bite();
assert eg.ow() == 2;
assert obscuring.eg.ow() == 1;

}

Due to obscuring, it may be impossible to refer to a type or a package via a simple
name in some circumstances. Obscuring does not block qualified names.

6.1.4 Ambiguity and Disambiguation

Neither simple nor qualified names are necessarily unique. There can be, in gen-
eral, many entities that have the same name. This is perfectly ordinary, and, when
done well, considered good programming practice. Various forms of disambigua-
tion are used to tell which entity is meant by a given name; e.g., methods with the
same name may be disambiguated by the types of their arguments (§8.9).



6.2. PACKAGES 73

Example: In the following example, there are three static methods with qual-
ified name DisambEx.Example.m; they can be disambiguated by their different
arguments. Inside the body of the third, the simple name i refers to both the Int
formal of m, and to the static method DisambEx.Example.i.

package DisambEx;
class Example {
static def m() = 1;
static def m(Boolean) = 2;
static def i() = 3;
static def m(i:Int) {
if (A > 10) {
return i) + 1;
}
return ij;
}
static def example() {
assert m() == 1;
assert m(true) == 2;
assert m(20) == 4;
}
ks

X10 allows certain modifiers to limit the use of named entities outside of the body
that they were defined in: the public, protected, private and uninflected
package-specific scopes, as used in Java [5, §6,57] and various other languages.

6.2 Packages

A package is a named collection of top-level type declarations, viz., class, inter-
face, and struct declarations. Package names are sequences of identifiers, like
x10.lang and com. ibm.museum. The multiple names are simply a convenience,
though there is a tenuous relationship between packages a, a.b, and a. c.

Packages and protection modifiers determine which top-level names can be used
where. Only the public members of package pack.age can be accessed outside
of pack.age itself.

package pack.age;
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class Deal {
public def make() {}

ks

public class Stimulus {
private def taxCut() = true;
protected def benefits() = true;
public def jobCreation() = true;
/*package*/ def jumpstart() = true;

}

The class Stimulus can be referred to from anywhere outside of pack.age by its
full name of pack.age.Stimulus, or can be imported and referred to simply as
Stimulus. The public jobCreation() method of a Stimulus can be referred
to from anywhere as well; the other methods have smaller visibility. The non-
public class Deal cannot be used from outside of pack.age.

6.2.1 Name Collisions

It is a static error for a package to have two members with the same name. For
example, package pack.age cannot define two classes both named Crash, nor a
class and an interface with that name.

Furthermore, pack.age cannot define a member Crash if there is another pack-
age named pack.age.Crash, nor vice-versa. (This prohibition is the only actual
relationship between the two packages.) This prevents the ambiguity of whether
pack.age.Crash refers to the class or the package. Note that the naming con-
vention that package names are lower-case and package members are capitalized
prevents such collisions.

6.3 import Declarations

Any public member of a package can be referred to from anywhere through a
fully-qualified name: pack.age.Stimulus.

Often, this is too awkward. X10 has two ways to allow code outside of a class
to refer to the class by its short name (Stimulus): single-type imports and on-
demand imports.
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Imports of either kind appear at the start of the file, immediately after the package
directive if there is one; their scope is the whole file.

6.3.1 Single-Type Import

The declaration import TypeName ; imports a single type into the current names-
pace. The type it imports must be a fully-qualified name of an extant type, and it
must either be in the same package (in which case the import is redundant) or be
declared public.

Furthermore, when importing pack.age.T, there must not be another type named
T at that point: neither a T declared in pack.age, nor a inst.ant.T imported
from some other package.

The declaration import E.nj;, appearing in file f of a package named P, shadows
the following types named n when they appear in f:

e Top-level types named n appearing in other files of P, and

e Types named n imported by automatic imports (§6.3.2)) in f.

6.3.2 Automatic Import

The automatic import import pack.age.*;, loosely, imports all the public mem-
bers of pack.age. In fact, it does so somewhat carefully, avoiding certain errors
that could occur if it were done naively. Types defined in the current package,
and those imported by single-type imports, shadow those imported by automatic
imports. Names automatically imported never shadow any other names.

6.3.3 Implicit Imports

The packages x10.1lang and x10.array are automatically imported in all files
without need for further specification.
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6.4 Conventions on Type Names

TypeName n= Id
| TypeName . Id
PackageName n= Id

| PackageName . Id

While not enforced by the compiler, classes and interfaces in the X10 library
follow the following naming conventions. Names of types—including classes,
type parameters, and types specified by type definitions—are in CamelCase and
begin with an uppercase letter. (Type variables are often single capital letters,
such as T.) For backward compatibility with languages such as C and Java, type
definitions are provided to allow primitive types such as int and boolean to be
written in lowercase. Names of methods, fields, value properties, and packages
are in camelCase and begin with a lowercase letter. Names of static val fields
are in all uppercase with words separated by _’s.



7 Interfaces

An interface specifies signatures for zero or more public methods, property meth-
ods, static vals, classes, structs, interfaces, types and an invariant.

The following puny example illustrates all these features:

interface Pushable{prio != 0} {
def push(): void;
static val MAX_PRIO = 100;
abstract class Pushedness{}
struct Pushy{}
interface Pushing{}
static type Shove = Int;
property text():Int;
property prio():Int;
ks
class MessageButton(text:String, prio:Int)
implements Pushable{self.prio()==Pushable.MAX_PRIO} {
public def push() {
x10.i0.Console.OUT.println(text + " pushed");
}
public property text()
public property prio(Q)
ks

text;
prio;

Pushable defines two property methods, one normal method, and a static value.
It also establishes an invariant, that prio != 0. MessageButton implements a
constrained version of Pushable, viz. one with maximum priority. It defines the
push() method given in the interface, as a public method—interface methods
are implicitly public.

7
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A concrete type—a class or struct—can implement an interface, typically by hav-
ing all the methods and property methods that the interface requires.

A variable may be declared to be of interface type. Such a variable has all the
property and normal methods declared (directly or indirectly) by the interface;
nothing else is statically available. Values of any concrete type which implement
the interface may be stored in the variable.

Example: The following code puts two quite different objects into the variable
star, both of which satisfy the interface Star.

interface Star { def rise():void; }
class AlphaCentauri implements Star {
public def rise() {}
ks
class ElvisPresley implements Star {
public def rise() {}
3
class Example {
static def example() {
var star : Star;
star = new AlphaCentauri();
star.rise();
star = new ElvisPresley();
star.rise();

An interface may extend several interfaces, giving X10 a large fraction of the
power of multiple inheritance at a tiny fraction of the cost.

Example:

interface Star{}
interface Dog{}
class Sirius implements Dog, Star{}
class Lassie implements Dog, Star{}
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7.1 Interface Syntax

NormallnterfaceDecl — ::= Mods’ interface Id TypeParamsWithVariance®

WhereClause® ExtendsInterfaces’ InterfaceBody
TypeParamsWithVariance:= [ TypeParamWithVarianceList ]
WhereClause ::=  DepParams
ExtendsInterfaces ::= extends Type

| ExtendsInterfaces , Type

InterfaceBody = { InterfaceMemberDecls’ }
InterfaceMemberDecl ::= MethodDecl
| PropertyMethodDecl
| FieldDecl
| ClassDecl
| InterfaceDecl
| TypeDefDecl
’ .

3

The invariant associated with an interface is the conjunction of the invariants as-
sociated with its superinterfaces and the invariant defined at the interface.

A class C implements an interface I if

e I, or a subtype of I, appears in the implements list of C,
e (C’s property methods include all the property methods of I,

e Each method m defined by I is also a method of C — with the public modi-
fier added. These methods may be abstract if Cis abstract.

If C implements I, then the class invariant (§8.8) for C, inv(C), implies the class
invariant for I, inv(I). That is, if the interface I specifies some requirement, then
every class C that implements it satisfies that requirement.

7.2 Access to Members

All interface members are public, whether or not they are declared public. There
is little purpose to non-public methods of an interface; they would specify that
implementing classes and structs have methods that cannot be seen.
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7.3 Property Methods

An interface may declare property methods. All non-abstract containers im-
plementing such an interface must provide all the property methods specified.

7.4 Field Definitions

An interface may declare a val field, with a value. This field is implicitly public
static val. In particular, it is not an instance field.

interface KnowsPi {
PI = 3.14159265358;

}

Classes and structs implementing such an interface get the interface’s fields as
public static fields. Unlike methods, there is no need for the implementing
class to declare them.

class Circle implements KnowsPi {
static def area(r:Double) = PI * r * r;
ks
class UsesPi {
def circumf(r:Double) = 2 * r * KnowsPi.PI;

}

7.4.1 Fine Points of Fields

If two parent interfaces give different static fields of the same name, those fields
must be referred to by qualified names.

interface El1 {static val a = 1;}
interface E2 {static val a = 2;}
interface E3 extends E1, E2{}
class Example implements E3 {
def example() = El.a + E2.a;

}
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If the same field a is inherited through many paths, there is no need to disam-
biguate it:

interface I1 { static val a = 1;}
interface I2 extends I1 {}
interface I3 extends I1 {}
interface I4 extends I2,I3 {}
class Example implements I4 {

def example() = a;
ks

The initializer of a field in an interface may be any expression. It is evaluated
under the same rules as a static field of a class.

Example:  In this example, a local class (§8.12) B is defined, with an inner
interface 1. The field V of I uses a variable n which is global to B. In this case it
is a truly baroque way to bind a val, but other uses are nontrivial.

class A {
static def example(n: Int) {
class B {
interface I { val V = n*n; }
}
return B.I.V + 1;
}
3

7.5 Generic Interfaces

Interfaces, like classes and structs, can have type parameters. The discussion of
generics in applies to interfaces, without modification.

Example:

interface ListOfFuns[T,U] extends x10.util.List[(T)=>U] {}
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7.6 Interface Inheritance

The direct superinterfaces of a non-generic interface I are the interfaces (if any)
mentioned in the extends clause of I’s definition. If I is generic, the direct
superinterfaces are of an instantiation of I are the corresponding instantiations of
those interfaces. A superinterface of I is either I itself, or a direct superinterface
of a superinterface of I, and similarly for generic interfaces.

T inherits the members of all of its superinterfaces. Any class or struct that has I
in its implements clause also implements all of I’s superinterfaces.

7.7 Members of an Interface

The members of an interface I are the union of the following sets:

1. All of the members appearing in I’s declaration;

2. All the members of its direct super-interfaces, except those which are hidden

(56.1.2) by I
3. The members of Any.

Overriding for instances is defined as for classes, §8.4.3]



8 C(lasses

8.1 Principles of X10 Objects

8.1.1 Basic Design

Objects are instances of classes: the most common and most powerful sort of
value in X10. The other kinds of values, structs and functions, are more special-
ized, better in some circumstances but not in all. x10.1lang.Object is the most
general class; all other classes inherit from it, directly or indirectly.

Classes are structured in a single-inheritance code hierarchy, may implement mul-
tiple interfaces, may have static and instance fields, may have static and instance
methods, may have constructors, may have static and instance nested classes and
interfaces. X10 does not permit mutable static state.

X10 objects do not have locks associated with them. Programmers should use
atomic blocks (§14.6) for mutual exclusion and clocks (§I3) for sequencing mul-
tiple parallel operations.

An object exists in a single location: the place that it was created. One place can-
not directly refer to an object in a different place. A special type, GlobalRef[T],
allows explicit cross-place references.

The basic operations on objects are:

e Field access (§11.4). The static and instance fields of an object can be re-
trieved; var fields can be set.

e Method invocation (§11.6). Static and instance methods of an object can be
invoked.

83
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e Casting (§11.22) and instance testing with instanceof (§11.23) Objects
can be cast or type-tested.

e The equality operators == and != Objects can be compared for equality with
the == operation. This checks object identity: two objects are == iff they are
the same object.

8.1.2 Class Declaration Syntax

The class declaration has a list of type parameters, properties, a constraint (the
class invariant), a single superclass, zero or more interfaces, and a class body
containing the the definition of fields, properties, methods, and member types.
Each such declaration introduces a class type (§4.1).
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NormalClassDecl

TypeParamsWithVariance:=

TypeParamWithVarianceLzst

Properties
PropertyList

Property
WhereClause
Super

Interfaces
InterfaceTypelList

ClassBody
ClassBodyDecls

ClassMemberDecl

8.2 Fields

85
Mods® class Id  TypeParamsWithVariance’
Properties’  WhereClause®  Super’  Interfaces’
ClassBody

[ TypeParamWithVarianceList ]
TypeParamWithVariance
TypeParamWithVarianceList , TypeParamWithVari-
ance

( PropertyList )

Property

PropertyList , Property
Annotations’ Id ResultType
DepParams

extends ClassType
implements InterfaceTypeList
Type

InterfaceTypelList , Type

{ ClassBodyDecls? }
ClassBodyDecl
ClassBodyDecls ClassBodyDecl
FieldDecl

MethodDecl
PropertyMethodDecl
TypeDefDecl

ClassDecl

InterfaceDecl

J

Objects may have instance fields, or simply fields (called “instance variables” in
C++ and Smalltalk, and “slots” in CLOS): places to store data that is pertinent to
the object. Fields, like variables, may be mutable (var) or immutable (val) (acc)

Class may have static fields, which store data pertinent to the entire class of ob-
jects. See §8.6|for more information.
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No two fields of the same class may have the same name.

To avoid an ambiguity, it is a static error to invoke a field with a function type
(§4.6) that has the same name and signature as a method of the same class. (Con-
sider the class

class Crash {
val f : (Int) => Boolean = (Int)=>true;
def f(Int) = false;

ks

Then crash. f£(3) might either mean “call the function crash. f on argument 3”,
or “invoke the method f on argument 37.)

8.2.1 Field Initialization

Fields may be given values via field initialization expressions: val f1 = E; and
var f2 : Int = F;. Other fields of this may be referenced, but only those
that precede the field being initialized. For example, the following is correct, but
would not be if the fields were reversed:

class F1ld{
val a = 1;
val b = 2+a;
ks

8.2.2 Field hiding

A subclass that defines a field f hides any field £ declared in a superclass, regard-
less of their types. The superclass field £ may be accessed within the body of the
subclass via the reference super. f.

class Super{
val f = 1;
ks
class Sub extends Super {
val f = true;
def superf() : Int = super.f; // 1
ks
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With inner classes, it is occasionally necessary to write Cls. super. f to get at a
hidden field f of an outer class Cls, as in

class A {
val f = 3;

3

class B extends A {
val £ = 4;

class C extends B {
// C is both a subclass and inner class of B

val £ = 5;
def foo()
= f // 5
+ super.f // 4
+ B.this.f // 4 (the "f" of the outer instance)
+ B.super.f; // 3 (the "super.f" of the outer instance)

8.2.3 Field qualifiers

The behavior of a field may be changed by a field qualifier, such as static or
transient.

static qualifier

A val field may be declared to be static, as described in

transient Qualifier

A field may be declared to be transient. Transient fields are excluded from the
deep copying that happens when information is sent from place to place in an at
statement. The value of a transient field of a copied object is the default value of
its type, regardless of the value of the field in the original. If the type of a field has
no default value, it cannot be marked transient.
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class Trans {
val copied = "copied";
transient var transy : String = "a very long string";
def example() {
at Chere) { // causes copying
assert(this.copied.equals("copied"));
assert(this.transy == null);

8.3 Properties

The properties of an object (or struct) are public val fields usable at compile time
in constraintsﬂ For example, every array has a rank telling how many subscripts
it takes. User-defined classes can have whatever properties are desired.

Properties are defined in parentheses, after the name of the class. They are given
values by the property command in constructors.

class Proper(t:Int) {
def this(t:Int) {property(t);}
}

STATIC SEMANTICS RULE: It is a compile-time error for a class defining a
property x: T to have an ancestor class that defines a property with the name x.

A property x:T induces a field with the same name and type, as if defined with:

public val x : T;

It also defines a nullary getter method,

public final def x()=x;

(As noted in §7.1} interfaces can define properties too. They define the same
nullary getter methods, though they do not require fields.)

'In many cases, a val field can be upgraded to a property, which entails no compile-time or
runtime cost. Some cannot be, e.g., in cases where cyclic structures of val fields are required.
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STATIC SEMANTICS RULE: It is a compile-time error for a class or interface
defining a property x :T to have an existing method with the signature x() : T.

Properties are initialized by the invocation of a special property statement, which
must be performed by each constructor of the class:

property(el,..., en);

The number and types of arguments to the property statement must match the
number and types of the properties in the class declaration. Every constructor of
a class with properties must invoke property(. . .) precisely once; it is a static
error if X10 cannot prove that this holds.

The requirement to use the property statement means that all properties must be
given values at the same time.

By construction, the graph whose nodes are values and whose edges are properties
is acyclic. E.g., there cannot be values a and b with properties ¢ and d such that
a.c == bandb.d == a.

8.4 Methods

As is common in object-oriented languages, objects can have methods, of two
sorts. Static methods are functions, conceptually associated with a class and de-
fined in its namespace. Instance methods are parameterized code bodies associ-
ated with an instance of the class, which execute with convenient access to that
instance’s fields.

Each method has a signature, telling what arguments it accepts, what type it re-
turns, what precondition it requires. Method definitions may be overridden by
subclasses; the overriding definition may have a declared return type that is a
subtype of the return type of the definition being overridden. Multiple methods
with the same name but different signatures may be provided on a class (called
“overloading” or “ad hoc polymorphism™). Methods may be declared public,
private, protected, or given default package-level access rights.
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MethMods

MethodDecl

TypeParams
FormalParams
FormalParamlList

HasResultType

MethodBody

CHAPTER 8. CLASSES

Mods®

MethMods property

MethMods Mod

MethMods def Id TypeParams’ FormalParams
WhereClause® HasResultType® Offers’ MethodBody
MethMods operator TypeParams’ ( Formal-
Param ) BinOp ( FormalParam ) WhereClause’
HasResultType® Offers’ MethodBody

MethMods operator TypeParams’ PrefixOp ( For-
malParam ) WhereClause® HasResultType® Offers’
MethodBody

MethMods operator TypeParams’ this BinOp
( FormalParam ) WhereClause’ HasResultType?
Offers’ MethodBody

MethMods operator TypeParams® ( Formal-
Param ) BinOp this WhereClause’ HasResultType®
Offers’ MethodBody

MethMods operator TypeParams’® PrefixOp this
WhereClause® HasResultType® Offers’ MethodBody
MethMods operator this TypeParams® For-
malParams WhereClause® HasResultType’® Offers’

MethodBody
MethMods operator this TypeParams® For-
malParams = ( FormalParam ) WhereClause’

HasResultType’® Offers’ MethodBody

MethMods operator TypeParams’ ( FormalParam
) as Type WhereClause® Offers’ MethodBody
MethMods operator TypeParams’® ( FormalParam
) as ? WhereClause’ HasResultType® Offers’
MethodBody

MethMods operator TypeParams’ ( FormalParam
) WhereClause® HasResultType® Offers’ Method-
Body

[ TypeParamlList ]

( FormalParamlList® )

FormalParam

FormalParamlList , FormalParam

: Type

<: Type

= LastExp ;

= Annotations’ { BlockStatements’ LastExp }

= Annotations’ Block

Annotations’ Block
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A formal parameter may have a val or var modifier; val is the default. The body
of the method is executed in an environment in which each formal parameter cor-
responds to a local variable (var iff the formal parameter is var) and is initialized
with the value of the actual parameter.

8.4.1 Method Guards

Often, a method will only make sense to invoke under certain statically-determinable
conditions. For example, example (x) is only well-defined when x != null, as
null.toString() throws a null pointer exception:

class Example {
var £ : String = "";
def example(x:0Object){x != null} = {
this.f = x.toString();
}
ks

(We could have used a constrained type Object{self!=null} instead; in most
cases it is a matter of personal preference or convenience of expression which one
to use.)

The requirement of having a method guard is that callers must demonstrate to the
X10 compiler that the guard is satisfied. (As usual with static constraint checking,
there is no runtime cost. Indeed, this code can be more efficient than usual, as it
is statically provable that x != null.) This may require a cast:

def exam(e:Example, x:0bject) {
if (x !'= null)
e.example(x as Object{x != null});
// WRONG: if (x != null) e.example(x);
3

The guard {c} in a guarded method def m(){c} = E; specifies a constraint c
on the properties of the class C on which the method is being defined. The method
exists only for those instances of C which satisfy c. It is illegal for code to invoke
the method on objects whose static type is not a subtype of C{c}.

STATIC SEMANTICS RULE: The compiler checks that every method invocation
o.m(ey, ..., e,) is type correct. Each argument e; must have a static type S;
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that is a subtype of the declared type T; for the ith argument of the method, and
the conjunction of the constraints on the static types of the arguments must entail
the guard in the parameter list of the method.

The compiler checks that in every method invocationo.m(e;, ..., e,) the static
type of o, S, is a subtype of C{c}, where the method is defined in class C and the
guard for m is equivalent to c.

Finally, if the declared return type of the method is D{d}, the return type com-
puted for the call is D{a: S; x;: Sy; ...; X,: S,; d[a/this]}, where a is
a new variable that does not occurind, S, S;, ..., S,,and Xy, ..., X, are
the formal parameters of the method.

Limitation: Using a reference to an outer class, Outer. this, in a constraint, is
not supported.

8.4.2 Property methods

Property methods are methods that can be evaluated in constraints. For example,
the eq () method below tells if the x and y properties are equal; the is(z) method
tells if they are both equal to z. These can be used in constraints, as illustrated in
the example () method.

class Example(x:Int, y:Int) {

def this(x:Int, y:Int) { property(x,y); }

property eq() = (x==y);

property is(z:Int) = x==z && y==z;

def example( a : Example{eq()}, b : Example{is(3)} ) {}
ks

A method declared with the modifier property may be used in constraints. A
property method declared in a class must have a body and must not be void.
The body of the method must consist of only a single return statement or a
single expression. It is a static error if the expression cannot be represented in the
constraint system. Property methods may be abstract in abstract classes, but
are implicitly final in non-abstract classes.

The expression may contain invocations of other property methods. It is the re-
sponsibility of the programmer to ensure that the evaluation of a property ter-
minates at compile-time, otherwise the type-checker will not terminate and the
program will fail to compile in a potentially most unfortunate way.
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Property methods in classes are implicitly final; they cannot be overridden.

A nullary property method definition may omit the formal parameters and the def
keyword. That is, the following are equivalent:

property def rail(): Boolean = rect && onePlace == here && zeroBased;

and

property rail: Boolean = rect && onePlace == here && zeroBased;

Similarly, nullary property methods can be inspected in constraints without ().
w.rail, with either definition above, is equivalent to w.rail ()

8.4.3 Method overloading, overriding, hiding, shadowing and
obscuring

The definitions of method overloading, overriding, hiding, shadowing and obscur-
ing in X10 are the same as in Java, modulo the following considerations motivated
by type parameters and dependent types.

Two or more methods of a class or interface may have the same name if they have
a different number of type parameters, or they have formal parameters of different
types. E.g., the following is legal:

class Mful{
def m(OO = 1;
def m[T]1QO =
def m(x:Int)
def m[T] (x:Int)

2;

4;

}
X10 v2.1 does not permit overloading based on constraints. That is, the following
is not legal, although either method definition individually is legal:

def n(x:Int) {x==1} "one";
def n(x:Int){x!=1} = "not";

The definition of a method declaration m; “having the same signature as” a method
declaration my involves identity of types.

The constraint erasure of a type T is defined as follows. The constraint erasure of
(a) a class, interface or struct type T is T; (b) a type T{c} is the constraint erasure
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of T; (b)atype T[S1,...,S,11s T’ [Sy’,...,S, ] where each primed type is the
erasure of the corresponding unprimed type. Two methods are said to have the
same signature if (a) they have the same number of type parameters, (b) they have
the same number of formal (value) parameters, and (c) for each formal parameter
the constraint erasure of its types are equivalent. It is a compile-time error for
there to be two methods with the same name and same signature in a class (either
defined in that class or in a superclass).

STATIC SEMANTICS RULE: A class C may not have two declarations for a
method named m—either defined at C or inherited:

def m[X;, ..., X, J(vi: Ty, ..., v,: T,D{tc}: T {...}

def m[X;, ..., X, J(vi: S, ..., v, S;){sc}: S {...}
if it is the case that the constraint erasures of the types Ty, ..., T, are equivalent
to the constraint erasures of the types S;, ..., T, respectively.

In addition, the guard of a overriding method must be no stronger than the guard
of the overridden method. This ensures that any virtual call to the method satisfies
the guard of the callee.

STATIC SEMANTICS RULE: If a class C overrides a method of a class or interface
B, the guard of the method in B must entail the guard of the method in C.

A class C inherits from its direct superclass and superinterfaces all their methods
visible according to the access modifiers of the superclass/superinterfaces that
are not hidden or overridden. A method M; in a class C overrides a method M5 in a
superclass D if M; and M, have the same signature with constraints erased. Methods
are overriden on a signature-by-signature basis.

8.5 Constructors

Instances of classes are created by the new expression:

ClassInstCreationExp ::= new TypeName TypeArguments’ ( ArgumentList’ ) (20.12
ClassBody’

| new TypeName [ Type 1 [ ArgumentList’ ]

| Primary . new Id TypeArguments® ( ArgumentList’
) ClassBody’

| AmbiguousName . new Id TypeArguments’ (
ArgumentList’ ) ClassBody’
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This constructs a new object, and calls some code, called a constructor, to initial-
ize the newly-created object properly.

Constructors are defined like methods, except that they are named this and ordi-
nary methods may not be. The content of a constructor body has certain capabili-
ties (e.g., val fields of the object may be initialized) and certain restrictions (e.g.,
most methods cannot be called); see for the details.

The following class provides two constructors. The unary constructor def this(b
: Int) allows initialization of the a field to an arbitrary value. The nullary con-
structor def this() gives it a default value of 10. The example method illus-
trates both of these calls.

Example:

class C {
public val a : Int;
def this(b : Int) { a = b; }
def this() { a = 10; }
static def example() {
val two = new C(2);

assert two.a == 2;
val ten = new CQ);
assert ten.a == 10;

8.5.1 Automatic Generation of Constructors

Classes that have no constructors written in the class declaration are automatically
given a constructor which sets the class properties and does nothing else. If this
automatically-generated constructor is not valid (e.g., if the class has val fields
that need to be initialized in a constructor), the class has no constructor, which is
a static error.

e.g. The following class has no explicit constructor.

class C(x:Int) {
static def example() {
val ¢ : C = new C(4);
assert c.x == 4;



96 CHAPTER 8. CLASSES

}
}

class C(x:Int) {
val d: Int;
static def example() {
val thisShouldBeWrong = new C(40);
3
ks

Thus, it has an implicit constructor: def this(x:Int){property(x);}

8.5.2 Calling Other Constructors

The first statement of a constructor body may be a call of the form this(a,b,c)
or super(a,b,c). The former will execute the body of the matching construc-
tor of the current class; the latter, of the superclass. This allows a measure of
abstraction in constructor definitions; one may be defined in terms of another.

Example:  The following class has two constructors. new Ctors(123) con-
structs a new Ctors object with parameter 123. new Ctors() constructs one
whose parameter has a default value of 100:

class Ctors {
val a : Int;
def this(a:Int) { this.a = a; }
def this( {
this(100);
3
}

In the case of a class which implements operator () — or any other constructor
and application with the same signature — this can be ambiguous. If this()
appears as the first statement of a constructor body, it could, in principle, mean
either a constructor call or an operator evaluation. This ambiguity is resolved so
that this() always means the constructor invocation. If, for some reason, it is
necessary to invoke an application operator early in a constructor, precede it with
a dummy statement, such as if(false);



8.6. STATIC INITIALIZATION 97

8.6 Static initialization

The X10 runtime implements the following procedure to ensure reliable initial-
ization of the static state of classes.

Execution commences with a single thread executing the initialization phase of
an X10 computation at place 0. This phase must complete successfully before the
body of the main method is executed.

The initialization phase must be thought of as if it is implemented in the following
fashion: (The implementation may do something more efficient as long as it is
faithful to this semantics.)

Within the scope of a new finish
for every static field f of every class C
(with type T and initializer e):
async {
val 1 = e;
ateach (Dist.makeUnique()) {
assign 1 to the static f field of
the local C class object;
mark the f field of the local C
class object as initialized;
}
}

During this phase, any read of a static field C. £ (where f is of type T) is replaced
by a call to the method C.read_£() : T defined on class C as follows

def read_£(O:T {
when (initialized(C.f)){};
return C.f;

}

If all these activities terminate normally, all static fields have values of their de-
clared types, and the £inish terminates normally. If any activity throws an excep-
tion, the finish throws an exception. Since no user code is executing which can
catch exceptions thrown by the finish, such exceptions are printed on the console,
and computation aborts.

If the activities deadlock, the implementation deadlocks.
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In all cases, the main method is executed only once all static fields have been
initialized correctly.

Since static state is immutable and is replicated to all places via the initialization
phase as described above, it can be accessed from any place.

8.7 User-Defined Operators

It is often convenient to have methods named by symbols rather than words. For
example, suppose that we wish to define a Poly class of polynomials — for the sake
of illustration, single-variable polynomials with Int coefficients. It would be very
nice to be able to manipulate these polynomials by the usual operations: + to add,
* to multiply, - to subtract, and p(x) to compute the value of the polynomial at
argument x. We would like to write code thus:

public static def main(Array[String] (1)):void {
val X = new Poly([0,1]1);
val t <: Poly =7 * X + 6 * X * X * X;
val u <: Poly = 3 + 5*X - 7%*X*X;
val v <: Poly =t * u - 1;
for( [i] in -3 .. 3) {
x10.i0.Console.OUT.println(
" i+ " X"+ X@) + "ot o+ ()

+ u:" + u(i) + v:" + v(1)

);

}

Writing the same code with method calls, while possible, is far less elegant:

public static def uglymain() {
val X = new UglyPoly([0,1]);
val t <: UglyPoly = X.mult(7).plusX.mult(X) .mult(X).mult(6));
val u <: UglyPoly = const(3).plus(X.mult(5)) .minus(X.mult(X) .mult(7));
val v <: UglyPoly = t.mult(u).minus(1);
for( [i] in -3 .. 3) {
x10.i0.Console.OUT.println(
" i+ " X"+ X.oapply@) + " t:" + t.apply(i)

+ u:" + u.apply(i) + v:" + v.apply(i)
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);

The operator-using code can be written in X10, though a few variations are nec-
essary to handle such exotic cases as 1+X.

Most X 10 operators can be given deﬁnitionsE] However, & and | | are only short-
circuiting for Boolean expressions; user-defined versions of these operators have
no special execution behavior. These are:

implicit type coercions

postfix ()

as T

unary -, unary +, !, ”

/ %
4 _
<< >> >>> ->
>= < <= in &
I
&&

8.7.1 Binary Operators

Defining the sum P+Q of two polynomials looks much like a method definition. It
uses the operator keyword instead of def, and this appears in the definition in
the place that a Poly would appear in a use of the operator. So, operator this
+ (p:Poly) explains how to add this to a Poly value.

%Indeed, even for the standard types, these operators are defined in the library. Not even as
basic an operation as integer addition is built into the language. Conversely, if you define a full-
featured numeric type, it will have most of the privileges that the standard ones enjoy. The missing
priveleges are (1) literals; (2) the .. operator won’t compute the zeroBased and rail properties
as it does for Int ranges; (3) * won’t track ranks, as it does for Regions; (4) & and | | won’t
short-circuit, as they do for Booleans, and (5) a==b will only coincide with a.equals(b) if
coded that way. For example, a Polar type might have many representations for the origin, as
radius 0 and any angle; these will be equals (), but will not be ==.
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class Poly {
public val coeff : Array[Int](1);
public def this(coeff: Array[Int] (1)) { this.coeff = coeff;}
public def degree() = coeff.size()-1;
public def a(i:Int) = (i<0® || i>this.degree()) ? O : coeff(i);

public operator this + (p:Poly) = new Poly(
new Array[Int](
Math.max(this.coeff.size(), p.coeff.size()),
(i:Int) => this.a(i) + p.a(i)
));
// ...

The sum of a polynomial and an integer, P+3, looks like an overloaded method
definition.

public operator this + (n : Int) = new Poly([n]) + this;

However, we want to allow the sum of an integer and a polynomial as well: 3+P.
It would be quite inconvenient to have to define this as a method on Int; changing
Int is far outside of normal coding. So, we allow it as a method on Poly as well.

public operator (n : Int) + this = new Poly([n]) + this;

Furthermore, it is sometimes convenient to express a binary operation as a static
method on a class. The definition for the sum of two Polys could have been
written:

public static operator (p:Poly) + (q:Poly) = new Poly(
new Array[Int](
Math.max(q.coeff.size(), p.coeff.size()),
(i:Int) => g.a(i) + p.a(i)
));
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This requires the following grammar:
MethodDecl = MethMods def Id TypeParams’ FormalParams
WhereClause® HasResultType® Offers’ MethodBody
| MethMods operator TypeParams’ ( Formal-
Param ) BinOp ( FormalParam ) WhereClause’
HasResultType® Offers’ MethodBody
| MethMods operator TypeParams’ PrefixOp ( For-
malParam ) WhereClause® HasResultType® Offers’
MethodBody
| MethMods operator TypeParams’ this BinOp
( FormalParam ) WhereClause’ HasResultType?
Offers” MethodBody
| MethMods operator TypeParams’ ( Formal-
Param ) BinOp this WhereClause® HasResultType’
Offers’ MethodBody
| MethMods operator TypeParams’ PrefixOp this
WhereClause® HasResultType® Offers’ MethodBody
| MethMods operator this TypeParams’ For-
malParams WhereClause® HasResultType® Offers’

MethodBody
| MethMods operator this TypeParams’ For-
malParams = ( FormalParam ) WhereClause’

HasResultType® Offers’ MethodBody

| MethMods operator TypeParams® ( FormalParam
) as Type WhereClause® Offers’ MethodBody

| MethMods operator TypeParams® ( FormalParam
) as ? WhereClause’ HasResultType® Offers’
MethodBody

| MethMods operator TypeParams® ( FormalParam
) WhereClause® HasResultType® Offers’ Method-
Body

When X10 attempts to typecheck a binary operator expression like P+Q, it first
typechecks P and Q. Then, it looks for operator declarations for + in the types of
P and Q. If there are none, it is a static error. If there is precisely one, that one will
be used. If there are several, X10 looks for a best-matching operation, viz. one
which does not require the operands to be converted to another type. For example,
operator this + (n:Long) and operator this + (n:Int) both apply to

20.8
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p+1, because 1 can be converted from an Int to a Long. However, the Int version
will be chosen because it does not require a conversion. If even the best-matching
operation is not uniquely determined, the compiler will report a static error.

The main difference between expressing a binary operation as an instance method
(with a this in the definition) and a static one (no this) is that instance meth-
ods don’t apply any conversions, while static methods attempt to convert both
arguments.

8.7.2 Unary Operators

Unary operators are defined in a similar way, with this appearing in the operator
definition where an actual value would occur in a unary expression. The operator
to negate a polynomial is:

public operator - this = new Poly(
new Array[Int] (coeff.size(), (i:Int) => -coeff(i))
)

The rules for typechecking a unary operation are the same as for methods; the
complexities of binary operations are not needed.

8.7.3 Type Conversions

Explicit type conversions, e as T{c}, can be defined as operators on class T.

class Poly {
public val coeff : Array[Int](1l);
public def this(coeff: Array[Int] (1)) { this.coeff = coeff;}
public static operator (a:Int) as Poly = new Poly([a]);
public static def main(Array[String] (1)) :void {
val three : Poly = 3 as Poly;
}
3

8.7.4 Implicit Type Coercions

You may also define implicit type coercions to T{c} as static operators in class
T. The syntax for this is static operator (x:U) : T{c} = e. Implicit coer-
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cions are used automatically by the compiler on method calls (§8.9) and assign-
ments (§??).

For example, we can define an implicit coercion from Int to Poly, and avoid
having to define the sum of an integer and a polynomial as many special cases.
In the following example, we only define + on two polynomials (using a static
operator, so that implicit coercions will be used — they would not be for an in-
stance method operator). The calculation 1+x coerces 1 to a polynomial and uses
polynomial addition to add it to x.

public static operator (c : Int) : Poly = new Poly([c]l);

public static operator (p:Poly) + (q:Poly) = new Poly(
new Array[Int](
Math.max(p.coeff.size(), q.coeff.size()),
(i:Int) => p.a(i) + q.a(i)
));

public static def main(Array[String](1)):void {
val x = new Poly([0,1]1);
x10.i0.Console.OUT.printIn("1+x=" + (1+x));

8.7.5 Assignment and Application Operators

X10 allows types to implement the subscripting / function application operator,
and indexed assignment. The Array-like classes take advantage of both of these
ina(i) = a(d) + 1.

a(b,c,d) is an operator call, to an operator defined with public operator
this(b:B, c:C, d:D). It may be overloaded. For example, an ordered dic-
tionary structure could allow subscripting by numbers with public operator
this(i:Int), and by string-valued keys with public operator this(s:String).

a(i,j)=bis an operator as well, with zero or more indices i, j. It may also be
overloaded.

The update operations a(i) += b are defined to be the same as the corresponding
a(i) = a(i) + b. This applies for all arities of arguments, and all types, and
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all binary operations. Of course to use this, both the application and assignment
operators must be defined.

The Oddvec class of somewhat peculiar vectors illustrates this. a() returns a

string representation of the oddvec, which probably should be done by toString ()
instead. a(i) picks out one of the three coordinates of a, which is sensible.

a()=b sets all the coordinates of a to b. a(i)=b assigns to one of the coordi-

nates. a(i, j)=b assigns different values to a(i) and a(j), purely for the sake

of the example.

class Oddvec {

var v : Array[Int] (1) = new Array[Int](3, (Int)=>0);
public operator this (O = "(" + v(@®) + "," + v(1) + "," + v(2) + ")";
public operator this () (newval: Int) {

for(p in v) v(p) = newval;
}
public operator this(i:Int)
public operator this(i:Int, j:Int) = [v(i),v(j)];
public operator this(i:Int) (newval:Int) = {v(i) = newval;}
public operator this(i:Int, j:Int) = (newval:Int) = {

v(i) = newval; v(j) = newval+l;}

public def example() {

this(1l) = 6; assert this(l) == 6;

this(1l) += 7; assert this(1l) == 13;
}

v(i);

Il .

8.8 C(lass Guards and Invariants

Classes (and structs and interfaces) may specify a class guard, a constraint which
must hold on all values of the class. In the following example, a Line is defined
by two distinct Pt

class Pt(x:Int, y:Int){}

class Line(a:Pt, b:Pt){a != b} {}

In most cases the class guard could be phrased as a type constraint on a property
of the class instead, if preferred. Arguably, a symmetric constraint like two points

3We use Pt to avoid any possible confusion with the built-in class Point.
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being different is better expressed as a class guard, rather than asymmetrically as
a constraint on one type:

class Line(a:Pt, b:Pt{a !'= b}) {}

With every defined class, struct, or interface T we associate a type invariant inv(T),
which describes the guarantees on the properties of values of type T.

Every value of T satisfies inv(T) at all times. This is somewhat stronger than the
concept of type invariant in most languages (which only requires that the invariant
holds when no method calls are active). X10 invariants only concern properties,
which are immutable; thus, once established, they cannot be falsified.

The type invariant associated with x10.1lang.Any is true.

The type invariant associated with any interface or struct I that extends interfaces
I,, ..., Iy and defines properties x;: Py, ..., X,: P, and specifies a guard
C is given by:

mv(T) && ... && v (1)
&& self.x; instanceof P; && ... && self.x, instanceof P,
&& ¢

Similarly the type invariant associated with any class C that implements interfaces
I,, ..., I, extends class D and defines properties x;: Py, ..., X,: P, and
specifies a guard c is given by the same thing with the invariant of the superclass
D conjoined:

mv(I) && ... && nv(Iy)
&& self.x; instanceof P; && ... && self.x, instanceof P,
&& ¢
&& inv (D)

Note that the type invariant associated with a class entails the type invariants of
each interface that it implements (directly or indirectly), and the type invariant of
each ancestor class. It is guaranteed that for any variable v of type T{c} (where
T is an interface name or a class name) the only objects o that may be stored in v
are such that o satisfies inv(T[o/this]) A c[o/self].

8.8.1 Invariants for implements and extends clauses

Consider a class definition
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Class]"[odifiers?

class C(x;: Py, ..., X,: P,) extends D{d}
implements I;{c;}, ..., I.{c.}

ClassBody

Each of the following static semantics rules must be satisfied:

STATIC SEMANTICS RULE (Int-implements): The type invariant ¢nv (C) of C
must entail ¢;[this/self] foreachiin {1,... k}

STATIC SEMANTICS RULE (Super-extends): The return type c of each construc-
tor in a class C must entail the invariant inv (C).

8.8.2 Invariants and constructor definitions

A constructor for a class C is guaranteed to return an object of the class on suc-
cessful termination. This object must satisfy inv (C), the class invariant associated
with C (§8.8). However, often the objects returned by a constructor may satisfy
stronger properties than the class invariant. X10’s dependent type system per-
mits these extra properties to be asserted with the constructor in the form of a
constrained type (the “return type” of the constructor):

CtorDecl = Mods® def this TypeParams® FormalParams
WhereClause® HasResultType® Offers’ CtorBody

The parameter list for the constructor may specify a guard that is to be satisfied
by the parameters to the list.

Example 8.8.1 Here is another example, constructed as a simplified version of
x10.array.Region. The mockUnion method has the type that a true union
method would have.

class MyRegion(rank:Int) {

static type MyRegion(n:Int)=MyRegion{rank==n};

def this(r:Int):MyRegion(r) {
property(r);

}

def this(diag:Array[Int] (1)) :MyRegion(diag.size){
property(diag.size);

}

20.34
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def mockUnion(r:MyRegion(rank)) :MyRegion(rank) = this;
def example() {
val R1 : MyRegion(3) = new MyRegion([4,4,4]);
val R2 : MyRegion(3) = new MyRegion([5,4,1]);
val R3 = Rl.mockUnion(R2); // inferred type MyRegion(3)
3
ks

The first constructor returns the empty region of rank r. The second constructor
takes a Array[Int] (1) of arbitrary length n and returns a MyRegion(n) (in-
tended to represent the set of points in the rectangular parallelopiped between the
origin and the diag.)

The code in example typechecks, and R3’s type is inferred as MyRegion(3).

STATIC SEMANTICS RULE (Super-invoke): Let C be a class with properties p; :
Py, ..., pn: P,, invariant c extending the constrained type D{d} (where D is
the name of a class).

For every constructor in C the compiler checks that the call to super invokes a
constructor for D whose return type is strong enough to entail d. Specifically, if

the call to super is of the form super(e;, ..., ex) and the static type of each
expression e; is S;, and the invocation is statically resolved to a constructor def
this(x;: Ty, ..., X: Tp){c}: D{d;} then it must be the case that

X1: Sq, ..., X! Sil—xi: T, (for'le{l,,k})

X1t Sy, ..., Xt S F c

d;[a/self], x;: Sy, ..., Xi: S F d[a/self]
where a is a constant that does not appearin x;: S; A ... A Xp: Sk

STATIC SEMANTICS RULE (Constructor return): The compiler checks that every
constructor for C ensures that the properties p;, . .., D, are initialized with val-
ues which satisfy t (C), and its own return type c’ as follows. In each constructor,
the compiler checks that the static types T; of the expressions e; assigned to p; are
such that the following is true:

pi: Ti, ...y, Pp: T, F t(O) A C’

(Note that for the assignment of e; to p; to be type-correct it must be the case that
pi: T; A pit Pi)
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STATIC SEMANTICS RULE (Constructor invocation): The compiler must check
that every invocation C(e;, ..., e,) to a constructor is type correct: each argu-
ment e; must have a static type that is a subtype of the declared type T; for the ith
argument of the constructor, and the conjunction of static types of the argument
must entail the constraint in the parameter list of the constructor.

8.8.3 Object Initialization

X10 does object initialization safely. It avoids a few classes of bad things:

1. Use of a field before the field has been initialized.

2. this escaping from a constructor;

It should be unsurprising that fields must not be used before they are initialized.
At best, it is uncertain what value will be in them, as in x below. Worse, the value
might not even be an allowable value; y, declared to be nonzero in the following
example, might be zero before it is initialized.

// Not correct X10
class ThisIsWrong {
val x : Int;
val y : Int{y !'= 0};
def this() {
x10.i0.Console.OUT.println("x=" + x + "; y='
x =1,y = 2;

1

+Y);

}
}

One particularly insidious way to read uninitialized fields is to allow this to
escape from a constructor. For example, the constructor could put this into a
data structure before initializing it, and another activity could read it from the data
structure and look at its fields:

class Wrong {
val shouldBe8 : Int;
static Cell[Wrong] wrongCell = new Cell[Wrong](Q);
static def doItWrong() {
finish {
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async { new Wrong(Q; } // (A)
assert( wrongCell() .shouldBe8 == 8); // (B)
}

}
def this(Q {

wrongCell.set(this); // (C) - ILLEGAL
this.shouldBe8 = 8; // (D)
}
}

In this example, the underconstructed Wrong object is leaked into a storage cell
at line (C), and then initialized. The doItWrong method constructs a new Wrong
object, and looks at the Wrong object in the storage cell to check on its shouldBe8
field. One possible order of events is the following:

1. doItWrong() is called.

2. (A) is started. Space for a new Wrong object is allocated. Its shouldBe8
field, not yet initialized, contains some garbage value.

3. (Q) is executed, as part of the process of constructing a new Wrong object.
The new, uninitialized object is stored in wrongCell.

4. Now, the initialization activity is paused, and execution of the main activity
proceeds from (B).

5. The value in wrongCell is retrieved, and is shouldBeS8 field is read. This
field contains garbage, and the assertion fails.

6. Now let the initialization activity proceed with (D), initializing shouldBe8
— too late.

The at statement (§13.3)) introduces the potential for escape as well. The follow-
ing class prints an uninitialized value:

class Example {
val a: Int;
def this() {
at Chere.next()) {
// Recall that ’'this’ is a copy of ’this’ outside ’at’.
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Console.OUT.println("this.a = + this.a);
}
this.a = 1;
}
}

X10 must protect against such possibilities. The rules explaining how construc-
tors can be written are somewhat intricate; they are designed to allow as much
programming as possible without leading to potential problems. Ultimately, they
simply are elaborations of the fundamental principles that uninitialized fields must
never be read, and this must never be leaked.

8.8.4 Constructors and NonEscaping Methods

In general, constructors must not be allowed to call methods withthis as an ar-
gument or receiver. Such calls could leak references to this, either directly from
a call to cell.set(this), or indirectly because toString leaks this, and the
concatenation ‘”Escaper = "+this‘ calls toString

class Escaper {
static val Cell[Escaper] cell = new Cell[Escaper]();
def toString() {
cell.set(this);
return "Evil!";
3
def this( {
cell.set(this);
x10.i0.Console.OUT.println("Escaper = " + this);
3
3

However, it is convenient to be able to call methods from constructors; e.g., a
class might have eleven constructors whose common behavior is best described
by three methods. Under certain stringent conditions, it is safe to call a method:
the method called must not leak references to this, and must not read vals or
vars which might not have been assigned

4This is abominable behavior for toString, but nonetheless it is allowed.
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So, X10 performs a static dataflow analysis, sufficient to guarantee that method
calls in constructors are safe. This analysis requires having access to or guarantees
about all the code that could possibly be called. This can be accomplished in two
ways:

1. Ensuring that only code from the class itself can be called, by forbidding
overriding of methods called from the constructor: they can be marked
final or private, or the whole class can be final.

2. Marking the methods called from the constructor by @NonEscaping.

Non-Escaping Methods

A method may be annotated with @NonEscaping. This imposes several restric-
tions on the method body, and on all methods overriding it. However, it is the
only way that a method can be called from constructors. The @NonEscaping
annotation makes explicit all the X10 compiler’s needs for constructor-safety.

A method can, however, be safe to call from constructors without being marked
@NonEscaping. We call such methods implicitly non-escaping. Implicitly non-
escaping methods need to obey the same constraints on this, super, and variable
usage as @NonEscaping methods. An implicitly non-escaping method could be
marked as @NonEscaping for some list of variables; the compiler, in effect, infers
the annotation. In addition, implicitly non-escaping methods must be private or
final or members of a final class; this corresponds to the hereditary nature of
@NonEscaping (by forbidding inheritance of implicitly non-escaping methods).

We say that a method is non-escaping if it is either implicitly non-escaping, or
annotated @NonEscaping.

The first requirement on non-escaping methods is that they do not allow this to
escape. Inside of their bodies, this and super may only be used for field access
and assignment, and as the receiver of non-escaping methods.

Finally, if a method m in class C is marked @NonEscaping, then every method
which overrides m in any subclass of C must be annotated with precisely the same
annotation, @NonEscaping, as well.

The following example uses most of the possible variations (leaving out final
class). aplomb() explicitly forbids reading any field but a. boric() is called
after a and b are set, but c is not. The @NonEscaping annotation on boric()
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is optional, but the compiler will print a warning if it is left out. cajoled()

is only called after all fields are set, so it can read anything; its annotation, too,

is not required. SeeAlso is able to override aplomb(), because aplomb() is
@NonEscaping("a"); it cannot override the final method boric() or the private
one cajoled(). Even for overriding aplomb (), it is crucial that SeeAlso.aplomb ()
be declared @NonEscaping("a"), just like C2.aplomb().

import x10.compiler.*;

final class C2 {

protected val a:Int, b:Int, c:Int;

protected var x:Int, y:Int, z:Int;

def this() {
a=1;
this.aplomb();
b = 2;
this.boric();
c = 3;
this.cajoled();

3

@NonEscaping def aplomb() {
X = a;
// this.boric(); // not allowed; boric reads b.
// z =b; // not allowed -- only ’a’ can be read here

3
@NonEscaping final def boric() {
y = b;
this.aplomb(); // allowed; a is definitely set before boric is called
// z = c; // not allowed; c is not definitely written
3
@NonEscaping private def cajoled() {
Z = C;
}

}
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8.8.5 Fine Structure of Constructors

The code of a constructor consists of four segments, three of them optional and
one of them implicit.

1. The first segment is an optional call to this(...) or super(...). If this
is supplied, it must be the first statement of the constructor. If it is not
supplied, the compiler treats it as a nullary super-call super();

2. If the class or struct has properties, there must be a single property(...)
command in the constructor. Every execution path through the constructor
must go through this property(...) command precisely once. The sec-
ond segment of the constructor is the code following the first segment, up
to and including the property () statement.

If the class or struct has no properties, the property () call must be omit-
ted. If it is present, the second segment is defined as before. If it is absent,
the second segment is empty.

3. The third segment is automatically generated. Fields with initializers are
initialized immediately after the property statement. In the following ex-
ample, b is initialized to y*9000 in segment three. The initialization makes
sense and does the right thing; b will be y*9000 for every Overdone ob-
ject. (This would not be possible if field initializers were processed earlier,
before properties were set.)

4. The fourth segment is the remainder of the constructor body.

The segments in the following code are shown in the comments.

class Overlord(x:Int) {
def this(x:Int) { property(x); }
}//0Overlord
class Overdone(y:Int) extends Overlord {
val a : Int;
val b = y * 9000;
def this(r:Int) {
super(r) ; // (1)
x10.i0.Console.OUT.println(r); // (2)
property(r+l); // (2)
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// field initializations here // (3)
a=r+ 2; // (4)
h
}//0verdone

The rules of what is allowed in the three segments are different, though unsurpris-
ing. For example, properties of the current class can only be read in segment 3 or
4—naturally, because they are set at the end of segment 2.

Initialization and Inner Classses

Constructors of inner classes are tantamount to method calls on this. For ex-
ample, the constructor for Inner is acceptable. It does not leak this. It leaks
Outer.this, which is an utterly different object. So, the call to this.new
Inner() in the Outer constructor is illegal. It would leak this. There is no
special rule in effect preventing this; a constructor call of an inner class is no
different from a method as far as leaking is concerned.

class Outer {
static val leak : Cell[Outer] = new Cell[Outer] (null);
class Inner {
def this() {Outer.leak.set(Outer.this);?}
3
def /*Outer*/this() {
//ILLEGAL: val inner = this.new Inner();
}
3

Initialization and Closures

Closures in constructors may not refer to this. They may not even refer to fields
of this that have been initialized. For example, the closure bad1 is not allowed
because it refers to this; bad2 is not allowed because it mentions a — which is,
of course, identical to this.a.

class C {
val a:Int;
def this(Q {
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this.a = 1;
// val badl = () => this;
// val bad2 = () => a*10;

8.8.6 Definite Initialization in Constructors

An instance field var x:T, when T has a default value, need not be explicitly
initialized. In this case, x will be initialized to the default value of type T. For
example, a Score object will have its currently field initialized to zero, below:

class Score {
public var currently : Int;

}

All other sorts of instance fields do need to be initialized before they can be used.
val fields must be initialized, even if their type has a default value. It would be
silly to have a field val z : Int that was always given default value of 0 and,
since it is val, can never be changed. var fields whose type has no default value
must be initialized as well, such as var y : Int{y != 0}, since it cannot be
assigned a sensible initial value.

The fundamental principles are:

1. val fields must be assigned precisely once in each constructor on every
possible execution path.

2. var fields of defaultless type must be assigned at least once on every possi-
ble execution path, but may be assigned more than once.

3. No variable may be read before it is guaranteed to have been assigned.

4. Initialization may be by field initialization expressions (val x : Int =
y+z), or by uninitialized fields val x : Int; plus an initializing assign-
ment x = y+z. Recall that field initialization expressions are performed
after the property statement, in segment 3 in the terminology of
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8.8.7 Summary of Restrictions on Classes and Constructors

CHAPTER 8. CLASSES

The following table tells whether a given feature is (yes), is not (no) or is with

some conditions (note) allowed in a given context.

For example, a property

method is allowed with the type of another property, as long as it only mentions
the preceding properties. The first column of the table gives examples, by line of

the following code body.
Example | Prop. | self==this(1) | Prop.Meth. | this | fields
Type of property (A) yes (2) no no no no
Class Invariant (B) yes yes yes yes no
Supertype (3) (©), (D) yes yes yes no no
Property Method Body | (E) yes yes yes yes no
Static field (4) ) (G) no no no no no
Instance field (5) (H), (I) yes yes yes yes yes
Constructor arg. type | (J) no no no no no
Constructor guard (K) no no no no no
Constructor ret. type (L) yes yes yes yes yes
Constructor segment 1 | (M) no yes no no no
Constructor segment 2 | (N) no yes no no no
Constructor segment 4 | (O) yes yes yes yes yes
Methods (P) yes yes yes yes yes

Details:

e (1) Top-level self only.

e (2) The type of the i*" property may only mention properties 1 through i.

e (3) Super-interfaces follow the same rules as supertypes.

e (4) The same rules apply to types and initializers.

The example indices refer to the following code:

class Example (
prop : Int,

proq : Int{prop != proq},

pror : Int

)

/7 (A
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{prop != 0}
extends Supertype[Int{self != prop}]
implements SuperInterface[Int{self != prop}]

property def propmeth() = (prop == pror);
static staticField
: Cell[Int{self != 0}]
= new Cell[Int{self !'= 03}]1(1);
var instanceField
: Int {self != prop}
= (prop + 1) as Int{self != prop};
def this(
a : Int{a != 0},
b : Int{b != a}
)
{a != b}
: Example{self.prop == a && self.proq==b}

super() ;

property(a,b,a);

// fields initialized here

instanceField = b as Int{self != prop};
}

def someMethod() =
prop + staticField + instanceField;

8.9 Method Resolution
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Method resolution is the problem of determining, statically, which method (or
constructor or operator) should be invoked, when there are several choices that
could be invoked. For example, the following class has two overloaded zap
methods, one taking an Object, and the other a Resolve. Method resolution
will figure out that the call zap (1. .4) should call zap(Object), and zap (new

Resolve()) should call zap (Resolve).
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class Resolve {
static def zap(Object) = "Object";
static def zap(Resolve) = "Resolve";
public static def main(argv:Array[String] (1)) {
Console.OUT.println(zap(l..4));
Console.OUT.println(zap(new Resolve()));
h
ks

The basic concept of method resolution is quite straightforward:

1. List all the methods that could possibly be used (counting implicit coer-
cions);

2. Pick the most specific one;

3. Fail if there is not a unique most specific one.

In the presence of X10’s highly-detailed type system, some subtleties arise. One
point, at least, is not subtle. The same procedure is used, mutatis mutandis for
method, constructor, and operator resolution.

Generics introduce several subtleties, especially with the inference of generic
types.

For the purposes of method resolution, all that matters about a method, construc-
tor, or operator M — we use the word “method” to include all three choices for
this section — is its signature, plus which method it is. So, a typical M might look
like def m[Gy,..., Gy1(x1:Ty,..., X¢:Ty){c} =.... The code body ... is
irrelevant for the purpose of whether a given method call means M or not, so we
ignore it for this section.

All that matters about a method definition, for the purposes of method resolution,
is:

1. The method name m;

2. The generic type parameters of the method M, G,..., G,. If there are no
generic type parameters, g = 0.
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3. The types x;:Ty,..., X;:T; of the formal parameters. If there are no for-
mal parameters, f = 0. In the case of an instance method, the receiver will
be the first formal parameterE]

4. The constraint ¢ of the method M. If no constraint is specified, c is true.

5. A unique identifier id, sufficient to tell the compiler which method body is
intended. A file name and position in that file would suffice. The details of
the identifier are not relevant.

For the purposes of understanding method resolution, we assume that all the ac-
tual parameters of an invocation are simply variables: x1.meth(x2,x3). This is
done routinely by the compiler in any case; the code tb1 (i) .meth(true, a+1)
would be treated roughly as

val x1 tbl(i);
val x2 = true;
val x3 = a+l;
x1.meth(x2,x3);

All that matters about an invocation I is:

1. The method name n';

2. The generic type parameters G, ..., G,. If there are no generic type pa-
rameters, g = 0.

3. The names and types x;:T},..., X f:T/f of the actual parameters. If there
are no actual parameters, f = 0. In the case of an instance method, the
receiver is the first actual parameter.

The signature of the method resolution procedure is: resolve(invo : Invocation,
context: Set[Method]) : MethodID. Given a particular invocation and the

set context of all methods which could be called at that point of code, method
resolution either returns the unique identifier of the method that should be called,

or (conceptually) throws an exception if the call cannot be resolved.

The procedure for computing resolve(invo, context) is:

3The variable names are relevant because one formal can be mentioned in a later type, or even
a constraint: def f(a:Int, b:Point{rank==a})=....
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1. Eliminate from context those methods which are not acceptable; viz.,
those whose name, type parameters, formal parameters, and constraint do
not suitably match invo. In more detail:

The method name m must simply equal the invocation name m’;
X10 infers type parameters, by an algorithm given in §4.11.3

The method’s type parameters are bound to the invocation’s for the
remainder of the acceptability test.

The actual parameter types must be subtypes of the formal parameter
types, or be coercible to such subtypes. Parameter ¢ is a subtype if
T, <: T,. Itis implicitly coercible to a subtype if there is an implicit
coercion operator defined from T/ to some type U, and U <: T,. . If
coercions are used to resolve the method, they will be called on the
arguments before the method is invoked.

The formal constraint ¢ must be satisfied in the invoking context.

2. Eliminate from context those methods which are not available; viz., those
which cannot be called due to visibility constraints, such as methods from
other classes marked private. The remaining methods are both acceptable
and available; they might be the one that is intended.

3. From the remaining methods, find the unique ms which is more specific
than all the others, viz., for which specific(ms,mo) = true for all other
methods mo. The specificity test specific is given next.

If there is a unique such ms, then resolve(invo, context) returns
the id of ms.

If there is not a unique such ms, then resolve reports an error.

The subsidiary procedure specific(ml, m2) determines whether method m1 is
equally or more specific than m2. specific is not a total order: is is possible
for each one to be considered more specific than the other, or either to be more
specific. specific is computed as:

1. Construct an invocation invol based on m1:

invol’s method name is m1’s method name;
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e invol’s generic parameters are those of m1— simply some type vari-
ables.

e invol’s parameters are those of ml.

2. If m2 is acceptable for the invocation invol, specific(ml,m2) returns
true;

3. Construct an invocation invo2p, which is invol with the generic param-
eters erased. Let invo2 be invo2p with generic parameters as inferred by
X10’s type inference algorithm. If type inference fails, specific(ml,m2)
returns false.

4. If m2 is acceptable for the invocation invo2, specific(ml,m2) returns
true;

5. Otherwise, specific(ml,m2) returns false.

8.9.1 Other Disambiguations

It is possible to have a field of the same name as a method. Indeed, it is a common
pattern to have private field and a public method of the same name to access it:
Example:

class Xhaver {
private var x: Int = 0;
public def x() = x;
public def bumpX() { x ++; }
3

Example: However, this can lead to syntactic ambiguity in the case where the
field £ of object a is a function, array, list, or the like, and where a has a method
also named f. The term a.£(b) could either mean “call method £ of a uponb”,
or “apply the function a. f to argument b”.

class Ambig {
public val f : (Int)=>Int = (x:Int) => x*x;
public def f(y:int) = y+1;
public def example() {
val v = this.f(10);
// 1is v 100, or 117
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In the case where a syntactic form E.m(F;, ..., F,) could be resolved as either
a method call, or the application of a field E.m to some arguments, it will be treated
as a method call. The application of E.m to some arguments can be specified by
adding parentheses: (E.m) (Fy, ..., F;).

Example:

class Disambig {
public val f : (Int)=>Int = (x:Int) => x*Xx;
public def f(y:int) = y+1;
public def example() {
assert( this.f(10) == 11 );
assert( (this.f)(10) == 100 );

8.10 Static Nested Classes

One class (or struct or interface) may be nested within another. The simplest way
to do this is as a static nested class, written by putting one class definition at
top level inside another, with the inner one having a static modifier. For most
purposes, a static nested class behaves like a top-level class. However, a static
inner class has access to private static fields and methods of its containing class.

Nested interfaces and static structs are permitted as well.

class Outer {
private static val priv = 1;
private static def special(n:Int) = n*n;
public static class StaticNested {
static def reveal(n:Int) = special(n) + priv;
b
3
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8.11 Inner Classes

Non-static nested classes are called inner classes. An inner class instance can
be thought of as a very elaborate member of an object — one with a full class
structure of its own. The crucial characteristic of an inner class instance is that it
has an implicit reference to an instance of its containing class.

This feature is particularly useful when an instance of the inner class makes no
sense without reference to an instance of the outer, and is closely tied to it. For
example, consider a range class, describing a span of integers m to n, and an iter-
ator over the range. The iterator might as well have access to the range object, and
there is little point to discussing iterators-over-ranges without discussing ranges
as well. In the following example, the inner class RangeIter iterates over the
enclosing Range.

It has its own private cursor field n, telling where it is in the iteration; different
iterations over the same Range can exist, and will each have their own cursor. It
is perhaps unwise to use the name n for a field of the inner class, since it is also a
field of the outer class, but it is legal. (It can happen by accident as well —e.g., if a
programmer were to add a field n to a superclass of the outer class, the inner class
would still work.) It does not even interfere with the inner class’s ability to refer to
the outer class’s n field: the cursor initialization refers to the Range’s lower bound
through a fully qualified name Range.this.n. Its hasNext () method refers to
the outer class’s m field, which is not shadowed.

class Range(m:Int, n:Int) implements Iterable[Int]{
public def iterator () = new Rangelter();
private class Rangelter implements Iterator[Int] {
private var n : Int = m;
public def hasNext() = n <= Range.this.n;
public def next() = n++;
}
public static def main(argv:Array[String] (1)) {
val r = new Range(3,5);
for(i in r) Console.OUT.println("i=" + i);
h
ks

An inner class has full access to the members of its enclosing class, both static
and instance. In particular, it can access private information, just as methods of
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the enclosing class can.

An inner class can have its own members. Inside instance methods of an inner
class, this refers to the instance of the inner class. The instance of the outer class
can be accessed as Quter.this (where Outer is the name of the outer class). If,
for some dire reason, it is necessary to have an inner class within an inner class,
the innermost class can refer to the this of either outer class by using its name.

An inner class can inherit from any class in scope, with no special restrictions.
super inside an inner class refers to the inner class’s superclass. If it is neces-
sary to refer to the outer classes’s superclass, use a qualified name of the form
Outer . super.

The only restriction placed on the members of inner classes is that the static fields
of an inner class must be compile-time constant expressions.

An inner class IC1 of some outer class OC1 can be extended by another class IC2.
However, since an IC1 only exists as a dependent of an 0OC1, each IC2 must be
associated with an 0C1 — or a subtype thereof — as well. For example, one often
extends an inner class when one extends its outer class:

class 0C1 {
class IC1 {}
3
class 0C2 extends 0OC1 {
class IC2 extends IC1 {}
ks

The hiding of method names has one fine point. If an inner class defines a method
named doit, then all methods named doit from the outer class are hidden —
even if they have different argument types than the one defined in the inner class.
They are still accessible via Outer.this.doit (), but not simply via doit ().
The following code is correct, but would not be correct if the ERROR line were
uncommented.

class Outer {
def doit() {3}
def doit(String) {}
class Inner {
def doit(Boolean, Outer) {}
def example() {
doit(true, Outer.this);
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Outer.this.doit();
//ERROR: doit("fails™);

8.11.1 Constructors and Inner Classes

If IC is an inner class of OC, then instance code in the body of OC can create
instances of IC simply by calling a constructor new IC(...):

class 0OC {
class IC {}
def method(){
val ic = new ICQ);
}
3

Instances of IC can be constructed from elsewhere as well. Since every instance
of IC is associated with an instance of OC, an OC must be supplied to the IC
constructor. The syntax for doing so is: oc.new IC(). For example:

/*NONSTATIC*/class OC {
class IC {}
static val ocl
static val oc2
static val icl
static val ic2

3

class Elsewhere{
def method(oc : 00) {

val ic = oc.new ICQ);
}
}

new 0CQ);
new 0CQ);
ocl.new ICQ);
oc2.new ICQ);
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8.12 Local Classes

Classes can be defined and instantiated in the middle of methods and other code
blocks. A local class in a static method is a static class; a local class in an instance
method is an inner class. Local classes are local to the block in which they are
defined. They have access to almost everything defined at that point in the method;
the one exception is that they cannot use var variables. Local classes cannot be
public protected, or private, because they are only visible from within the
block of declaration. They cannot be static.

Example:  The following example illustrates the use of a local class Local,
defined inside the body of method m().

class Outer {
val a = 1;
def m(Q) {
val a = -2;
val b = 2;
class Local {
val a = 3;
def m() = 100*Outer.this.a + 10*b + a;
}
val 1 : Local = new Local();
assert 1.m() == 123;
}//end of mQ)
ks

Note that the middle a, whose value is -2, is not accessible inside of Local; it
is shadowed by Local’s a field. Outer’s a is also shadowed, but the notation
Outer.this gives a reference to the enclosing OQuter object. There is no corre-
sponding notation to access shadowed local variables from the enclosing block;
if you need to get them, rename the fields of Local.

8.13 Anonymous Classes

It is possible to define a new class and instantiate it as part of an expression. The
new class can extend an extant class or interface. Its body can include all of the
usual members of a class. It can refer to any identifiers available at that point in
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the expression — except for var variables. An anonymous class in a static context
is a static inner class.

Anonymous classes are useful when you want to package several pieces of be-
havior together (a single piece of behavior can often be expressed as a function,
which is syntactically lighter-weight), or if you want to extend and vary an extant
class without going through the trouble of actually defining a whole new class.

The syntax for an anonymous class is a constructor call followed immediately by
a braced class body: new C(1){def foo()=2;}.

In the following minimalist example, the abstract class Choice encapsulates a
decision. A Choice has a yes() and a no() method. The choose(b) method
will invoke one of the two. Choices also have names.

The main() method creates a specific Choice. c is not a immediate instance
of Choice — as an abstract class, Choice has no immediate instances. c is an
instance of an anonymous class which inherits from Choice, but supplies yes ()
and no() methods. These methods modify the contents of the Cell[Int] n.
(Note that, as n is a local variable, it would take a few lines more coding to extract
C’s class, name it, and make it an inner class.) The call to c.choose(true) will
call c.yes(), incrementing n(), in a rather roundabout manner.

abstract class Choice(name: String) {
def this(name:String) {property(name);}
def choose(b:Boolean) { if (b) this.yes(); else this.no(); }
abstract def yes():void;
abstract def no():void;

}

class Example {
static def main(Array[String]) {
val n = new Cell[Int](0);
val ¢ = new Choice("Inc Or Dec") {
def yes(O { nQ +=1; 1}
def noO { nQO -=1; }
};
c.choose(true);
Console.OUT.println("n=" + n(Q));
3
}
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Anonymous classes have many of the features of classes in general. A few features
are unavailable because they don’t make sense.

e Anonymous classes don’t have constructors. Since they don’t have names,
there’s no way a constructor could get called in the ordinary way. Instead,
the new C(...) expression must match a constructor of the parent class C,
which will be called to initialize the newly-created object of the anonymous
class.

e Certain modifiers don’t make sense for anonymous classes: public, private,
and protected. Anonymous classes, being anonymous, cannot be refer-
enced at all.

e Anonymous classes cannot be abstract. Since they only exist in combi-
nation with a constructor call, they must be constructable. The parent class
of the anonymous class may be abstract, or may be an interface; in this case,
the anonymous class must provide all the methods that the parent demands.

e Anonymous classes cannot have explicit extends or implements clauses;
there’s no place in the syntax for them. They have a single parent and that
is that.



9 Structs

X10 objects are a powerful general-purpose programming tool. However, the
power must be paid for in space and time. In space, a typical object implemen-
tation requires some extra memory for run-time class information, as well as a
pointer for each reference to the object. In time, a typical object requires an ex-
tra indirection to read or write data, and some run-time computation to figure out
which method body to call.

For high-performance computing, this overhead may not be acceptable for all ob-
jects. X10 provides structs, which are stripped-down objects. They are less pow-
erful than objects; in particular they lack inheritance and mutable fields. Without
inheritance, method calls do not need to do any lookup; they can be implemented
directly. Accordingly, structs can be implemented and used more cheaply than
objects, potentially avoiding the space and time overhead. (Currently, the C++
back end avoids the overhead, but the Java back end implements structs as Java
objects and does not avoid it.)

Structs and classes are interoperable. Both can implement interfaces (in particular,
like all X10 values they implement Any), and subprocedures whose arguments are
defined by interfaces can take both structs and classes. (Some caution is necessary
here: referring to a struct through an interface requires overhead similar to that
required for an object.)

In many cases structs can be converted to classes or classes to structs, within the
constraints of structs. If you start off defining a struct and decide you need a
class instead, the code change required is simply changing the keyword struct
to class. If you have a class that does not use inheritance or mutable fields, it
can be converted to a struct by changing its keyword. Client code using the struct
that was a class will need certain changes: e.g., the new keyword must be added
in constructor calls, and structs (unlike classes) do not have default values.

129
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9.1 Struct declaration

StructDecl = Mods’ struct Id TypeParamsWithVariance’
Properties’ WhereClause® Interfaces’ ClassBody
[ TypeParamWithVarianceList ]

TypeParamsWithVariance:

Properties 2= ( PropertyList )

WhereClause = DepParams

Interfaces = 1implements InterfaceTypelList
ClassBody = | ClassBodyDecls? }

All fields of a struct must be val.

A struct S cannot contain a field of type S, or a field of struct type T which,
recursively, contains a field of type S. This restriction is necessary to permit S to
be implemented as a contiguous block of memory of size equal to the sum of the
sizes of its fields.

Values of a struct C type can be created by invoking a constructor defined in C.
Unlike for classes, the new keyword is optional for struct constructors.

Example:

struct Polar(r:Double, theta:Double){
def this(r:Double, theta:Double) {property(r,theta);}
static val Origin Polar(0,0);
static val x0yl Polar(1l, 3.14159/2);
static val x1y® new Polar(l, 0);
3

Structs support the same notions of generics, properties, and constrained types
that classes do.

Example: The Pair type below provides pairs of values; the diag() method
applies only when the two elements of the pair are equal, and returns that common
value:

struct Pair[T,U](t:T, u:U) {
def this(t:T, u:U) { property(t,u); }
def diag(){T==U && t==u} = t;

}

20.33

20.24
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9.2 Boxing of structs

If a struct S implements an interface I (e.g., Any), a value v of type S can be
assigned to a variable of type I. The implementation creates an object o that is
an instance of an anonymous class implementing I and containing v. The result
of invoking a method of I on o is the same as invoking it on v. This operation is
termed auto-boxing. It allows full interoperability of structs and objects—at the
cost of losing the extra efficiency of the structs when they are boxed.

In a generic class or struct obtained by instantiating a type parameter T with a
struct S, variables declared at type T in the body of the class are not boxed. They
are implemented as if they were declared at type S.

9.3 Optional Implementation of Any methods

Two structs are equal (==) if and only if their corresponding fields are equal (==).

All structs implement x10. lang.Any. Structs are required to implement the fol-
lowing methods from Any. Programmers need not provide them; X10 will produce
them automatically if the program does not include them.

public def equals(Any):Boolean;
public def hashCode():Int;
public def typeName():String;
public def toString():String;

A programmer who provides an explicit implementation of equals(Any) for a
struct S should also consider supplying a definition for equals(S) :Boolean.
This will often yield better performance since the cost of an upcast to Any and
then a downcast to S can be avoided.

9.4 Primitive Types

Certain types that might be built in to other languages are in fact implemented
as structs in package x10.1lang in X10. Their methods and operations are often
provided with @Native (§I8) rather than X10 code, however. These types are:
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Boolean, Char, Byte, Short, Int, Long
Float, Double, UByte, UShort, UInt, ULong

9.4.1 Signed and Unsigned Integers

X10 has an unsigned integer type corresponding to each integer type: UInt is
an unsigned Int, and so on. These types can be used for binary programming,
or when an extra bit of precision for counters or other non-negative numbers is
needed in integer arithmetic. However, X10 does not otherwise encourage the use
of unsigned arithmetic.

9.5 Generic programming with structs

The programmer must be aware of the different interpretations of equality for
structs and classes and ensure that the code is correctly written for both cases.

It is occasionally necessary to tell what kind of value x is: object, struct, or func-

tion. Three static methods on x10.lang. System provide this test: System.isObject (x)
returns true if x is a value of Object type, including null; System. isStruct (x)

returns true if x is a struct; System.isFunction(x) returns true if x is a clo-

sure value. Precisely one of these three functions returns true for any X10 value

X.

val x:X = ...;
if (System.isObject(x)) { // x is a real object
val x2 = x as Object; // this cast will always succeed.

} else if (System.isStruct(x)) { // x is a struct
} else {
assert System.isFunction(x);

}
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9.6 Example structs

x10.1lang.Complex provides a detailed example of a practical struct, suitable for
use in a library. For a shorter example, we define the Pair struct—available in
x10.util.Pair. A Pair packages two values of possibly unrelated type together
in a single value, e.g., to return two values from a function.

divmod computes the quotient and remainder of a \div b (naively). It returns
both, packaged as a Pair[UInt, UInt]. Note that the constructor uses type
inference, and that the quotient and remainder are accessed through the first
and second fields.

struct Pair[T,U] {
public val first:T;
public val second:U;
public def this(first:T, second:U):Pair[T,U] {
this.first = first;
this.second = second;
}
public def toString() = "(" + first + ", " + second + ")";
3
class Example {
static def divmod(var a:UInt, b:UInt): Pair[UInt, UInt] {
assert b > 0;
var q : UInt = 0;
while (a > b) {qg++; a -= b;}
return Pair(q, a);
}
static def example() {
val qr = divmod(22, 7);
assert gr.first == 3 && qr.second == 1;

9.7 Nested Structs

Static nested structs may be defined, essentially as static nested classes except for
making them structs (§8.10). Inner structs may be defined, essentially as inner
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classes except making them structs (§8.11)).

9.8 Converting Between Classes And Structs

Code written using structs can be modified to use classes, or vice versa. Caution
must be used in certain places.

Class and struct definitions are syntactically nearly identical: change the class
keyword to struct or vice versa. Of course, certain important class features can’t
be used with structs, such as inheritance and var fields.

Converting code that uses the class or struct requires a certain amount of caution.
Suppose, in particular, that we want to convert the class Class2Struct to a struct,
and Struct2Class to a class.

class Class2Struct {
val a : Int;

def this(a:Int) { this.a = a; }
def m() = a;
ks
struct Struct2Class {
val a : Int;
def this(a:Int) { this.a = a; }

def m(O) = a;
}

1. Class constructors require the new keyword; struct constructors allow it but
do not require it. Struct2Class(3) to will need to be converted to new
Struct2Class(3).

2. Objects and structs have different notions of ==. For objects, == means
“same object”; for structs, it means “same contents”. Before conversion,
both asserts in the following program succeed. After converting and fix-
ing constructors, both of them fail.

val a = new Class2Struct(2);
val b = new Class2Struct(2);
assert a != b;

val ¢ = Struct2Class(3);
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val d = Struct2Class(3);
assert c==d;

3. Objects can be set to null. Structs cannot. There is no default value like
null available for structs.



10 Functions

10.1 Overview

Functions, the last of the three kinds of values in X10, encapsulate pieces of code
which can be applied to a vector of arguments to produce a value. Functions, when
applied, can do nearly anything that any other code could do: fail to terminate,
throw an exception, modify variables, spawn activities, execute in several places,
and so on. X10 functions are not mathematical functions: the £(1) may return
true on one call and false on an immediately following call.

A function literal (x1:T1,..,xn:Tn){c}:T=>e creates a function of type
(x1:T1,...,xn:Tn) {c}=>T (§4.6). For example, (x:Int):Int => x*xis a

function literal describing the squaring function on integers. null is also a func-
tion value.

Limitation: X10 functions cannot have type arguments or constraints.

Function application is written £(a,b, c), following common mathematical us-
age.

The function body may be a block. To compute integer squares by repeated addi-
tion (inefficiently), one may write:

val sq: (Int) => Int
= (n:Int) => {
var s : Int = 0;
val abs_.n =n<0® ? -n : n;
for ([i] in 1..abs_n) s += abs_n;
S

}s

A function literal evaluates to a function entity f. When f is applied to a suitable
list of actual parameters al through an, it evaluates e with the formal parameters

136
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bound to the actual parameters. So, the following are equivalent, where e is an
expression involving x1 and XZEI

{
val £ = (x1:T1,x2:T2){true}:T => e;
val al : Tl = arglQ);
val a2 : T2 = arg2();
result = f(al,a2);

and

val al : T1
val a2 : T2

{

arglQ;
arg2(Q);

val x1 : Tl = al;
val x2 : T2 a2;
result = e;

}
}

This equivalence does not hold if the body is a statement rather than an expres-
sion. A few language features are forbidden (break or continue of a loop that
surrounds the function literal) or mean something different (return inside a func-
tion returns from the function, not the surrounding block).

The method selector expression e.m.(x1:T1,...,xn:Tn) ( permits the
specification of the function underlying the method m, which takes arguments of
type (x1:T1,..., xn:Tn). Within this function, this is bound to the result of
evaluating e.

Function types may be used in implements clauses of class definitions. Suitable
operator definitions must be supplied, with public operator this(x1:T1,
.., xn:Tn) declarations. Instances of such classes may be used as functions of
the given type. Indeed, an object may behave like any (fixed) number of functions,
since the class it is an instance of may implement any (fixed) number of function

IStrictly, there are a few other requirements; e.g., result must be a var of type T defined
outside the outer block, the variables al and a2 had better not appear in e, and everything in sight
had better typecheck properly.
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types. e.g. Instances of the Funny class behave like two functions: a constant
function on Booleans, and a linear function on pairs of Ints.

class Funny implements (Boolean) => Int,

{

(Int, Int) => Int

public operator this(Boolean) = 1;
public operator this(x:Int, y:Int) = 10*x+y;
static def example() {

val f <: Funny

= new Funny(Q);

assert f(true) == 1; // (Boolean)=>Int behavior
assert f(1,2) == 12; // (Int,Int)=>Int behavior

}
}

10.2 Function Literals

X10 provides first-class, typed functions, including closures, operator functions,

and method selectors.

ClosureExp n=

FormalParams =

WhereClause
DepParams

ExistentialList n=
HasResultType =

ClosureBody =

FormalParams ~ WhereClause®  HasResultType®
Offers’ => ClosureBody

( FormalParamList’ )

DepParams

{ ExistentialList’ Conjunction? }
FormalParam

ExistentialList ; FormalParam

: ype

<: Type

Conditional Exp

Annotations’ { BlockStatements’ LastExp }
Annotations’ Block

Functions have zero or more formal parameters and an optional return type. The
body has the same syntax as a method body; it may be either an expression, a
block of statements, or a block terminated by an expression to return. In particular,
a value may be returned from the body of the function using a return statement

(§12.13).

20.92

20.26

20.29

20.23

20.30
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The type of a function is a function type as described in In some cases the
return type T is also optional and defaults to the type of the body. If a formal xi
does not occur in any Tj, c, T or e, the declaration xi: Ti may be replaced by just
Ti. E.g., (Int)=>7 is the integer function returning 7 for all inputs.

As with methods, a function may declare a guard to constrain the actual parame-
ters with which it may be invoked. The guard may refer to the type parameters,
formal parameters, and any vals in scope at the function expression.

Example:

val n 3;

val £ : (x:Int){x != n} => Int
x:Int){x !'= n} = (12/(n-x));
Console.OUT.printIn("£(5)=" + £(5));

The body of the function is evaluated when the function is invoked by a call ex-
pression (§11.6)), not at the function’s place in the program text.

As with methods, a function with return type void cannot have a terminating
expression. If the return type is omitted, it is inferred, as described in
It is a static error if the return type cannot be inferred. E.g., (Int)=>null is
not well-specified; X10 does not know which type of null is intended. But
(Int):Array[Double] (1) => null is legal.

Example 10.2.1 The following method takes a function parameter and uses it
to test each element of the list, returning the first matching element. It returns
absent if no element matches.

def find[T](f: (T) => Boolean, xs: List[T], absent:T): T = {
for (x: T in xs)
if (£(x)) return x;
absent

}

The method may be invoked thus:

xs: List[Int] = new ArrayList[Int](Q);
x: Int = find((x: Int) => x>0, xs, 0);
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10.2.1 Outer variable access

In a function (x;: Ty, ..., x,: T,){c} => { s } the types T;, the guard c
and the body s may access many, though not all, sorts of variables from outer
scopes. Specifically, they can access:

o All fields of the enclosing object(s) and class(es);
e All type parameters;

e All val variables;

var variables cannot be accessed.

The function body may refer to instances of enclosing classes using the syntax
C.this, where C is the name of the enclosing class. this refers to the instance
of the immediately enclosing class, as usual.

e.g. The following is legal. However, the commented-out line would not be legal.
Note that a is not a local var variable. It is a field of this. A reference to a is
simply short for this.a, which is a use of a val variable (this).

class Lambda {
var a : Int = 0;
val b = 0;
def m(var ¢ : Int, val d : Int) {
var e : Int = 0;
val £ : Int = O;
val closure = (var i: Int, val j: Int) => {
return a + b + d + £ + j + this.a + Lambda.this.a;
// ILLEGAL: return c + e + 1i;
};

return closure;

10.3 Method selectors

A method selector expression allows a method to be used as a first-class function,
without writing a function expression for it.
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Example: Consider a class Span defining ranges of integers.

class Span(low:Int, high:Int) {
def this(low:Int, high:Int) {property(low,high);}
def between(n:Int) = low <= n & & n <= high;
static def example() {
val digit = new Span(0,9);
val isDigit : (Int) => Boolean = digit.between. (Int);
assert isDigit(8);
}
ks

In example(), digit.between. (Int) is a unary function testing whether its
argument is between zero and nine. It could also be written (n:Int) => digit.between(n).

MethodSelection == MethodName . ( FormalParamList’ ) 20.164
| Primary . Id . ( FormalParamList® )
| super . Id . ( FormalParamList’)
| ClassName . super . Id . ( FormalParamlList® )

The method selector expression e.m. (T1,...,Tn) is type correct only if the

static type of e is a class or struct or interface V with amethod m(x1:T1,...xn:Tn){c}:T
defined on it (for some x1,...,xn,c,T). At runtime the evaluation of this ex-
pression evaluates e to a value v and creates a function £ which, when applied

to an argument list (al, ..., an) (of the right type) yields the value obtained by
evaluating v.m(al,...,an).

Thus, the method selector

e.m.(Ty, ..., T,)

behaves as if it were the function

(v:\)=>
(x1: Ty, ..., X,: T,0){c}
= v.m(Xy, ..., X,))

(e)

Because of overloading, a method name is not sufficient to uniquely identify a
function for a given class. One needs the argument type information as well. The
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selector syntax (dot) is used to distinguish e.m() (a method invocation on e of
method named m with no arguments) from e.m. () (the function bound to the
method).

A static method provides a binding from a name to a function that is independent
of any instance of a class; rather it is associated with the class itself. The static
function selector T.m. (T;, ..., T,) denotes the function bound to the static
method named m, with argument types (Ty, ..., T,) for the type T. The return
type of the function is specified by the declaration of T.m.

There is no difference between using a function defined directly directly using the
function syntax, or obtained via static or instance function selectors.

10.4 Operator functions

Every binary operator (e.g., +, -, *, /, ...) has a family of functions, one for each

(T3]

type on which the operator is defined. The function can be selected using the “.
syntax:

String.+ = (x: String, y: String): String => x + y
Long. - = (x: Long, y: Long): Long => x - y

Float.- = (x: Float, y: Float): Float => x - y
Boolean.& = (x: Boolean, y: Boolean): Boolean => x & y
Int.< = (x: Int, y: Int): Boolean => x <y

Unary and binary promotion (§11.9) is not performed when invoking these op-
erations; instead, the operands are coerced individually via implicit coercions

(411.27)), as appropriate.

10.5 Functions as objects of type Any

Two functions f and g are equal if both were obtained by the same evaluation of
a function literal Further, it is guaranteed that if two functions are equal then
they refer to the same locations in the environment and represent the same code,
so their executions in an identical situation are indistinguishable. (Specifically, if

2A literal may occur in program text within a loop, and hence may be evaluated multiple times.
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f == g, then £(1) can be substituted for g(1) and the result will be identical.
However, there is no guarantee that £(1)==g(1) will evaluate to true. Indeed,
there is no guarantee that £(1)==£(1) will evaluate to true either, as £ might
be a function which returns n on its n'” invocation. However, £(1)==£f(1) and
£(1)==g(1) are interchangeable.)

Every function type implements all the methods of Any. f.equals(g) is equiva-
lent to £f==g. f.hashCode (), f.toString(), and f. typeName () are implementation-
dependent, but respect equals and the basic contracts of Any.



11 Expressions

X10 has a rich expression language. Evaluating an expression produces a value,
or, in a few cases, no value. Expression evaluation may have side effects, such as
change of the value of a var variable or a data structure, allocation of new values,
or throwing an exception.

11.1 Literals

Literals denote fixed values of built-in types. The syntax for literals is given in

The type that X10 gives a literal often includes its value. E.g., 1 is of type
Int{self==1}, and true is of type Boolean{self==true}.

11.2 this

Primary = this
| this
| ClassName . this

The expression this is a local val containing a reference to an instance of the
lexically enclosing class. It may be used only within the body of an instance
method, a constructor, or in the initializer of a instance field — that is, the places
where there is an instance of the class under consideration.

Within an inner class, this may be qualified with the name of a lexically enclos-
ing class. In this case, it represents an instance of that enclosing class.

Example: Outer is a class containing Inner. Each instance of Inner has a
reference Outer. this to the Outer involved in its creation. Inner has access to

144
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the fields of Outer.this, as seen in the outerThree and alwaysTrue methods.
Note that Inner has its own three field, which is different from and not even the
same type as Outer.this. three.

class Outer {
val three = 3;
class Inner {
val three = "THREE";
def outerThree() = Outer.this.three;
def alwaysTrue() = outerThree() == 3;

The type of a this expression is the innermost enclosing class, or the qualifying
class, constrained by the class invariant and the method guard, if any.

The this expression may also be used within constraints in a class or interface
header (the class invariant and extends and implements clauses). Here, the type
of this is restricted so that only properties declared in the class header itself,
and specifically not any members declared in the class body or in supertypes, are
accessible through this.

11.3 Local variables
1d = identifier

A local variable expression consists simply of the name of the local variable, field
of the current object, formal parameter in scope, etc. It evaluates to the value of
the local variable.

Example: n in the second line below is a local variable expression. The n in the
first line is not; it is part of a local variable declaration.

val n = 22;
val m = n + 56;
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11.4 Field access

FieldAccess :=  Primary . Id
| super . Id
| ClassName . super . Id
| Primary . class
| super . class
| ClassName . super . class

A field of an object instance may be accessed with a field access expression.

The type of the access is the declared type of the field with the actual target sub-
stituted for this in the type.

Example: The declaration of b below has a constraint involving this. The use
of an instance of it, £.b, has the same constraint involving £ instead of this, as
required.

class Fielded {
public val a : Int = 1;
public val b : Int{this.a == b} = this.a;
static def example() {
val f : Fielded = new Fielded();
val fb : Int{fb == f.a} = f.b;
}
3

The field accessed is selected from the fields and value properties of the static type
of the target and its superclasses.

If the field target is given by the keyword super, the target’s type is the super-
class of the enclosing class. This form is used to access fields of the parent class
shadowed by same-named fields of the current class.

If the field target is Cls. super, then the target’s type is C1s, which must be an
enclosing class. This (admittedly obscure) form is used to access fields of an
ancestor class which are shadowed by same-named fields of some more recent
ancestor.

Example: This illustrates all four cases of field access.

class Uncle {

20.162
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public static val f = 1;
ks
class Parent {
public val £ = 2;
ks
class Ego extends Parent {
public val f = 3;
class Child extends Ego {
public val £ = 4;

def classNameDotId() = Uncle.f; // 1
def cnDotSuperDotId() = Ego.super.f; // 2
def superDotId() = super. f; // 3
def expDotId() = this. f; // 4

If the field target is null, a Nul1lPointerException is thrown. If the field target
is a class name, a static field is selected. It is illegal to access a field that is not
visible from the current context. It is illegal to access a non-static field through a
static field access expression. However, it is legal to access a static field through a
non-static reference.

11.5 Function Literals

Function literals are described in
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11.6 Calls

MethodInvocation = MethodPrimaryPrefix ( ArgumentList’ ) 20.163
| MethodSuperPrefix ( ArgumentList’ )
| MethodClassNameSuperPrefix ( ArgumentList’ )
| MethodName TypeArguments® ( ArgumentList’ )
| Primary . Id TypeArguments’ ( ArgumentList’ )
| super . Id TypeArguments’ ( ArgumentList’ )
| ClassName . super . Id TypeArguments’ (
ArgumentList? )
| Primary TypeArguments’ ( ArgumentList’ )
ArgumentList n= Exp 20.161
| ArgumentList , Exp

A MethodInvocation may be to either a static method, an instance method, or a
closure.

The syntax for method invocations is ambiguous. ob.m() could either be the
invocation of a method named m on object ob, or the application of a function
held in a field ob.m. The target ob must be type-checked to determine which of
these it is. It is a static error if both cases are possible after type checking.

Example:

class Callsome {

static val closure : () => Int = ) = 1;
static def method() = 2;
static def example() {
assert Callsome.closure() == 1;
assert Callsome.method() == 2;
}
3

However, adding a static method [mis [named closure makes Callsome.closure()
ambiguous: it could be a call to the closure, or to the static method:

static def closure () = 3;
// ERROR: static errory = Callsome.closure();

The application form e (£, g), when e evaluates to an object or struct, invokes the
application operator, defined in the form
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public operator this(f:F, g:G) = "value";

Method selection rules are given in

It is a static error if a method’s Guard is not statically satisfied by the caller.

Example: [In this example, a DivideBy object provides the service of dividing
numbers by denom — so long as denom is not zero. In the example method,
this.div(100) is not allowed; there is no guarantee that denom != 0. Casting
this to a type whose constraint implies denom != O permits the method call.

class DivideBy(denom:Int) {
def div(numer:Int){denom != 0} = numer / denom;
def example() {
val thisCast = (this as DivideBy{self.denom != 0});
thisCast.div(100);
//ERROR: this.div(100);
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11.7 Assignment

Assignment := LeftHandSide AssignmentOperator AssignmentExp
| ExpName ( ArgumentList’ ) AssignmentOperator
AssignmentExp
| Primary ( ArgumentList’ ) AssignmentOperator As-
signmentExp
LeftHandSide :=  ExpName
| FieldAccess
AssignmentOperator = =
|-
| /=
| %
S
| -=
| <<=
| >>=
| >>>=
| &=
|
|

The assignment expression X = e assigns a value given by expression e to a vari-
able x. Most often, x is mutable, a var variable. The same syntax is used for
delayed initialization of a val, but vals can only be initialized once.

var x : Int;

val y : Int;

x =1;

y = 2; // Correct; initializes y
X = 3;

// ERROR: y = 4;

There are three syntactic forms of assignment:

1. x = e;, assigning to a local variable, formal parameter, field of this, etc.

2. x.f = ej;, assigning to a field of an object.
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3. a(iy,...,1,) = v;, where n > 0, assigning to an element of an array or
some other such structure. This is an operator call (§8.7). For well-behaved
classes it works like array assignment, mutatis mutandis, but there is no
actual guarantee, and the compiler makes no assumptions about how this
works for arbitrary a. Naturally, it is a static error if no suitable assignment
operator for a.

For a binary operator ¢, the ¢-assignment expression X ¢= e combines the current

value of x with the value of e by ¢, and stores the result back into x. 1 += 2, for

example, adds 2 to i. For variables and fields, x ¢= e behaves justlikex = x ©
e.

The subscripting forms of a(i) ©¢= b are slightly subtle. Subexpressions of a
and i are only evaluated once. However, a(i) and a(i)=c are each executed
once—in particular, there is one call to the application operator, and one to the
assignment operator. If subscripting is implemented strangely for the class of a,
the behavior is not necessarily updating a single storage location. Specifically,
AQ(I(QO) += B(Q) istantamount to:

{
val aa = A(); // Evaluate A() once
val ii = I(); // Evaluate I() once
val bb = B(); // Evaluate B() once

val tmp = aa(ii) + bb; // read aa(ii)
aa(ii) = tmp; // write sum back to aa(ii)

}

Limitation: += does not currently meet this specification.

11.8 Increment and decrement

The operators ++ and -- increment and decrement a variable, respectively. x++
and ++x both increment x, just as the statement x += 1 would, and similarly for

The difference between the two is the return value. ++x and --x return the new
value of x, after incrementing or decrementing. x++ and x-- return the old value
of x, before incrementing or decrementing.

Limitation: This currently only works for numeric types.



152 CHAPTER 11. EXPRESSIONS

11.9 Numeric Operations

Numeric types (Byte, Short, Int, Long, Float, Double, Complex, and un-
signed variants of fixed-point types) are normal X10 structs, though most of their
methods are implemented via native code. They obey the same general rules as
other X10 structs. For example, numeric operations, coercions, and conversions
are defined by operator definitions, the same way you could for any struct.

Promoting a numeric value to a longer numeric type preserves the sign of the
value. For example, (255 as UByte) as Ulnt is 255.

Most of these operations can be defined on user-defined types as well. While it
is good practice to keep such operations consistent with the numeric operations
whenever possible, the compiler neither enforces nor assumes any particular se-
mantics of user-defined operations.

11.9.1 Conversions and coercions

Specifically, each numeric type can be converted or coerced into each other nu-
meric type, perhaps with loss of accuracy.

val n : Byte = 123 as Byte; // explicit
val f : (Int)=>Boolean = (Int) => true;
val ok = f(n); // implicit

11.9.2 Unary plus and unary minus
The unary + operation on numbers is an identity function. The unary - opera-

tion on numbers is a negation function. On unsigned numbers, these are two’s-
complement. For example, - (0x0F as UByte) is (0xF1 as UByte).

11.10 Bitwise complement

The unary ™ operator, only defined on integral types, complements each bit in its
operand.
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11.11 Binary arithmetic operations

The binary arithmetic operators perform the familiar binary arithmetic operations:
+ adds, - subtracts, * multiplies, / divides, and % computes remainder.

On integers, the operands are coerced to the longer of their two types, and then op-
erated upon. Floating point operations are determined by the IEEE 754 standard.
The integer / and % throw an exception if the right operand is zero.

11.12 Binary shift operations

The operands of the binary shift operations must be of integral type. The type of
the result is the type of the left operand. The right operand, describing a number
of bits, must be unsigned: x << 1U.

If the promoted type of the left operand is Int, the right operand is masked with
0x1f using the bitwise AND (&) operator, giving a number at most the number of
bits in an Int. If the promoted type of the left operand is Long, the right operand
is masked with 0x3 f using the bitwise AND (&) operator, giving a number at most
the number of bits in a Long.

The << operator left-shifts the left operand by the number of bits given by the right
operand. The >> operator right-shifts the left operand by the number of bits given
by the right operand. The result is sign extended; that is, if the right operand is
k, the most significant £ bits of the result are set to the most significant bit of the
operand.

The >>> operator right-shifts the left operand by the number of bits given by the
right operand. The result is not sign extended; that is, if the right operand is k, the
most significant £ bits of the result are set to 0. This operation is deprecated, and
may be removed in a later version of the language.

11.13 Binary bitwise operations

The binary bitwise operations operate on integral types, which are promoted to
the longer of the two types. The & operator performs the bitwise AND of the
promoted operands. The | operator performs the bitwise inclusive OR of the
promoted operands. The " operator performs the bitwise exclusive OR of the
promoted operands.
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11.14 String concatenation

The + operator is used for string concatenation as well as addition. If either
operand is of static type x10.lang.String, the other operand is converted to
a String, if needed, and the two strings are concatenated. String conversion of a
non-null value is performed by invoking the toString() method of the value.
If the value is null, the value is converted to "null".

The type of the result is String.

For example, "one + 2 + here evaluates to one 2(Place 0).

11.15 Logical negation

The operand of the unary ! operator must be of type x10.1lang.Boolean. The
type of the result is Boolean. If the value of the operand is true, the result is
false; if if the value of the operand is false, the result is true.

11.16 Boolean logical operations

Operands of the binary boolean logical operators must be of type Boolean. The
type of the result is Boolean

The & operator evaluates to true if both of its operands evaluate to true; other-
wise, the operator evaluates to false.

The | operator evaluates to false if both of its operands evaluate to false; oth-
erwise, the operator evaluates to true.

11.17 Boolean conditional operations

Operands of the binary boolean conditional operators must be of type Boolean.
The type of the result is Boolean

The && operator evaluates to true if both of its operands evaluate to true; oth-
erwise, the operator evaluates to false. Unlike the logical operator &, if the first
operand is false, the second operand is not evaluated.
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The || operator evaluates to false if both of its operands evaluate to false;
otherwise, the operator evaluates to true. Unlike the logical operator | |, if the
first operand is true, the second operand is not evaluated.

11.18 Relational operations

The relational operations on numeric types compare numbers, producing Boolean
results.

The < operator evaluates to true if the left operand is less than the right. The <=
operator evaluates to true if the left operand is less than or equal to the right. The
> operator evaluates to true if the left operand is greater than the right. The >=
operator evaluates to true if the left operand is greater than or equal to the right.

Floating point comparison is determined by the IEEE 754 standard. Thus, if either
operand is NaN, the result is false. Negative zero and positive zero are consid-
ered to be equal. All finite values are less than positive infinity and greater than
negative infinity.

11.19 Conditional expressions

Conditional Exp ::=  ConditionalOrExp
| ClosureExp
| AtExp
| FinishExp
| ConditionalOrExp ? Exp : Conditional Exp

A conditional expression evaluates its first subexpression (the condition); if true
the second subexpression (the consequent) is evaluated; otherwise, the third subex-
pression (the alternative) is evaluated.

The type of the condition must be Boolean. The type of the conditional ex-
pression is some common ancestor (as constrained by §4.9) of the types of the
consequent and the alternative.

Example: a == b ? 1 : 2 evaluates to 1 if a and b are the same, and 2 if
they are different. As the type of 1 is Int{self==1} and of 2 is Int{self==2},
the type of the conditional expression has the form Int{c}, where self==1 and

20.184
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self==2 both imply c. For example, it might be Int{true} — or perhaps it might
be Int{self != 8}. Note that this term has no most accurate type in the X10

type system.
The subexpression not selected is not evaluated.

Example: The following use of the conditional expression prevents division by
zero. If den==0, the division is not performed at all.

(den == 0) ? 0 : num/den
Similarly, the following code performs a method call if op is non-null, and avoids

the null pointer error if it is null. Defensive coding like this is quite common when
working with possibly-null objects.

(ob == null) ? null : ob.toString(Q);

11.20 Stable equality

EqualityExp ::=  RelationalExp
| EqualityExp == Relational Exp
| EqualityExp = Relational Exp
| Type ==Type

The == and != operators provide a fundamental, though non-abstract, notion of
equality. a==Db is true if the values of a and b are extremely identical.

e If a and b are values of object type, then a==b holds if a and b are the same
object.

e If one operand is null, then a==b holds iff the other is also null.

o [f the operands both have struct type, then they must be structurally equal;
that is, they must be instances of the same struct and all their fields or com-
ponents must be ==.

e The definition of equality for function types is specified in §10.5]

e [f the operands have numeric types, they are coerced into the larger of the
two types (see §11.27.2) and then compared for numeric equality.
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a != bis true iff a==b is false.
The predicates == and != may not be overridden by the programmer.

== provides a stable notion of equality. If two values are == at any time, they
remain == forevermore, regardless of what happens to the mutable state of the
program.

Example:  Regardless of the values and types of a and b, or the behavior of
any_code_at_all (which may, indeed, be any code at all—not just a method
call), the value of a==b does not change:

val a = something();

val b = something_else();
val eql = (a == b);
any_code_at_all(Q);

val eq2 = (a == b);
assert eql == eq2;

11.21 Allocation

ClassInstCreationExp ::= new TypeName TypeArguments’ ( ArgumentList’ )

ClassBody’
| new TypeName [ Type 1 [ ArgumentList’ ]

| Primary . new Id TypeArguments® ( ArgumentList’

) ClassBody’
| AmbiguousName . new Id TypeArguments’

ArgumentList’ ) ClassBody’

An allocation expression creates a new instance of a class and invokes a construc-
tor of the class. The expression designates the class name and passes type and
value arguments to the constructor.

The allocation expression may have an optional class body. In this case, an anony-
mous subclass of the given class is allocated. An anonymous class allocation may
also specify a single super-interface rather than a superclass; the superclass of the
anonymous class is x10.1lang.0Object.

If the class is anonymous—that is, if a class body is provided—then the construc-
tor is selected from the superclass. The constructor to invoke is selected using the
same rules as for method invocation (§11.6).

20.12
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The type of an allocation expression is the return type of the constructor invoked,
with appropriate substitutions of actual arguments for formal parameters, as spec-
ified in

It is illegal to allocate an instance of an abstract class. The usual visibility rules
apply to allocations: it is illegal to allocate an instance of a class or to invoke a
constructor that is not visible at the allocation expression.

Note that instantiating a struct type can use function application syntax; new is
optional. As structs do not have subclassing, there is no need or possibility of a
ClassBody.

11.22 Casts

The cast operation may be used to cast an expression to a given type:

CastExp = Primary
| ExpName
| CastExp as Type

The result of this operation is a value of the given type if the cast is permissible at

run time, and either a compile-time error or a runtime exception (x10.lang. TypeCastException)
if it is not.

When evaluating E as T{c}, first the value of E is converted to type T (which

may fail), and then the constraint {c} is checked.

e If T is a primitive type, then E’s value is converted to type T according to the

rules of §11.27.1

e If T is a class, then the first half of the cast succeeds if the run-time value of
E is an instance of class T, or of a subclass.

e If T is an interface, then the first half of the cast succeeds if the run-time
value of E is an instance of a class implementing T.

e If T is a struct type, then the first half of the cast succeeds if the run-time
value of E is an instance of T.

e If T is a function type, then the first half of the cast succeeds if the run-time
value of X is a function of that type, or a subtype of it.
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If the first half of the cast succeeds, the second half — the constraint {c} — must be
checked. In general this will be done at runtime, though in special cases it can be
checked at compile time. For example, n as Int{self != w} succeeds if n
= w— even if w is a value read from input, and thus not determined at compile
time.

The compiler may forbid casts that it knows cannot possibly work. If there is no
way for the value of E to be of type T{c}, then E as T{c} can result in a static
error, rather than a runtime error. For example, 1 as Int{self==2} may fail
to compile, because the compiler knows that 1, which has type Int{self==1},
cannot possibly be of type Int{self==2}.

11.23 instanceof

X10 permits types to be used in an in instanceof expression to determine whether
an object is an instance of the given type:

Relational Exp ::=  RangeExp
| SubtypeConstraint
| RelationalExp < RangeExp
| RelationalExp > RangeExp
| RelationalExp <= RangeExp
| RelationalExp >= RangeExp
| RelationalExp instanceof Type
| Relational Exp in ShiftExp

In the above expression, Type is any type. At run time, the result of this operator is

true if the Relational Expression can be coerced to Type without a TypeCastException

being thrown or static error occurring. Otherwise the result is false. This deter-
mination may involve checking that the constraint, if any, associated with the type
is true for the given expression.

For example, 3 instanceof Int{self==x} is an overly-complicated way of
saying 3==X.

However, it is a static error if e cannot possibly be an instance of C{c}; the com-
piler will reject 1 instanceof Int{self == 2} because 1 can never satisfy
Int{self == 2}. Similarly, 1 instanceof String is a static error, rather
than an expression always returning false.
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Limitation: X10 does not currently handle instanceof of generics in the way
you might expect. For example, r instanceof Array[Int{self != 0}] does
not test that every element of r is non-zero; instead, the compiler rejects it.

11.24 Subtyping expressions

SubtypeConstraint = Type <: Type
| Type :> Type

The subtyping expression T; <: T, evaluates to true if T; is a subtype of T,.
The expression T; :> T, evaluates to true if T is a subtype of T;.

The expression T; == T, evaluates to true if T; is a subtype of T, and if Ty is a
subtype of T;.

Example:  Subtyping expressions are particularly useful in giving constraints
on generic types. x10.util.Ordered[T] is an interface whose values can be
compared with values of type T. In particular, T <: x10.util.Ordered[T] is
true if values of type T can be compared to other values of type T. So, if we wish
to define a generic class OrderedList [T], of lists whose elements are kept in the
right order, we need the elements to be ordered. This is phrased as a constraint
onT:

class OrderedList[T]{T <: x10.util.Ordered[T]} {
/] ...
ks

11.25 Contains expressions
Relational Exp ::=  RelationalExp in ShiftExp
in is a binary operator, definable in It is conventionally used for checking

containment.

Example: The built-in type Region provides in, testing whether a Point is in
the region:
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assert [3] in 1..10;
assert !([10] in 1..3);

Other types can provide them as well:

class Cont {
operator this in (Int) = true;
operator (String) in this = false;
static operator (Cont) in (b:Boolean) = b;
static def example() {
val c:Cont = new Cont();
assert ¢ in 4 && !("odd" in c) && (c in true);

11.26 Array Constructors

Primary = [ArgumentList? ]
| ClassInstCreationExp
ClassInstCreationExp = new TypeName TypeArguments’ ( ArgumentList’ ) (20.12
ClassBody’

| new TypeName [ Type 1 [ ArgumentList’ ]
rimary . new eArguments’ rgumentList’
| Primary Id TypeArg " ( ArgumentList’
) ClassBody?
| AmbiguousName . new Id TypeArguments’ (
ArgumentList’ ) ClassBody’

X10 includes short syntactic forms for constructing one-dimensional arrays. The
shortest form is to enclose some expressions in brackets:

val ints <: Array[Int](l1l) = [1,3,7,21];
The expression [ey, ..., e,] produces an n-element Array[T] (1), where T is

the computed common supertype (§4.9) of the base types of the expressions e;.

Example: The type of [0,1,2] is Array[Int] (1). More importantly, the
type of [0] is also Array[Int] (1). It is not Array[Int{self==0}] (1), even
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though all the elements are all of type Int{self==0}. This is subtle but impor-
tant. There are many functions that take Array[Int] (1)s, such as conversions
to Point. These functions do not take Array[Int{self==0}]"s.

(Suppose that the function took a: Array [Int] (1) and did the operation a(i)=100.

This operation is perfectly fine for an Array[Int] (1), which is all the compiler

knows about a. However, it is invalid for an Array [Int{self==0}] (1), because

it assigns a non-zero value to an element of the array, violating the type constraint

which says that all the elements are zero. So, Array[Int{self==0}](1) is not

and must not be a subtype of Array[Int] (1) — the two types are simply unre-

lated. Since there are far more uses for Array[Int] (1) than Array[Int{self==03}] (1),
the compiler produces the former.)

The expressionnew Array[T][e;, ..., e,] producesann-elementArray[T] (1),
whose elements are the values e;. It is a static error if any e; cannot be coerced to
T.

Example:  Occasionally one does actually need Array[Int{self==0}](1),
or, say, Array[Eel{self !'= null}](1), an array of non-null Eels. For these
cases, X10 provides an array constructor which does allow specification of the
element type: new Array[T][el...en]. Each element ei must be of type T.
The resulting array is of type Array[T] (1).

val zero <: Array[Int{self == 0}](1)
= new Array[Int{self == 03}][0];
val nonl <: Array[Int{self != 1}]1(1)
= new Array[Int{self != 1}][0];
val eels <: Array[Eel{self != null}](1)
= new Array[Eel{self != null}][ new Eel(Q 1];

11.27 Coercions and conversions

X10 v2.1 supports the following coercions and conversions.

11.27.1 Coercions

CastExp == CastExp as Type
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A coercion does not change object identity; a coerced object may be explicitly
coerced back to its original type through a cast. A conversion may change object
identity if the type being converted to is not the same as the type converted from.
X10 permits user-defined conversions (§11.27.2)).

Subsumption coercion. A value of a subtype may be implicitly coerced to any
supertype.

Example: [fChild <: Personandval rhys:Child, then rhys may be used
in any context that expects a Person. For example,

class Example {

def greet(Person) = "Hi!";

def example(rhys: Child) {
greet(rhys);

h

}

Similarly, 2 (whose innate type is Int{self==2}) is usable in a context requiring
a non-zero integer (Int{self != 0}).

Explicit Coercion (Casting with as) All classes and interfaces allow the use of
the as operator for explicit type coercion. Any class or interface may be cast to
any interface. Any interface may be cast to any class. Also, any interface can be
cast to a struct that implements (directly or indirectly) that interface.

Example: In the following code, a Person is cast to Childlike. There is
nothing in the class definition of Person that suggests that a Person can be
Childlike. However, the Person in question, p, is actually a HappyChild — a
subclass of Person — and is, in fact, Childlike.

Similarly, the Childlike value cl is cast to Happy. Though these two interfaces
are unrelated, the value of cl is, in fact, Happy. And the Happy value hc is cast
to the class Child, though there is no relationship between the two, but the actual
value is a HappyChild, and thus the cast is correct at runtime.

Cyborg is a struct rather than a class. So, it cannot have substructs, and all the in-
terfaces of all Cyborgs are known: a Cyborg is Personable, but not Childlike
or Happy. So, it is correct and meaningful to cast r to Personable. There is no
way that a cast to Childlike could succeed, so r as Childlike is a static
error.
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interface Personable {}
class Person implements Personable {}
interface Childlike extends Personable {}
class Child extends Person implements Childlike {}
struct Cyborg implements Personable {}
interface Happy {}
class HappyChild extends Child implements Happy {}
class Example {
static def example() {
var p : Person = new HappyChild(Q);
val cl : Childlike = p as Childlike; // class -> interface
val hc : Happy = cl as Happy; // interface -> interface
val ch : Child = hc as Child; // interface -> class
var r : Cyborg = Cyborg(Q);
val rl : Personable = r as Personable;
// ERROR: r as Childlike

}

}

If the value coerced is not an instance of the target type, and no coercion operators
that can convert it to that type are defined, a ClassCastException is thrown.
Casting to a constrained type may require a run-time check that the constraint is
satisfied.

Limitation: Itis currently a static error, rather than the specified ClassCastException,
when the cast is statically determinable to be impossible.

Effects of explicit numeric coercion Coercing a number of one type to another
type gives the best approximation of the number in the result type, or a suitable
disaster value if no approximation is good enough.

e Casting a number to a wider numeric type is safe and effective, and can be
done by an implicit conversion as well as an explicit coercion. For example,
4 as Long produces the Long value of 4.

e Casting a floating-point value to an integer value truncates the digits after
the decimal point, thereby rounding the number towards zero. 54.321 as
Int is 54, and -54.321 as Int is -54. If the floating-point value is too
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large to represent as that kind of integer, the coercion returns the largest or
smallest value of that type instead: 1e110 as Int is Int.MAX_VALUE, viz.
2147483647.

e Casting aDouble to a Float normally truncates binary digits: 0.12345678901234567890
as Floatisapproximately 0.12345679£. This can turn a nonzero Double
into 0.0f, the zero of type Float: le-100 as Float is 0.0f. Since
Doubles can be as large as about 1.79E308 and Floats can only be as
large as about 3.4E38f, a large Double will be converted to the special
Float value of Infinity: 1e100 as Floatis Infinity.

e Integers are coerced to smaller integer types by truncating the high-order
bits. If the value of the large integer fits into the smaller integer’s range, this
gives the same number in the smaller type: 12 as Byte is the Byte-sized
12, -12 as Byte is -12. However, if the larger integer doesn’t fit in the
smaller type, the numeric value and even the sign can change: 254 as
Byte is the Bytesized -2y.

e Casting an unsigned integer type to a signed integer type of the same size
(e.g.,UInt to Int) preserves 2’s-complement bit pattern (e.g., UInt . MAX_VALUE
as Int == -1. Casting an unsigned integer type to a signed integer type
of a different size is equivalent to first casting to an unsigned integer type of
the target size, and then casting to a signed integer type.

e Casting a signed integer type to an unsigned one is similar.

User-defined Coercions

Users may define coercions from arbitrary types into the container type B, and
coercions from B to arbitrary types, by providing static operator definitions
for the as operator in the definition of B.

Example:

class Bee {
public static operator (x:Bee) as Int
public static operator (x:Int) as Bee
def example() {
val b:Bee = 2 as Bee;
assert (b as Int) == 1;

1;
new Bee();
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11.27.2 Conversions

Widening numeric conversion. A numeric type may be implicitly converted
to a wider numeric type. In particular, an implicit conversion may be performed
between a numeric type and a type to its right, below:

Byte < Short < Int < Long < Float < Double
UByte < UShort < UInt < UlLong

Furthermore, an unsigned integer type may be implicitly coerced a signed type
large enough to hold any value of the type: UByte to Short, UShort to Int, UInt
to Long. There are no implicit conversions from signed to unsigned numbers,
since they cannot treat negatives properly.

There are no implicit conversions in cases when overflow is possible. For exam-
ple, there is no implicit conversion between Int and UInt. If it is necessary to
convert between these types, use n as Int orn as UInt, generally with a test
to ensure that the value will fit and code to handle the case in which it does not.

String conversion. Any value that is an operand of the binary + operator may
be converted to String if the other operand is a String. A conversion to String
is performed by invoking the toString() method.

User defined conversions. The user may define implicit conversion operators
from type A to a container type B by specifying an operator in B’s definition of the
form:

public static operator (r: A): T = ...

The return type T should be a subtype of B. The return type need not be specified
explicitly; it will be computed in the usual fashion if it is not. However, it is good
practice for the programmer to specify the return type for such operators explicitly.
The return type can be more specific than simply B, for cases when there is more
information available.

Example: The code for x10.1lang.Point contains a conversion from one-
dimensional Arrays of integers to Points of the same length:
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public operator (r: Array[Int](1)): Point(r.length) = make(r);

This conversion is used whenever an array of integers appears in a context that
requires a Point, such as subscripting. Note that a requires a Point of rank
2 as a subscript, and that a two-element Array (like [2,4]) is converted to a
Point (2).

val a = new Array[String]((2..3) * (4..5), "hil"™);
a([2,4]) = "converted!";

11.28 Parenthesized Expressions

If E is any expression, (E) is an expression which, when evaluated, produces the
same result as E.

Example: The main use of parentheses is to write complex expressions for which
the standard precedence order of operations is not appropriate: 1+2%3 is 7, but
(1+2)*3 is 9.

Similarly, but perhaps less familiarly, parentheses can disambiguate other ex-
pressions. In the following code, funny . £ is a field-selection expression, and so
(funny . £) ) means “select the f field from funny, and evaluate it”. However,
funny. £() means “evaluate the £ method on object funny.”

class Funny {
def £ O = 1;
val £ = O = 2;
static def example() {
val funny = new Funny(Q);
assert funny.f() == 1;
assert (funny.f) () == 2;
}
ks

Note that this does not mean that E and (E) are identical in all respects; for ex-
ample, if i is an Int variable, i++ increments i, but (i)++ is not allowed. ++ is
an assignment; it operates on variables, not merely values, and (i) is simply an
expression whose value is the same as that of 1.



12 Statements

This chapter describes the statements in the sequential core of X10. Statements
involving concurrency and distribution are described in

12.1 Empty statement

The empty statement ; does nothing.

Example: Sometimes, the syntax of X10 requires a statement in some position,
but you do not actually want to do any computation there. The following code
searches the array a for the value v, assumed to appear somewhere in a, and
returns the index at which it was found. There is no computation to do in the loop
body, so we use an empty statement there.

static def search[T](a: Array[T](1l), v: T):Int {
var i : Int;
for(i = a.region.min(®); a(i) != v; i++)

return i;

}

168
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12.2 Local variable declaration

LocalVariableDeclStatement LocalVariableDecl ;
VariableDeclaratorsWithFype VariableDeclaratorWithType
| VariableDeclaratorsWithType , VariableDeclarator-

WithType
VariableDeclarators ::=  VariableDeclarator
| VariableDeclarators , VariableDeclarator
Variablelnitializer n= Exp
FormalDeclarators ::=  FormalDeclarator

| FormalDeclarators , FormalDeclarator

Short-lived variables are introduced by local variables declarations, as described
in §5] Local variables may be declared only within a block statement (§12.3).
The scope of a local variable declaration is the statement itself and the subsequent
statements in the block.

if (a > 1) {
val b = a/2;
var ¢ : Int = 0;
// b and c are defined here

}

// b and c are not defined here.

Variables declared in such statements shadow variables of the same name declared
elsewhere. A local variable of a given name, say x, cannot shadow another local
variable or parameter named x unless there is an intervening method or closure
declaration, or unless the inner x is declared inside an async or at statement and
the outer variable is declared outside of that.

Example: The following code illustrates both legal and illegal uses of shadow-
ing. Note that a shadowed field name x can still be accessed as this.x.

class Shadow{
var x : Int;
def this(x:Int) {
// Parameter can shadow field
this.x = x;
3
def example(y:Int) {

20.155]

20.123

20.124

20.125]
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val x = "shadows a field";
// ERROR: val y = "shadows a param";
val z = "local";

for (a in [1,2,3]) {
// ERROR: val x = "can’t shadow local var";

}
async {
val x = "can shadow through async";
}
at (here) {
val x = "can shadow through at";
3
val £ = O = {
val x = "can shadow through closure";
X
};

12.3 Block statement

Block == { BlockStatements’ }
BlockStatements = BlockStatement

| BlockStatements BlockStatement
BlockStatement ::=  LocalVariableDeclStatement

| ClassDecl

| TypeDefDecl
| Statement

A block statement consists of a sequence of statements delimited by “{” and
“}”. When a block is evaluated, the statements inside of it are evaluated in or-
der. Blocks are useful for putting several statements in a place where X10 asks for
a single one, such as the consequent of an if, and for limiting the scope of local
variables.

if (b) {
// This is a block

20.147

20.148]
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val v = 1;
S1(v);
S2(v);

}

12.4 Expression statement

ExpStatement = StatementExp ;
StatementExp = Assignment

| PrelncrementExp

| PreDecrementExp

| PostIncrementExp

| PostDecrementExp

| MethodInvocation

| ClassInstCreationExp

The expression statement evaluates an expression. The value of the expression is
not used. Side effects of the expression occur, and may produce results used by
following statements. Indeed, statement expressions which terminate without side
effects cannot have any visible effect on the results of the computation.

Example:

class StmtEx {
def this() { x10.io.Console.OUT.println("New StmtEx made");
static def call() { x10.io.Console.OUT.println("call!"); }
def example() {
var a : Int = 0;
a =1; // assignment
new StmtEx(); // allocation
call(); // call
3
3

Only selected forms of expression can appear in expression statements: assign-
ments, increments, decrements, method invocations, and constructor invocations.
Most other forms of expression, such as literals and variable and field references,
cannot have side effects and are thus pointless as expression statements.

20.48

20.49

}
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12.5 Labeled statement

LabeledStatement = Id : Statement

Statements may be labeled. The label may be used to describe the target of a
break statement appearing within a substatement (which, when executed, ends
the labeled statement), or, in the case of a loop, a continue as well (which, when
executed, proceeds to the next iteration of the loop). The scope of a label is the
statement labeled.

Example: The label on the outer for statement allows continue and break
statements to continue or break it. Without the label, continue or break would
only continue or break the inner for loop.

1bl : for ([i] in 1..10) {
for ([j] in i..10) {
if (a(i,j) == 0) break 1bl;
if (a(i,j) == 1) continue 1bl;
if (a(i,j) == a(j,i)) break 1bl;

In particular, a block statement may be labeled: L:{S}. This allows the use of
break L within S to leave S, which can, if carefully used, avoid deeply-nested
ifs.

Example:

multiphase: {
if (lexists(filename)) break multiphase;
phasel(filename);
if (!suitable_for_phase_2(filename)) break multiphase;
phase2(filename);
if (!suitable_for_phase_3(filename)) break multiphase;
phase3(filename);

ks

// Now the file has been phased as much as possible

Limitation: Blocks cannot currently be labeled.
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12.6 Break statement

BreakStatement = breakId’ ;

An unlabeled break statement exits the currently enclosing loop or switch state-
ment. An labeled break statement exits the enclosing statement with the given
label. It is illegal to break out of a statement not defined in the current method,
constructor, initializer, or closure.

Example:  The following code searches for an element of a two-dimensional
array and breaks out of the loop when it is found:

var found: Boolean = false;
outer: for (var i: Int = 0; i < a.size; i++)
for (var j: Int = 0; j < a(i).size; j++)
if (@@ (@) = wv) {
found = true;
break outer;

12.7 Continue statement

ContinueStatement == continue Id’ ;

An unlabeled continue skips the rest of the current iteration of the innermost en-
closing loop, and proceeds on to the next. A labeled continue does the same to
the enclosing loop with that label. It is illegal to continue a loop not defined in the
current method, constructor, initializer, or closure.

12.8 If statement

IfThenStatement if ( Exp ) Statement
IfThenElseStatement = 1if ( Exp ) Statement else Statement

An if statement comes in two forms: with and without an else clause.

20.43
20.44
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The if-then statement evaluates a condition expression, which must be of type
Boolean. If the condition is true, it evaluates the then-clause. If the condition is
false, the if-then statement completes normally.

The if-then-else statement evaluates a condition expression and evaluates the then-
clause if the condition is true; otherwise, the else-clause is evaluated.

As is traditional in languages derived from Algol, the if-statement is syntactically
ambiguous. That is,

if (B1) if (B2) S1 else S2

could be intended to mean either

if (B1) { if (B2) S1 else S2 }
or
if (B1) {if (B2) S1} else S2

X10, as is traditional, attaches an else clause to the most recent if that doesn’t
have one. This example is interpreted as if (B1) { if (B2) S1 else S2 }.

12.9 Switch statement

SwitchStatement = switch ( Exp ) SwitchBlock
SwitchBlock = { SwitchBlockStatementGroups? SwitchLabels’ }
SwitchBlockStatementGromps SwitchBlockStatementGroup

| SwitchBlockStatementGroups SwitchBlockState-

mentGroup
SwitchBlockStatementGromp SwitchlLabels BlockStatements
SwitchLabels = SwitchLabel
| SwitchLabels SwitchLabel
SwitchLabel := case ConstantExp :
| default:

A switch statement evaluates an index expression and then branches to a case
whose value equal to the value of the index expression. If no such case exists, the
switch branches to the default case, if any.

20.51

20.52

20.53

20.54
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Statements in each case branch evaluated in sequence. At the end of the branch,
normal control-flow falls through to the next case, if any. To prevent fall-through,
a case branch may be exited using a break statement.

The index expression must be of type Int. Case labels must be of type Int,
Byte, Short, or Char and must be compile-time constants. Case labels cannot be
duplicated within the switch statement.

Example: [In this switch, case 1 falls through to case 2. The other cases are
separated by breaks.

switch (i) {
case 1: println("one, and ");
case 2: println("two");

break;

case 3: println("three");
break;

default: println("Something else");
break;

12.10 While statement

WhileStatement :»= while ( Exp ) Statement

A while statement evaluates a Boolean-valued condition and executes a loop body
if true. If the loop body completes normally (either by reaching the end or via a
continue statement with the loop header as target), the condition is reevaluated
and the loop repeats if true. If the condition is false, the loop exits.

Example: A loop to execute the process in the Collatz conjecture (a.k.a. 3n+1
problem, Ulam conjecture, Kakutani’s problem, Thwaites conjecture, Hasse’s al-
gorithm, and Syracuse problem) can be written as follows:

while (n > 1) {
n=M%2==1) 7 3*n+l1 : n/2;
}
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12.11 Do-while statement

DoStatement ::= do Statement while ( Exp ) ; 20.58

A do-while statement executes the loop body, and then evaluates a Boolean-
valued condition expression. If true, the loop repeats. Otherwise, the loop exits.

12.12 For statement

ForStatement ::=  BasicForStatement
| EnhancedForStatement

BasicForStatement .= for ( Forlnit’ ; Exp? ; ForUpdate? ) Statement 20.60

ForlInit :i=  StatementExpList 20.61
| LocalVariableDecl

ForUpdate :i=  StatementExpList 20.62

StatementExpList 2= StatementExp 20.63
| StatementExpList , StatementExp

EnhancedForStatement ::= for ( LoopIndex in Exp ) Statement 20.78

| for ( Exp ) Statement

for statements provide bounded iteration, such as looping over a list. It has two
forms: a basic form allowing near-arbitrary iteration, a la C, and an enhanced
form designed to iterate over a collection.

A basic for statement provides for arbitrary iteration in a somewhat more orga-
nized fashion than a while. The loop for(init; test; step)body is equiva-
lent to:

{
init;
while(test) {
body;
step;
}
3

init is performed before the loop, and is traditionally used to declare and/or
initialize the loop variables. It may be a single variable binding statement, such
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asvar i:Int = Q@ orvar i:Int=0, j:Int=100. (Note that a single variable
binding statement may bind multiple variables.) Variables introduced by init
may appear anywhere in the for statement, but not outside of it. Or, it may be
a sequence of expression statements, such as i=0, j=100, operating on already-
defined variables. If omitted, init does nothing.

test is a Boolean-valued expression; an iteration of the loop will only proceed
if test is true at the beginning of the loop, after init on the first iteration or or
step on later ones. If omitted, test defaults to true, giving a loop that will run
until stopped by some other means such as break, return, or throw.

step is performed after the loop body, between one iteration and the next. It
traditionally updates the loop variables from one iteration to the next: e.g., i++
and i++, j--. If omitted, step does nothing.

body is a statement, often a code block, which is performed whenever test is
true. If omitted, body does nothing.

An enhanced for statement is used to iterate over a collection, or other structure
designed to support iteration by implementing the interface Iterable[T]. The
loop variable must be of type T, or destructurable from a value of type T (§5).
Each iteration of the loop binds the iteration variable to another element of the
collection. The loop for(x in c)S behaves like:

val iterator: Iterator[T] = c.iterator();
while (iterator.hasNext()) {

val x : T = iterator.next();

SO;
3

A number of library classes implement Iterable, and thus can be iterated over.
For example, iterating over a Region iterates the Points in the region, and iterat-
ing over an Array iterates over the Points at which the array is defined.

Example: This loop adds up the elements of a List[Int]. Note that iterating
over a list yields the elements of the list, as specified in the List API.

static def sum(a:x10.util.List[Int]):Int {
var s : Int = 0;
for(x in a) s += Xx;
return s;

}



178 CHAPTER 12. STATEMENTS

The following code sums the elements of an integer array. Note that the for loop
iterates over the indices of the array, not the elements, as specified in the Array
API

static def sum(a: Array[Int]): Int {
var s : Int = 0;
for(p in a) s += a(p);
return s;

}

Iteration variables have the for statement as scope. They shadow other variables
of the same names.

Example: In practice, the ability to do destructuring in a for statement is
mainly used for iterate over ranges of numbers. for ([i] in 1..10) iterates
over numbers from 1 to 10. The brackets are important. for (i in 1..10
iterates over Points from [1] as Point to [10] as Point.

var sum : Int = 0;
for ([i] in 1..n) sum += i;

12.13 Return statement

ReturnStatement 1= return Exp? ;

Methods and closures may return values using a return statement. If the method’s
return type is explicitely declared void, the method must return without a value;
otherwise, it must return a value of the appropriate type.

Example: The following code illustrates returning values from a closure and a
method. The return inside of closure returns from closure, not from method.

def method(x:Int) {
val closure = (y:Int) => {return x+y;};
val res = closure(0);
assert res == X;
return res == X;
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12.14 Assert statement

AssertStatement = assert Exp ; 20.50
| assert Exp : Exp ;

The statement assert E checks that the Boolean expression E evaluates to true,
and, if not, throws an x10. lang. Error exception. The annotated assertion assert
E : F; checks E, and, if it is false, throws an x10.1lang.Error exception with
F’s value attached to it.

Example: The following code compiles properly.

class Example {
public static def main(argv:Array[String] (1)) {
val a = 1;
assert a != 1 : "Changed my mind about a";
}
}

However, when run, it prints a stack trace starting with

x10.lang.Error: Changed my mind about a

12.15 Exceptions in X10

X10 programs can throw Exceptions to indicate unusual or problematic situations.
Exceptions, as data values, are objects which which inherit from x10.1ang. Throwable.
Exceptions may be thrown intentionally with the throw statement. Many prim-

itives and library functions throw exceptions if they encounter problems; e.g.,
dividing by zero throws an instance of x10.lang.ArithmeticException.

When an exception is thrown, statically and dynamically enclosing try-catch
blocks in the same activity can attempt to handle it. If the throwing statement
in inside some try clause, and some matching catch clause catches that type
of exception, the corresponding catch body will be executed, and the process
of throwing is finished. If no statically-enclosing try-catch block can handle
the exception, the current method call returns (abnormally), throwing the same
exception from the point at which the method was called.
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This process continues until the exception is handled or there are no more calling
methods in the activity. In the latter case, the activity will terminate abnormally,
and the exception will propagate to the activity’s root; see §14.1|for details.

Unlike some statically-typed languages with exceptions, X10’s exceptions are
all unchecked. Methods do not declare which exceptions they might throw; any
method can, potentially, throw any exception.

12.16 Throw statement

ThrowStatement = throw Exp ;

throw E throws an exception whose value is E, which must be an instance of a
subtype of x10.lang.Throwable.

Example:  The following code checks if an index is in range and throws an
exception if not.

if (A <0 || i>= x.size)
throw new MyIndexOutOfBoundsException();

12.17 Try-catch statement

TryStatement ::= try Block Catches 20.68
| try Block Catches® Finally

Catches ::=  CatchClause 20.69
| Catches CatchClause

CatchClause ::= catch ( FormalParam ) Block 20.70

Finally ::= finally Block 20.71

Exceptions are handled with a try statement. A try statement consists of a try
block, zero or more catch blocks, and an optional finally block.

First, the try block is evaluated. If the block throws an exception, control trans-
fers to the first matching catch block, if any. A catch matches if the value of the
exception thrown is a subclass of the catch block’s formal parameter type.
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The finally block, if present, is evaluated on all normal and exceptional control-
flow paths from the try block. If the try block completes normally or via a
return, a break, or a continue statement, the finally block is evaluated, and
then control resumes at the statement following the try statement, at the branch
target, or at the caller as appropriate. If the try block completes exceptionally,
the finally block is evaluated after the matching catch block, if any, and then
the exception is rethrown.

The parameter of a catch block has the block as scope. It shadows other variables
of the same name.

Example: The example () method below executes without any assertion errors

class Exn extends Throwable{}
class SubExn(n:Int) extends Exn{}
class Example {
static def example() {
var correct : Boolean = false;
try {
throw new SubExn(4);

}

catch (e : Exn) { correct = true; }
catch (e : SubExn) { assert false; }
catch (e : Throwable) { assert false; }
assert correct;

}
}

Limitation: Constraints on exception types in catch blocks are not currently
supported.

12.18 Assert

The assert statement assert B; checks that the Boolean expression B evaluates
to true. If so, computation proceeds. If not, it throws x10.1lang.AssertionError.

The extended form assert B:A; is similar, but provides more debugging infor-
mation. The value of the expression A is available as part of the AssertionError,
e.g., to be printed on the console.
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Example: assert is useful for confirming properties that you believe to be true
and wish to rely on. In particular, well-chosen asserts make a program robust
in the face of code changes and unexpected uses of methods. For example, the
following method compute percent differences, but asserts that it is not dividing
by zero. If the mean is zero, it throws an exception, including the values of the
numbers as potentially useful debugging information.

static def percentDiff(x:Double, y:Double) {
val diff = x-y;
val mean = (x+y)/2;
assert mean != 0.0 : [x,y];
return Math.abs(100 * (diff / mean));
3

At times it may be considered important not to check assert statements; e.g.,
if the test is expensive and the code is sufficiently well-tested. The -noassert
command line option causes the compiler to ignore all assert statements.



13 Places

An X10 place is a repository for data and activities, corresponding loosely to a
process or a processor. Places induce a concept of “local”. The activities running
in a place may access data items located at that place with the efficiency of on-chip
access. Accesses to remote places may take orders of magnitude longer. X10’s
system of places is designed to make this obvious. Programmers are aware of the
places of their data, and know when they are incurring communication costs, but
the actual operation to do so is easy. It’s not hard to use non-local data; it’s simply
hard to to do so accidentally.

The set of places available to a computation is determined at the time that the
program is started, and remains fixed through the run of the program. See the
README documentation on how to set command line and configuration options to
set the number of places.

Places are first-class values in X 10, as instances of the built-in struct, x10.1lang.Place.
Place provides a number of useful ways to query places, such as Place.places,
a Sequence[Place] of the places available to the current run of the program.

Objects and structs (with one exception) are created in a single place — the place
that the constructor call was running in. They cannot change places. They can be
copied to other places, and the special library struct GlobalRef allows values at
one place to point to values at another.

13.1 The Structure of Places

Places are numbered O through Place.MAX_PLACES-1; the number is stored in
the field pl.1id. The Sequence[Place] Place.places() contains the places
of the program, in numeric order. The program starts by executing a main method
at Place.FIRST_PLACE, which is Place.places() (0); see

183
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Operations on places include pl.next(), which gives the next entry (looping
around) in Place.places and its opposite pl.prev(). In particular, here.next ()
means “a place other than here”, except in single-place executions. There are also

a number of tests, like p1.1isSPE() and pl.isCUDA(), which test for particular
kinds of processors.

13.2 here

The variable here is always bound to the place at which the current computation is
running, in the same way that this is always bound to the instance of the current
class (for non-static code), or self is bound to the instance of the type currently
being constrained. here may denote different places in the same method body or
even the same expression, due to place-shifting operations.

This is not unusual for automatic variables: self denotes two different values
(one List, one Int) in List[Int{self!=0}]{self!=null}. In the following
code, here has one value at h0, and a different one at h1 (unless there is only one
place).

val h® = here;

at (here.next()) {
val hl = here;
assert (h® != hl);

3

(Similar examples show that self and this have the same behavior: self can
be modified by constrained types appearing inside of type constraints, and this
by inner classes.)

The following example looks through a list of references to Things. It finds those
references to things that are here, and deals with them.

public static def deal(things: List[GlobalRef[Thing]]) {
for(gr in things) {
if (gr.home == here) {
val grHere =
gr as GlobalRef[Thing]{gr.home == here};
val thing <: Thing = grHere(Q);
dealWith(thing);
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13.3 at: Place Changing

An activity may change place synchronously using the at statement or at expres-
sion. This is an expensive operation and must be used with care.

AtStatement ::= at PlaceExpSingleList Statement
AtExp ::= at PlaceExpSingleList ClosureBody

The PlaceExp must be an expression of type Place or some subtype.

An activity executing statement at (q) S at a place p evaluates q at p and then
moves to q to execute S. Initialized val variables appearing in S are given copies
of their values outside (§13.3.1). Uninitialized val variables in S may be initial-
ized at the place that they were declared (§13.3.2)). var variables may be read
and set at the place that they were declared, but are unavailable at other places

({13.3.3).

Note that the value obtained by evaluating q is not necessarily distinct from p (e.g.,
g may be here); at (here)S will copy all val values used in S, even though there
is no actual change of place.

On normal termination of S control returns to p and execution is continued with
the statement following at (q) S. If S terminates abruptly with exception E, E
is serialized into a buffer, the buffer is communicated to p where it is deserialized
into an exception E1 and at (e) S throws E1.

Since at(e) S is a synchronous construct, usual control-flow constructs such as
break, continue, return and throw are permitted in S. All concurrency related
constructs — async, finish, atomic, when are also permitted.

The at-expression at (p)E is similar, except that, in the case of normal termina-
tion of E, the value that E produces is serialized into a buffer, transported to the
starting place, and deserialized, and the value of the at-expression is the result of
deserialization.

Limitation: X10 does not currently allow break, continue, or return to exit
from an at.

20.74

20.95)
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13.3.1 at and Initialized val Variables

Initialized val variables are copied to S. The initialized val variable x appearing
in S will have as its value a copy of the value of x outside.

First, the runtime identifies the object graph at p reachable from lexically scoped
initialized val variables (say, v1,..., vn) referenced in S. Second this graph is
serialized into a buffer and transmitted to place q. Third, the variables v1,..., vn
are re-created at g and initialized with the objects obtained by deserializing the
buffer at q. Fourth, S is executed at ¢ (in an environment in which the variable vi
refers to the re-created variable at q). (For the treatment of vars, see §13.3.3])

Note that since values accessed across an at boundary are copied, the program-
mer may wish to adopt the discipline that either variables accessed across an at
boundary contain only structs or stateless objects, or the methods invoked on them
do not access any mutable state on the objects. Otherwise the programmer has to
ensure that side effects are made to the correct copy of the object. For this the
struct x10.1lang.GlobalRef[T] is often useful.

13.3.2 at and Uninitialized val Variables

An uninitialized val variable may be initialized in S, but only at places that are
statically determinable to be equal to the place that the variable was defined.
Uninitialized vals cannot be read, of course.

Example: This allows a straightforward way to transmit several pieces of infor-
mation back from an at(somewhereElse), as shown by the following example
which computes the roots of the quadratic equation ax® + bx + ¢ = 0. For the
sake of the example, we assume that mathProcessor () returns a Place suitable
for calculation. In practice it would rarely if ever make sense to send such a small
calculation to another place.

The starting place has local vals r and s, which will hold the roots. The compu-
tation at the math processor evaluates the roots of the equation. These roots are
bound to math processor local val variables rr and ss. An inner place-shifting
at Ch) moves the computation back to the initial place, stored for that purpose in
h, at which values can be assigned to the variables r and s at the starting place.
Note that we take care to send only the minimal information across at boundaries;
in particular we do not send the discriminant back to h. When the intermediate
results are large and the desired data small, the savings can be substantial.
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def printRootsOfQuadratic(a:Complex, b:Complex, c:Complex) {
val r : Complex;
val s : Complex;
val start = here;
at (mathProcessor()) {
val disc = Math.sqrt(b*b - 4%a*c);
val rr = (-b + disc) / (2%a);
val ss = (-b - disc) / (2%a);
at(start) {
r = rr; s = SS;
}
h

Console.OUT.println("'r = " + r + "; s =" + s8);

13.3.3 at and var Variables

var variables can be read and set at a place statically known to be the place that
they are declared, but not from other places.

var variables cannot be accessed from any other place. As always, a var cannot
be read before it is definitely initialized.

Example: This allows a straightforward way to accumulate results from mul-
tiple places. In the following example, some code is run at each place to pro-
duce an integer partialResult, and the partialResults are summed to give
aresult.

def example() {
var result : Int = 0;
val start = here;
finish {
for(p in Place.places()) {
async at(p) {
val partialResult = here.id(Q);
at(start) {
atomic { result += partialResult; }

}
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}
}

return result;

}

Serialization and deserialization. The X10 runtime provides a default mecha-
nism for serializing/deserializing an object graph with a given set of roots. This
mechanism may be overridden by the programmer on a per class or struct basiss
as described in x10.10.CustomSerialization. The default mechanism per-
forms a deep copy of the object graph (that is, it copies the object or struct and,
recursively, the values contained in its fields), but does not traverse transient
fields. Instead on serialization the default value for the type of the field is
used.

A struct s of type x10.lang.GlobalRef[T] is serialized as a unique
global reference to its contained object o (of type T). Please see the documen-
tation of x10.1ang.GlobalRef[T] for more details.

13.3.4 at and Activities

at(p)S does not start a new activity. It should be thought of as transporting the
current activity to p, running S there, and then transporting it back. async is the
only construct in the language that starts a new activity. In different contexts, each
one of the following makes sense: (1) async at(p) S (spawn an activity locally
to execute S at p; here p is evaluated by the spawned activity) , (2) at(p) async
S (evaluate p and then at p spawn an activity to execute S), and, (3) async at(p)
async S. In most cases, async at(p) Sis preferred to at(p) async S, since
the former returns instantly, but the latter blocks waiting for the remote activity to
be spawned.

Since at(p) S does not start a new activity, S may contain constructs which only
make sense within a single activity. For example,

for(x in globalRefsToThings)
if (at(x.home) x().isNice())
return x(0);

returns the first nice thing in a collection. If we had used async at(x.home),
this would not be allowed; you can’t return from an async.
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Limitation: X10 does not currently allow break, continue, or return to exit
from an at.

13.3.5 Implicit copying from at

at(p)S copies nearly all data that S might reference, and sends it to place p,
before executing S there. The only things that are not copied are values only
reachable through GlobalRefs and transient fields, and data omitted by cus-
tom serialization. If x is a variable name referring to some object ob outside of S,
then the same variable name x refers to a deep copy of ob inside of S. In this way
the body S is in a separate block with different variable bindings.

For example, consider the following program.

val ¢ = new Cell[Int](9); // (1)

at (here) { // (2)
assert(c() == 9); // (3)
c.set(8); // (4)
assert(c() == 8); // (5)

}

assert(c() == 9); // (6)

The at statement implicitly copies the Cell and its contents. After (1), cis a
Cell containing 9; call that cell ¢; At (2), that cell is copied, resulting in another
cell co whose contents are also 9, as tested at (3). (Note that the copying behavior
of at happens even when the destination place is the same as the starting place—
even with at (here).) At (4), the contents of ¢, are changed to 8, as confirmed at
(5); the contents of ¢, are of course untouched. Finally, at (c), outside the scope
of the at started at line (2), c refers to its original value c; rather than the copy
Co.

The at statement induces a deep copy. Not only does it copy the values of vari-
ables, it copies values that they refer to through zero or more levels of reference.
Structures are preserved as well: if two fields x. f and x. g refer to the same object
01 in the original, then x. f and x.g will both refer to the same object o, in the
copy.

For example, in the following variation of the preceding example, a’s original

value a; is an array with two references to the same Cell[Int] c¢;. The fact that
a1(0) and a;(1) are both identical to ¢; is demonstrated in (A)-(C), as a1(0) is
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modified and a;(1) is observed to change. In (D)-(F), the copy as is tested in
the same way, showing that a5(0) and a5 (1) both refer to the same Cell[Int] c,.
However, the test at (G) shows that ¢, is a different cell from c;, because changes
to ¢y did not propagate to c;.

val ¢ = new Cell[Int](5);
val a = new Array[Cell[Int]][c,c];

assert(a(® () == 5 & a(1)) == 5); // (A)
c.set(6); // (B)
assert(a(® () == 6 & a(1)) == 6); // (O
at(Chere) {
assert(a(®) () == 6 && a(1l)() == 6); // (D)
c.set(7); // (E)

assert(a(® () =7 & a(lDO = 7); // (F)
}
assert(a(® (O == 6 && a(1)( == 6); // (Q)

13.3.6 Copying and Transient Fields

Recall that fields of classes and structs marked transient are not copied by at.
Instead, they are set to the default values for their types. Types that do not have
default values cannot be used in transient fields.

In the following example, every Trans object has an a-field equal to 1. However,
despite the initializer on the b field, it is not the case that every Trans has b==2.
Since b is transient, when the Trans value this is copied at at Chere){. ..}
in example (), its b field is not copied, and the default value for an Int, 0, is used
instead. Note that we could not make a transient field ¢ : Int{c != 0}, since
the type has no default value, and copying would in fact set it to zero.

class Trans {

val a : Int = 1;
transient val b : Int = 2;
//ERROR transient val c : Int{c !'= 0} = 3;
def example() {

assert(a == 1 && b == 2);

at (Chere) {

assert(a == 1 && b == 0);
3
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13.3.7 Copying and GlobalRef

A GlobalRef[T] (say g) contains a reference to a value of type T, in a form which
can be transmitted, and a Place g.home indicating where the value lives. When a
GlobalRef is serialized an opaque, globally unique handle to the enclosed value
o is passed.

The following example does not copy the value huge. However, huge would have
been copied if it had been put into a Cell, or simply used directly.

val huge = "A potentially big thing";
val href = GlobalRef(huge);
at (here) {
use (href);
}
3

Values protected in GlobalRefs can be retrieved by the application operation
g(. g(Q) is guarded; it can only be called when g.home == here. If you want
to do anything other than pass a global reference around or compare two of them
for equality, you need to placeshift back to the home place of the reference, often
with at(g.home). For example, the following program modifies the command-
line argument array.

public static def main(argv: Array[String] (1)) {
val argref = GlobalRef[Array[String](1)](argv);
at(Chere.next()) use(argref);
3
static def use(argref : GlobalRef[Array[String](1)]) {
at(argref.home) {
val argv = argref();
argv(®) = "Hi!";
}
3
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13.3.8 Warnings about at

There are two dangers involved with at:

e Careless use of at can result in copying and transmission of very large data
structures. In particular, it is very easy to capture this — a field reference
will do it — and accidentally copy everything that this refers to, which can
be very large.

e As seen in the examples above, a local variable reference x may refer to
different objects in different nested at scopes The programmer must either
ensure that a variable accessed across an at boundary has no mutable state
or be prepared to reason about which copy gets modified.
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An activity is a statement being executed, independently, with its own local vari-
ables; it may be thought of as a very light-weight thread. An X10 computation
may have many concurrent activities executing at any give time. All X10 code
runs as part of an activity; when an X10 program is started, the main method is
invoked in an activity, called the root activity.

Activities coordinate their execution by various control and data structures. For
example, when (x==0) ; blocks the current activity until some other activity sets
x to zero. However, activities determine the places at which they may be blocked
and resumed, by when and similar constructs. There are no means by which one
activity can arbitrarily interrupt, block, or resume another, no method activity.interrupt().

An activity may be running, blocked on some condition or terminated. If it is
terminated, it is terminated in the same way that its statement is: in particular,
if the statement terminates abruptly, the activity terminates abruptly for the same

reason. (§14.1).

Activities can be long-running entities with a good deal of local state. In particular
they can involve recursive method calls (and therefore have runtime stacks). How-
ever, activities can also be short-running light-weight entities, e.g., it is reasonable
to have an activity that simply increments a variable.

An activity may asynchronously and in parallel launch activities at other places.
Every activity except the initial main activity is spawned by another. Thus, at any
instant, the activities in a program form a tree.

X10 uses this tree in crucial ways. First is the distinction between local termina-
tion and global termination of a statement. The execution of a statement by an
activity is said to terminate locally when the activity has finished all its compu-
tation. (For instance the creation of an asynchronous activity terminates locally
when the activity has been created.) It is said to terminate globally when it has

193
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terminated locally and all activities that it may have spawned at any place have,
recursively, terminated globally. For example, consider:

async {s1Q);}
async {s2Q);}

The primary activity spawns two child activities and then terminates locally, very
quickly. The child activities may take arbitrary amounts of time to terminate (and
may spawn grandchildren). When s1(), s2(), and all their descendants terminate
locally, then the primary activity terminates globally.

The program as a whole terminates when the root activity terminates globally.
In particular, X10 does not permit the creation of daemon threads—threads that
outlive the lifetime of the root activity. We say that an X10 computation is rooted
(414.4).

Future Extensions. We may permit the initial activity to be a daemon activity
to permit reactive computations, such as webservers, that may not terminate.

14.1 The X10 rooted exception model

The rooted nature of X10 computations permits the definition of a rooted excep-
tion model. In multi-threaded programming languages there is a natural parent-
child relationship between a thread and a thread that it spawns. Typically the
parent thread continues execution in parallel with the child thread. Therefore the
parent thread cannot serve to catch any exceptions thrown by the child thread.

The presence of a root activity and the concept of global termination permits X10
to adopt a more powerful exception model. In any state of the computation, say
that an activity A is a root of an activity B if A is an ancestor of B and A is blocked
at a statement (such as the finish statement awaiting the termination of
B (and possibly other activities). For every X10 computation, the root-of relation
is guaranteed to be a tree. The root of the tree is the root activity of the entire
computation. If A is the nearest root of B, the path from A to B is called the
activation path for the activityE]

"Note that depending on the state of the computation the activation path may traverse activities
that are running, blocked or terminated.
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We may now state the exception model for X10. An uncaught exception propa-
gates up the activation path to its nearest root activity, where it may be handled
locally or propagated up the root-of tree when the activity terminates (based on
the semantics of the statement being executed by the activity) There is always
a good place to put a try-catch block to catch exceptions thrown by an asyn-
chronous activity.

14.2 async: Spawning an activity

Asynchronous activities serve as a single abstraction for supporting a wide range
of concurrency constructs such as message passing, threads, DMA, streaming,
data prefetching. (In general, asynchronous operations are better suited for sup-
porting scalability than synchronous operations.)

An activity is created by executing the async statement:

AsyncStatement ::= async ClockedClause’ Statement
clocked async Statement
clocked ( ClockList )

ClockedClause

The basic form of async is async S, which starts a new activity located here
executing S. (For the clocked form, see §15.4])

Multiple activities launched by a single activity at another place are not ordered
in any way. They are added to the set of activities at the target place and will be
executed based on the local scheduler’s decisions. If some particular sequencing
of events is needed, when, atomic, finish, clocks, and other X10 constructs can
be used. X10 implementations are not required to have fair schedulers, though
every implementation should make a best faith effort to ensure that every activity
eventually gets a chance to make forward progress.

STATIC SEMANTICS RULE: The statement in the body of an async is subject
to the restriction that it must be acceptable as the body of a void method for an
anonymous inner class declared at that point in the code. As such, it may reference
variables in lexically enclosing scopes.

%In X10 v2.1 the finish statement is the only statement that marks its activity as a root activity.
Future versions of the language may introduce more such statements.
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14.3 Finish

The statement finish S converts global termination to local termination.

FinishStatement = finish Statement
| clocked finish Statement

An activity A executes finish S by executing S and then waiting for all activities
spawned by S (directly or indirectly, here or at other places) to terminate. An
activity may terminate normally, or abruptly, i.e. by throwing an exception. All
exceptions thrown by spawned activities are caught and accumulated.

finish S terminates locally when all activities spawned by S terminate globally
(either abruptly or normally). If S terminates normally, then finish S terminates
normally and A continues execution with the next statement after finish S. If
S or one of the activities spawned by it terminate abruptly, then finish S termi-
nates abruptly and throws a single exception, x10.lang.MultipleExceptions
formed from the collection of exceptions accumulated at finish S.

Thus finish S statement serves as a collection point for uncaught exceptions
generated during the execution of S.

Note that repeatedly finishing a statement has little effect after the first finish:
finish finish S is indistinguishable from finish S if S throws no excep-

tions. (If S throws exceptions, finish S wraps them in one layer of MultipleExceptions

and finish finish S in two layers.)

14.4 Initial activity

An X10 computation is initiated from the command line on the presentation of
a class or struct name C. The class or struct must have a public static def

main(a: Array[String] (1)) :voidmethod, orapublic static def main(a:

Array[String]) :void method, otherwise an exception is thrown and the com-
putation terminates. The single statement

finish async (Place.FIRST_PLACE) {
C.main(s);

}
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is executed where s is a one-dimensional Array of strings created from the com-
mand line arguments. This single activity is the root activity for the entire com-
putation. (See §13]for a discussion of places.)

14.5 Ateach statements

Deprecated: The ateach construct is deprecated.

AtEachStatement ::= ateach ( Looplndex in Exp ) ClockedClause’
Statement
| ateach ( Exp ) Statement
LooplndexDeclarator = Id HasResultType®

| [ IdList ] HasResultType®
| Id [ IdList ] HasResultType®
LooplIndex = Mods’ LoopIndexDeclarator
| Mods’ VarKeyword LoopIndexDeclarator

In ateach(p in D) S, D must be either of type Dist (see or of type
DistArray[T] (see §I6), and p will be of type Point (see §I6.I). If D is an
DistArray[T], thenateach (p in D)Sisidentical to ateach(p in D.dist)S;
the iteration is over the array’s underlying distribution.

Instead of writing ateach (p in D) S the programmer should write for (p
in D) at(D(p)) async S to getthe same effect. For each point p in D, at place
D(p), S is executed simultaneously.

However, this often results in excessive communication and parallelism. Instead
the programmer may want to write:

for (place in D.places()) async at (place) {
for (p in D|here) {
S(P);
}

If the programmer wishes to execute S in parallel at each place, S(p) may be
replaced by async S(p) .

20.77
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14.6 Atomic blocks

X10’s atomic blocks provide a high-level construct for coordinating the mutation
of shared data. A programmer may use atomic blocks to guarantee that invariants
of shared data-structures are maintained even as they are being accessed simulta-
neously by multiple activities running in the same place.

An X10 program in which all accesses (both reads and writes) of shared variables
appear in atomic or when blocks is guaranteed to use all shared variables atom-
ically. Equivalently, if two accesses to some shared variable v could collide at
runtime, and one is in an atomic block, then the other must be in an atomic block
as well to guarantee atomicity of the accesses to v. If some accesses to shared
variables are not protected by atomic or when, then race conditions or deadlocks
may occur.

In particular, atomic sections are atomic with respect to each other. They may not
be atomic with respect to non-atomic code.

X10 guarantees that atomic sections at the same place are mutually exclusive.
That is, if one activity A at a given place p is executing an atomic section, then
no other activity B at p will also be executing an atomic section. If such a B at-
tempts to execute an atomic or when command, it will be blocked until A finishes
executing its atomic section.

AtomicStatement ;= atomic Statement
WhenStatement ::= when ( Exp ) Statement

For example, consider a class Redund[T], which encapsulates a list 1ist and,
(redundantly) keeps the size of the list in a second field size. Then r:Redund[T]
has the invariant r.1list.size() == r.size, which must be true at any point
at which no method calls on r are active.

If the add method on Redund (which adds an element to the list) were defined as:

def add(x:T) { // Incorrect
this.list.add(x);
this.size = this.size + 1;

}

Then two activities simultaneously adding elements to the same r could break
the invariant. Suppose that r starts out empty. Let the first activity perform the
list.add, and compute this.size+1, which is 1, but not store it back into

20.75]

20.76)
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this.size yet. (At this point, r.1list.size()==1 and r.size==0; the invari-
ant expression is false, but, as the first call to r.add () is active, the invariant does
not need to be true — it only needs to be true when the call finishes.) Now, let the
second activity do its call to add to completion, which finishes with r.size==1.
(As before, the invariant expression is false, but a call to r.add () is still active, so
the invariant need not be true.) Finally, let the first activity finish, which assigns
the 1 computed before back into this.size. Atthe end, there are two elements in
r.list, butr.size==1. Since there are no calls to r.add () active, the invariant
must be true, but it is not.

In this case, the invariant can be maintained by making the increment atomic.
Doing so forbids that sequence of events; the atomic block cannot be stopped
partway.

def add(x:T) {
atomic {
this.list.add(x);
this.size = this.size + 1;

14.6.1 Unconditional atomic blocks

The simplest form of an atomic block is the unconditional atomic block: atomic
S. When atomic S is executing at some place p, no other activity at p may enter
an atomic block. So, other activities may continue, even at the same place, but
code protected by atomic blocks is not subject to interference from other code in
atomic blocks.

If execution of the statement may throw an exception, it is the programmer’s re-
sponsibility to wrap the atomic block within a try/finally clause and include
undo code in the finally clause. Thus the atomic statement only guarantees atom-
icity on successful execution, not on a faulty execution.

Atomic blocks are closely related to non-blocking synchronization constructs [6],
and can be used to implement non-blocking concurrent algorithms.

Code executed inside of atomic S and when S is subject to certain restrictions.
A violation of these restrictions causes an I1legalOperationException to be
thrown at the point of the violation.
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S may not spawn another activity.

S may not use any blocking statements; when, next, finish. (The use of a
nested atomic is permitted.)

S may not force() a Future.

S may not use at expressions.

Consequences. Note an important property of an (unconditional) atomic block:

atomic {sl; atomic s2} = atomic {sl; s2} (14.1)

Atomic blocks do not introduce deadlocks. They may exhibit all the bad behavior
of sequential programs, including throwing exceptions and running forever, but
they are guaranteed not to deadlock.

Example

The following class method implements a (generic) compare and swap (CAS)
operation:

var target:0Object = null;
public atomic def CAS(oldl: Object, newl: Object): Boolean {
if (target.equals(oldl)) {
target = newl;
return true;

}

return false;

14.6.2 Conditional atomic blocks

Conditional atomic blocks allow the activity to wait for some condition to be
satisfied before executing an atomic block. For example, consider a Redund class
holding a list r.1ist and, redundantly, its length r.size. A pop operation will
delay until the Redund is nonempty, and then remove an element and update the
length.
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def pop():T {
var ret : T;
when(size>0) {
ret = list.removeAt(0);
size --;
}

return ret;

}

The execution of the test is atomic with the execution of the block. This is impor-
tant; it means that no other activity can sneak in and make the condition be false
before the block is executed. In this example, two pops executing on a list with
one element would work properly. Without the conditional atomic block — even
doing the decrement atomically — one call to pop could pass the size>0 guard;
then the other call could run to completion (removing the only element of the list);
then, when the first call proceeds, its removeAt will fail.

Note that if would not work here. if(size>0) atomic{size--; return
list.removeAt(0);} allows another activity to act between the test and the
atomic block. And atomic{ if(size>0) {size--; ret = list.removeAt(0);}}
does not wait for size>0 to become true.

Conditional atomic blocks are of the form when(b)S; b is called the guard, and S
the body.

An activity executing such a statement suspends until such time as the guard is true
in the current state. In that state, the body is executed. The checking of the guards
and the execution of the corresponding guarded statement is done atomically.

X10 does not guarantee that a conditional atomic block will execute if its condition
holds only intermittently. For, based on the vagaries of the scheduler, the precise
instant at which a condition holds may be missed. Therefore the programmer is
advised to ensure that conditions being tested by conditional atomic blocks are
eventually stable, i.e., they will continue to hold until the block executes (the
action in the body of the block may cause the condition to not hold any more).

The statement when (true) S is behaviorally identical to atomic S: it never
suspends.

The body S of when(b)S is subject to the same restrictions that the body of
atomic S is. The guard is subject to the same restrictions as well. Furthermore,
guards should not have side effects.
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Note that this implies that guarded statements are required to be flat, that is, they
may not contain conditional atomic blocks. (The implementation of nested con-
ditional atomic blocks may require sophisticated operational techniques such as
rollbacks.)

Example 14.6.1 The following class shows how to implement a bounded buffer
of size 1 in X10 for repeated communication between a sender and a receiver.
The call buf.send(ob) waits until the buffer has space, and then puts ob into
it. Dually, buf.receive() waits until the buffer has something in it, and then
returns that thing.

class OneBuffer[T] {
var datum: T;
def this(t:T) { this.datum = t; this.filled = true; }
var filled: Boolean;
public def send(v: T) {
when (!filled) {
this.datum = v;
this.filled = true;
}

3
public def receive(): T {
when (filled) {
v: T = datum;
filled = false;
return v;
}
}
ks

14.7 Use of Atomic Blocks

The semantics of atomicity is chosen as a compromise between programming sim-
plicity and efficient implementation. Unlike some possible definitions of “atomic”,
atomic blocks do not provide absolute atomicity.

Atomic blocks are atomic with respect to each other.
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var n : Int = 0;
finish {
async atomic n
async atomic n

}

n+1; //Ca)
n+ 2; //()

This program has only two possible interleavings: either (a) entirely precedes
(b) or (b) entirely precedes (a). Both end up with n==3.

However, atomic blocks are not atomic with respect to non-atomic code. It we
remove the atomics on (a), we get far messier semantics.

var n : Int = 0;

finish {
// LEGAL BUT UNWISE
async n = n + 1; // (@)
async atomic n =n + 2; //(b)
}

If X10 had absolute atomic semantics, this program would be guaranteed to treat
the atomic increment as a single statement. This would permit three interleavings:
the two possible from the fully atomic program, or a third one with the events:
(a)’s read of ® from n, the entirety of (b), and then (a)’s write of 8+1 back to
n. This interleaving results in n==1. So, with absolute atomic semantics, n==1 or
n==3 are the possible results.

However, X10’s semantics are weaker than that. Atomic statements are atomic
with respect to each other — but there is no guarantee about how they interact
with non-atomic statements at all. In particular, the following fourth interleaving
is possible: (a)’s read of O from n, (b)’s read of O from n, (a)’s write of 1 to n,
and (b)’s write of 2 to n. Thus, n==2 is permissible as a result in X10.

X10’s semantics permit more efficient implementation than absolute atomicity.
Absolute atomicity would, in principle, require all activities at place p to stop
whenever one of them enters an atomic section, which would seriously curtail
concurrency. X10 simply requires that, when one activity is in an atomic section,
that other activities stop when they are trying to enter an atomic section — which
is to say, they can continue computing on their own all they like. The difference
can be substantial.

However, X10’s semantics do impose a certain burden on the programmer. A
sufficient rule of thumb is that, if any access to a variable is done in an atomic



204 CHAPTER 14. ACTIVITIES

section, then all accesses to it must be in atomic sections.



15 Clocks

Many concurrent algorithms proceed in phases: in phase £, several activities work
independently, but synchronize together before proceeding on to phase £ + 1.
X10 supports this communication structure (and many variations on it) with a
generalization of barriers called clocks. Clocks are designed so that programs
which follow a simple syntactic discipline will not have either deadlocks or race
conditions.

The following minimalist example of clocked code has two worker activities A
and B, and three phases. In the first phase, each worker activity says its name
followed by 1; in the second phase, by a 2, and in the third, by a 3. So, if say
prints its argument, A-1 B-1 A-2 B-2 B-3 A-3 would be a legitimate run of
the program, but A-1 A-2 B-1 B-2 A-3 B-3 (with A-2 before B-1) would not.

The program creates a clock cl to manage the phases. Each participating activity
does the work of its first phase, and then executes next ; to signal that it is finished
with that work. next; is blocking, and causes the participant to wait until all par-
ticipant have finished with the phase — as measured by the clock cl to which they
are both registered. Then they do the second phase, and another next; to make
sure that neither proceeds to the third phase until both are ready. This example
uses finish to wait for both particiants to finish.

class ClockEx {
static def say(s:String) =
{ atomic{x10.io0.Console.OUT.println(s);} }
public static def main(argv:Rail[String]) {
finish async{
val cl = Clock.make();
async clocked(cl) {// Activity A
say("A-1");
next;

205
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say("A-2");

next;

say("A-3");
}// Activity A

async clocked(cl) {// Activity B
say("B-1");
next;
say("B-2");
next;
say("B-3");
}// Activity B
}
3
b

This chapter describes the syntax and semantics of clocks and statements in the
language that have parameters of type Clock.

The key invariants associated with clocks are as follows. At any stage of the com-
putation, a clock has zero or more registered activities. An activity may perform
operations only on those clocks it is registered with (these clocks constitute its
clock set). An attempt by an activity to operate on a clock it is not registered with
will cause a ClockUseException to be thrown. An activity is registered with
zero or more clocks when it is created. During its lifetime the only additional
clocks it can possibly be registered with are exactly those that it creates. In partic-
ular it is not possible for an activity to register itself with a clock it discovers by
reading a data structure.

The primary operations that an activity a may perform on a clock c that it is
registered upon are:

e It may spawn and simultaneously register a new activity on c, with the
statement async clocked(c)S.

o It may unregister itself from c, with c.drop(). After doing so, it can no
longer use most primary operations on C.

e It may resume the clock, with c.resume (), indicating that it has finished
with the current phase associated with c and is ready to move on to the next
one.
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e It may wait on the clock, with c.next (). This first does c.resume(), and
then blocks the current activity until the start of the next phase, viz., until all
other activities registered on that clock have called c.resume().

e It may block on all the clocks it is registered with simultaneously, by the
command next;. This, in effect, calls c.next() simultaneously on all
clocks c that the current activity is registered with.

e Other miscellaneous operations are available as well; see the Clock API.

15.1 Clock operations

There are two language constructs for working with clocks. async clocked(cl)
S starts a new activity registered on one or more clocks. next; blocks the current
activity until all the activities sharing clocks with it are ready to proceed to the
next clock phase. Clocks are objects, and have a number of useful methods on
them as well.

15.1.1 Creating new clocks

Clocks are created using a factory method on x10.1lang.Clock:

val c: Clock = Clock.make();

The current activity is automatically registered with the newly created clock.
It may deregister using the drop method on clocks (see the documentation of
x10.1lang.Clock). All activities are automatically deregistered from all clocks
they are registered with on termination (normal or abrupt).

15.1.2 Registering new activities on clocks

The statement
async clocked (cl, c2, c3) S
starts a new activity, initially registered with clocks c1, c2, and c3, and running

S. The activity running this code must be registered on those clocks. Violations
of these conditions are punished by the throwing of a ClockUseException.
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If an activity a that has executed c.resume() then starts a new activity b also
registered on c (e.g., via async clocked(c) S), the new activity b starts out
having also resumed c, as if it too had executed c.resume().

// a

val ¢ = Clock.make();

c.resume();

async clocked(c) {
// b
c.next();
b_phase_two();

ks

c.next(Q);

a_phase_two();

In the proper execution, a and b both perform c.next() and then their phase-2
actions. However, if b were not initially in the resume state for c, there would be
a race condition; b could perform c.next () and proceed to b_phase_two before
a performed c.next().

An activity may check that it is registered on a clock c by the predicate c.registered()

NOTE: X10 does not contain a “register” operation that would allow an activity
to discover a clock in a datastructure and register itself on it. Therefore, while a
clock ¢ may be stored in a data structure by one activity a and read from it by
another activity b, b cannot do much with c unless it is already registered with it.
In particular, it cannot register itself on c, and, lacking that registration, cannot
register a sub-activity on it with async clocked(c) S.

15.1.3 Resuming clocks

X10 permits split phase clocks. An activity may wish to indicate that it has
completed whatever work it wishes to perform in the current phase of a clock
c it is registered with, without suspending altogether. It may do so by executing
c.resume().

An activity may invoke resume () only on a clock it is registered with, and has
not yet dropped (§I15.1.5). A ClockUseException is thrown if this condition is
violated. Nothing happens if the activity has already invoked a resume on this
clock in the current phase.
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15.1.4 Advancing clocks

An activity may execute the statement

next;

Execution of this statement blocks until all the clocks that the activity is registered
with (if any) have advanced. (The activity implicitly issues a resume on all clocks
it is registered with before suspending.)

next; may be thought of as calling c.next() in parallel for all clocks that
the current activity is registered with. (The parallelism is conceptually impor-
tant: if activities a and b are both registered on clocks c and d, and a executes
c.next(); d.next() while b executes d.next(); c.next(), then the two
will deadlock. However, if the two clocks are waited on in parallel, as next;
does, a and b will not deadlock.)

Equivalently, next; sequentially calls c.resume() for each registered clock c,
in arbitrary order, and then c.wait () for each clock, again in arbitrary order.

An activity blocked on next resumes execution once it is marked for progress by
all the clocks it is registered with.

15.1.5 Dropping clocks

An activity may drop a clock by executing c.drop().

The activity is no longer considered registered with this clock. A ClockUseException
is thrown if the activity has already dropped c.

15.2 Deadlock Freedom

In general, programs using clocks can deadlock, just as programs using loops can
fail to terminate. However, programs written with a particular syntactic discipline
are guaranteed to be deadlock-free, just as programs which use only bounded
loops are guaranteed to terminate. The syntactic discipline is:

e The next () method may not be called on any clock. (The next ; statement
is allowed.)
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e Inside of £finish{S}, all clocked asyncs must be in the scope an unclocked
async.

The second clause prevents the following deadlock.

val c:Clock = Clock.make();

async clocked(c) { // (A
finish async clocked(c) { // (B) Violates clause 2
next; // (Bnext)
}
next; // (Anext)
}

(A), first of all, waits for the finish containing (B) to finish. (B) will execute its
next at (Bnext), and then wait for all other activities registered on c to execute
their nexts. However, (A) is registered on c. So, (B) cannot finish until (A)
has proceeded to (Anext), and (A) cannot proceed until (B) finishes. Thus, this
causes deadlock.

15.3 Program equivalences

From the discussion above it should be clear that the following equivalences hold:

c.resume(); next; = next; (15.1)
c.resume(); d.resume(); = d.resume(); c.resume(); (15.2)
c.resume(); c.resume(); = c.resume(); (15.3)

Note that next; next; is not the same as next;. The first will wait for clocks
to advance twice, and the second once.

15.4 Clocked Finish

In the most common case of a single clock coordinating a few behaviors, X10
allows coding with an implicit clock. finish and async statements may be qual-
ified with clocked.
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A clocked finish introduces a new clock. It executes its body in the usual way
that a finish does— except that, when its body completes, the activity executing
the clocked finish drops the clock, while it waits for asynchronous spawned
asyncs to terminate.

A clocked async registers its async with the implicit clock of the surrounding
clocked finish.

Both the clocked finish and clocked async may use the next statement to
advance implicit clock. Since the implicit clock is not available in a variable, it
cannot be manipulated directly. (If you want to manipulate the clock directly, use
an explicit clock.)

The following code starts two activities, each of which perform their first phase,
wait for the other to finish phase 1, and then perform their second phase.

clocked finish {
clocked async {
phase("A", 1);
next;
phase("A", 2);
}
clocked async {
phase("B", 1);
next;
phase("B", 2);
}
3

Clocked finishes may be nested. The inner clocked finish operates in a single
phase of the outer one.



16 Local and Distributed Arrays

Arrays provide indexed access to data at a single Place, via Points—indices of
any dimensionality. DistArrays is similar, but spreads the data across multiple
Places, via Dists. We refer to arrays either sort as “general arrays”.

This chapter provides an overview of the x10.array classes Array and DistArray,
and their supporting classes Point, Region and Dist.

16.1 Points

General arrays are indexed by Points, which are n-dimensional tuples of integers.
The rank property of a point gives its dimensionality. Points can be constructed
from integers or Array[Int] (1)s by the Point.make factory methods:

Point.make(0);
Point.make(0,0);
Point.make([0,0,0,0,0]);

val origin_1 : Point{rank==1}
val origin_2 : Point{rank==2}
val origin_5 : Point{rank==5}

There is an implicit conversion from Array[Int] (1) to Point, giving a conve-
nient syntax for constructing points:

val p : Point = [1,2,3];
val q : Point{rank==5} = [1,2,3,4,5];
val r : Point(3) = [11,22,33];

The coordinates of a point are available by subscripting; p(1) is the ith coordinate
of the point p. Point(n) is a type-defined shorthand for Point{rank==n}.

212
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16.2 Regions

A region is a set of points of the same rank. X10 provides a built-in class,
x10.array.Region, to allow the creation of new regions and to perform opera-
tions on regions. Each region R has a property R. rank, giving the dimensionality
of all the points in it.

val MAX_HEIGHT=20;
val Null = Region.makeUnit(); // Empty 0-dimensional region

val R1 = 1..100; // 1-dim region with extent 1..100
val R2 = (1..100) as Region(1l); // same as Rl

val R3 = (0..99) * (-1..MAX_HEIGHT);

val R4 = Region.makeUpperTriangular(10);

val R5 = R4 && R3; // intersection of two regions

The expression m. . n, for integer expressions m and n, evaluates to the rectangular,
rank-1 region consisting of the points {[m], ..., [n]}. If m is greater than n, the
region m. .n is empty.

Various built-in regions are provided through factory methods on Region.
e Region.makeEmpty(n) returns an empty region of rank n.

e Region.makeFull(n) returns the region containing all points of rank n.

e Region.makeUnit() returns the region of rank O containing the unique
point of rank 0. It is useful as the identity for Cartesian product of regions.

e Region.makeHalfspace(normal:Point, k:Int) returnsthe unbounded
half-space of rank normal . rank, consisting of all points p satisfying p-normal
< k.

e Region.makeRectangular(min, max), where min and max are Int rails
or valrails of length n, returns aRegion(n) equal to: [min(®) .. max(0),
.., min(n-1)..max(n-1)].

e Region.make(regions) constructs the Cartesian product of the Region(1)s
in regions.

e Region.makeBanded(size, upper, lower) constructsthe banded Region(2)
of size size, with upper bands above and 1lower bands below the diagonal.
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e Region.makeBanded(size) constructs the banded Region(2) with just
the main diagonal.

e Region.makeUpperTriangular (N) returns a region corresponding to the
non-zero indices in an upper-triangular N x N matrix.

e Region.makeLowerTriangular (N) returns a region corresponding to the
non-zero indices in a lower-triangular N x N matrix.

e If R is a region, and p a Point of the same rank, then R+p is R translated
forwards by p — the region whose points are r+p for each r in R.

e If R is a region, and p a Point of the same rank, then R-p is R translated
backwards by p — the region whose points are r-p for each r in R.

All the points in a region are ordered canonically by the lexicographic total order.
Thus the points of the region (1..2)*(1..2) are ordered as

1,D, 1,2, 2,0, 2,2

Sequential iteration statements such as for (§12.12) iterate over the points in a
region in the canonical order.

A region is said to be rectangular if it is of the form (T; * --- * T;) for some
set of intervals T; = 1; .. h; . Such a region satisfies the property that if two
points p; and ps are in the region, then so is every point p, between them (that is,
it is convex). (Banded and triangular regions are not rectangular.) The operation
R.boundingBox () gives the smallest rectangular region containing R.

16.2.1 Operations on regions

Let R be a region. A sub-region is a subset of R.

Let R1 and R2 be two regions whose types establish that they are of the same rank.
Let S be another region; its rank is irrelevant.

R1 && R2 is the intersection of R1 and R2, viz., the region containing all points
which are in both R1 and R2. For example, 1..10 && 2..201is 2..10.

R1 * Sis the Cartesian product of R1 and S, formed by pairing each point in R1
with every pointin S. Thus, (1..2)*(3..4)*(5..6) is the region of rank 3 con-
taining the eight points with coordinates [1,3,5], [1,3,6], [1,4,5]1, [1,4,6],
[2,3,51,12,3,6],[2,4,5], [2,4,6].
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For a region R and point p of the same rank, R+p and R-p represent the translation
of the region forward and backward by p. That is, R+p is the set of points p+q for
all g in R, and R-p is the set of g-p.

More Region methods are described in the API documentation.

16.3 Arrays

Arrays are organized data, arranged so that it can be accessed by subscript. An
Array[T] A has a Region A.region, telling which Points are in A. For each
point p in A.region, A(p) is the datum of type T associated with p. X10 imple-
mentations should attempt to store Arrays efficiently, and to make array element
accesses quick—e.g., avoiding constructing Points when unnecessary.

This generalizes the concepts of arrays appearing in many other programming

languages. A Point may have any number of coordinates, so an Array can have,
in effect, any number of integer subscripts.

Indeed, it is possible to write code that works on Arrays regardless of dimension.
For example, to add one Array[Int] src into another dest,

static def addInto(src: Array[Int], dest:Array[Int])
{src.region == dest.region}
= {
for (p in src.region)
dest(p) += src(p);
3

Since p is a Point, it can hold as many coordinates as are necessary for the arrays
src and dest.

The basic operation on arrays is subscripting: if A is an Array[T] and p a point
with the same rank as A.region, then A(p) is the value of type T associated with
point p.

Array elements can be changed by assignment. If t: T,
A(p) = t;
modifies the value associated with p to be t, and leaves all other values in A
unchanged.
An Array[T] A has:
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e A.region: the Region upon which A is defined.
e A.size: the number of elements in A.

e A.rank, the rank of the points usable to subscript A. Identical to A.region.rank.

16.3.1 Array Constructors

To construct an array whose elements all have the same value init, call new
Array[T] (R, init). For example, an array of a thousand "oh!"s can be made
by: new Array[String](1l..1000, "oh!").

To construct and initialize an array, call the two-argument constructor. new
Array[T] (R, f) constructs an array of elements of type T on region R, with
A(p) initialized to £(p) for each point p in R. £ must be a function taking a point
of rank R.rank to a value of type T. E.g., to construct an array of a hundred
zero values, call new Array[Int](1..100, (Point(1))=>0). To construct a
multiplication table, callnew Array[Int]((0..9)*(0..9), (p:Point(2))
=> p(®*p(1)).

Other constructors are available; see the API documentation and

16.3.2 Array Operations

The basic operation on Arrays is subscripting. If A:Array[T] and p:Point{rank
== A.rank}, then a(p) is the value of type T appearing at position p in A. The
syntax is identical to function application, and, indeed, arrays may be used as
functions. A(p) may be assigned to, as well, by the usual assignment syntax
A(p)=t. (This uses the application and setting syntactic sugar, as given in §8.7.5])

Sometimes it is more convenient to subscript by integers. Arrays of rank 1-4 can,
in fact, be accessed by integers:

val Al = new Array[Int](1..10, 0);

Al1(4) = A1(4) + 1;

val A4 = new Array[Int]((1..2)*(1..3)*(1..4)*(1..5), 0);
A4(2,3,4,5) = A4(1,1,1,1)+1;

Iteration over an Array is defined, and produces the Points of the array’s region.
If you want to use the values in the array, you have to subscript it. For example,
you could double every element of an Array[Int] by:
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for (p in A) A(p) = 2*A(p);

16.4 Distributions

Distributed arrays are spread across multiple Places. A distribution, a mapping
from a region to a set of places, describes where each element of a distributed array
is kept. Distributions are embodied by the class x10.array.Dist. This class is
final in X10 v2.1; future versions of the language may permit user-definable
distributions. The rank of a distribution is the rank of the underlying region, and
thus the rank of every point that the distribution applies to.

val R <: Region = 1..100;
val D1 <: Dist = Dist.makeBlock(R);
val D2 <: Dist = Dist.makeConstant(R, here);

D1 distributes the region R in blocks, with a set of consecutive points at each place,
as evenly as possible. D2 maps all the points in R to here.

Let D be a distribution. D.region denotes the underlying region. Given a point
p, the expression D(p) represents the application of D to p, that is, the place
that p is mapped to by D. The evaluation of the expression D(p) throws an
ArrayIndexOutofBoundsException if p does not lie in the underlying region.

16.4.1 PlaceGroups

A PlaceGroup represents an ordered set of Places. PlaceGroups exist for
performance and scaleability: they are more efficient, in certain critical places,
than general collections of Place. PlaceGroup implements Sequence[Place],
and thus provides familiar operations — pg.size() for the number of places,
pg.iterator() to iterate over them, etc.

PlaceGroup is an abstract class. The concrete class SparsePlaceGroup is in-
tended for a small group of places: in particular, new SparsePlaceGroup(somePlace)
is a good PlaceGroup containing one place. new SparsePlaceGroup(segPlaces)
constructs a sparse place group from a sorted sequence of places.



218 CHAPTER 16. LOCAL AND DISTRIBUTED ARRAYS

16.4.2 Operations returning distributions

Let R be a region, Q a PlaceGroup, and P a place.

Unique distribution The distribution Dist.makeUnique(Q) is the unique dis-
tribution from the region 1. .k to Q mapping each point i to pi.

Constant distributions. The distribution Dist .makeConstant (R,P) maps ev-
ery point in region R to place P. The special case Dist.makeConstant (R) maps
every point in R to here.

Block distributions. The distribution Dist.makeBlock(R) distributes the el-
ements of R, in approximately-even blocks, over all the places available to the
program. There are other Dist.makeBlock methods capable of controlling the
distribution and the set of places used; see the API documentation.

Domain Restriction. If D is a distribution and R is a sub-region of D.region,
then D | R represents the restriction of D to R—that is, the distribution that takes
each point p in R to D(p), but doesn’t apply to any points but those in R.

Range Restriction. If D is a distribution and P a place expression, the term D
| P denotes the sub-distribution of D defined over all the points in the region of D
mapped to P.

Note that D | here does not necessarily contain adjacent points in D.region.
For instance, if D is a cyclic distribution, D | here will typically contain points
that differ by the number of places. An implementation may find a way to still
represent them in contiguous memory, e.g., using a complex arithmetic function
to map from the region index to an index into the array.

16.5 Distributed Arrays

Distributed arrays, instances of DistArray[T], are very much like Arrays, ex-
cept that they distribute information among multiple Places according to a Dist
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value passed in as a constructor argument. For example, the following code cre-
ates a distributed array holding a thousand cells, each initialized to 0.0, distributed
via a block distribution over all places.

val R <: Region = 1..1000;
val D <: Dist = Dist.makeBlock(R);
val da <: DistArray[Float] = DistArray.make[Float](D, (Point(1))=>0.0f);

16.6 Distributed Array Construction

DistArrays are instantiated by invoking one of the make factory methods of the
DistArray class. A DistArray creation must take either an Int as an argument
or a Dist. In the first case, a distributed array is created over the distribution
Dist.makeConstant([0:N-1],here); in the second over the given distribu-
tion.

A distributed array creation operation may also specify an initializer function.
The function is applied in parallel at all points in the domain of the distribution.
The construction operation terminates locally only when the DistArray has been
fully created and initialized (at all places in the range of the distribution).

For instance:

val data : DistArray[Int]

= DistArray.make[Int] (Dist.makeConstant(1l..1000), ([i]:Point(1)) => i);
val blocked = Dist.makeBlock((1..1000)*(1..1000));
val data2 : DistArray[Int]

= DistArray.make[Int] (blocked, ([i,j]:Point(2)) => i*j);

The first declaration stores in data a reference to a mutable distributed array with
1000 elements each of which is located in the same place as the array. The element
at [i] is initialized to its index i.

The second declaration stores in data2 a reference to a mutable two-dimensional
distributed array, whose coordinates both range from 1 to 1000, distributed in
blocks over all Places, initialized with 1*j at point [1,j].
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16.7 Operations on Arrays and Distributed Arrays

Arrays and distributed arrays share many operations. In the following, let a be an
array with base type T, and da be an array with distribution D and base type T.

16.7.1 Element operations

The value of a at a point p in its region of definition is obtained by using the
indexing operation a(p). The value of da at p is similarly da(p) This operation
may be used on the left hand side of an assignment operation to update the value:
a(p)=t; and da(p)=t; The operator assignments, a(i) += e and so on, are
also available.

It is a runtime error to use either da(p) or da(p)=v at a place other than da.dist(p),
viz. at the place that the element exists.

16.7.2 Constant promotion

For a region R and a value v of type T, the expression new Array[T] (R, V) pro-

duces an array on region R initialized with value v Similarly, for a distribution D

and a value v of type T the expression DistArray.make[T] (D, (Point(D.rank))=>v)
constructs a distributed array with distribution D and base type T initialized with v

at every point.

Note that Arrays are constructed by constructor calls, but DistArrays are con-
structed by calls to the factory methods DistArray.make. This is because Arrays
are fairly simple objects, but DistArrays may be implemented by different classes
for different distributions. The use of the factory method gives the library writer
the freedom to select appropriate implementations.

16.7.3 Restriction of an array

LetR be a sub-region of da.region. Thenda | Rrepresents the sub-DistArray
of da on the region R. That is, da | R has the same values as da when sub-
scripted by a point in region R && da.region, and is undefined elsewhere. °
Recall that a rich set of operators are available on distributions (§16.4) to obtain
sub-distributions (e.g. restricting to a sub-region, to a specific place etc).
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16.7.4 Operations on Whole Arrays

Pointwise operations The unary map operation applies a function to each ele-
ment of a distributed or non-distributed array, returning a new distributed array
with the same distribution, or a non-distributed array with the same region. For
example, the following produces an array of cubes:

val A = new Array[Int](1..10, (p:Point(1))=>p(®) );
// A=1,2,3,4,5,6,7,8,9,10

val cube = (i:Int) => i*i*i;

val B = A.map(cube);

// B=1,8,27,64,216,343,512,729,1000

A variant operation lets you specify the array B into which the result will be stored.

val A = new Array[Int](1l..10, (p:Point(1))=>p(0®) );

// A=1,2,3,4,5,6,7,8,9,10

val cube = (i:Int) => i*i*i;

val B = new Array[Int](A.region); // B = 0,0,0,0,0,0,0,0,0,0
A.map(B, cube);

// B=1,8,27,64,216,343,512,729,1000

This is convenient if you have an already-allocated array lying around unused.
In particular, it can be used if you don’t need A afterwards and want to reuse its
space:

val A = new Array[Int](1..10, (p:Point(1))=>p(0®) );
// A=1,2,3,4,5,6,7,8,9,10

val cube = (i:Int) => i*i*i;

A.map(A, cube);

// A=1,8,27,64,216,343,512,729,1000

The binary map operation takes a binary function and another array over the same
region or distributed array over the same distribution, and applies the function
pointwise to corresponding elements of the two arrays, returning a new array or
distributed array of the same shape. The following code adds two distributed
arrays:

static def add(da:DistArray[Int], db: DistArray[Int]{da.dist==db.dist})
= da.map(db, Int.+);
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Reductions Let f be a function of type (T,T)=>T. Let a be an array over base
type T. Let unit be a value of type T. Then the operation a.reduce(f, unit)
returns a value of type T obtained by combining all the elements of a by use
of £ in some unspecified order (perhaps in parallel). The following code gives
one method which meets the definition of reduce, having a running total r, and
accumulating each value a(p) into it using £ in turn. (This code is simply given
as an example; Array has this operation defined already.)

def oneWayToReduce[T](a:Array[T], £:(T,T)=>T, unit:T):T {
var r : T = unit;
for(p in a.region) r = f(r, a(p));
return r;

}

For example, the following sums an array of integers. f is addition, and unit is
Zero.

val a = [1,2,3,4];
val sum = a.reduce(Int.+, 0);
assert(sum == 10); // 10 == 1+2+3+4

Other orders of evaluation, degrees of parallelism, and applications of £ (x,unit)
and f£(unit,x)are also correct. In order to guarantee that the result is precisely
determined, the function f should be associative and commutative, and the value
unit should satisfy f(unit,x) == x == f(x,unit) forall x:T.

DistArrays have the same operation. This operation involves communication
between the places over which the DistArray is distributed. The X10 implemen-
tation guarantees that only one value of type T is communicated from a place as
part of this reduction process.

Scans Let £:(T,T)=>T, unit:T, and a be an Array[T] or DistArray[T].
Then a.scan(f,unit) is the array or distributed array of type T whose ith ele-
ment in canonical order is the reduction by £ with unit unit of the first 7 elements
of a.

This operation involves communication between the places over which the dis-
tributed array is distributed. The X10 implementation will endeavour to minimize
the communication between places to implement this operation.

Other operations on arrays, distributed arrays, and the related classes may be
found in the x10.array package.



17 Annotations

X10 provides an an annotation system system for to allow the compiler to be
extended with new static analyses and new transformations.

Annotations are interface types that decorate the abstract syntax tree of an X10
program. The X10 type-checker ensures that an annotation is a legal interface
type. In X10, interfaces may declare both methods and properties. Therefore, like
any interface type, an annotation may instantiate one or more of its interface’s
properties.

17.1 Annotation syntax

The annotation syntax consists of an “@” followed by an interface type.

Annotations ::=  Annotation
| Annotations Annotation
Annotation ::= @ NamedType

Annotations can be applied to most syntactic constructs in the language including
class declarations, constructors, methods, field declarations, local variable decla-
rations and formal parameters, statements, expressions, and types. Multiple occur-
rences of the same annotation (i.e., multiple annotations with the same interface
type) on the same entity are permitted.

Recall that interface types may have dependent parameters.

The following examples illustrate the syntax:

e Declaration annotations:

223
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// class annotation
@Value
class Cons { ... }

// method annotation
@PreCondition(® <= i && i < this.size)
public def get(i: Int): Object { ... }

// constructor annotation
@Where(x != null)
def this(x: T) { ... }

// constructor return type annotation
def this(x: T): C@Initialized { ... }

// variable annotation
@Unique x: A;

e Type annotations:

List@Nonempty
Int@Range(1,4)
Array[Array[Double]]@Size(n * n)

e Expression annotations:
m() : @RemoteCall

e Statement annotations:
@Atomic { ... }

@MinIterations(0)
@MaxIterations(n)
for (var i: Int = 0; i <n; i++) { ... }

// An annotated empty statement ;
@Assert(x < y);
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17.2 Annotation declarations

Annotations are declared as interfaces. They must be subtypes of the interface
x10.lang.annotation.Annotation. Annotations on particular static entities
must extend the corresponding Annotation subclasses, as follows:

e Expressions—ExpressionAnnotation

Statements—StatementAnnotation

Classes—ClassAnnotation

Fields—FieldAnnotation

Methods—MethodAnnotation

Imports—ImportAnnotation

Packages—PackageAnnotation



18 Native Code Integration

At times it becomes necessary to call non-X10 code from X10, perhaps to make
use of specialized libraries in other languages or to write more precisely con-
trolled code than X10 generally makes available. The @Native(lang,code)
Phrase annotation from x10.compiler.Native in X10 can be used to tell the
X10 compiler to generate code for certain kinds of Phrase, instead of what it
would normally compile to, when compiling to the 1ang back end.

18.1 Native static Methods

static methods can be given native implementations. Note that these imple-
mentations are syntactically expressions, not statements, in C++ or Java. Also, it
is possible (and common) to provide native implementations into both Java and
C++ for the same method.

import x10.compiler.Native;

class Son {
@Native("c++", "printf(\"Hi!\")"™)
@Native("java", "System.out.println(\"Hi!\")")
static def printNatively():void = {};

}

If only some back-end languages are given, the X10 code will be used for the
remaining back ends:

import x10.compiler.Native;

class Land {
@Native("c++", "printf(\"Hi from C++!\")™)
static def example():void = {
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x10.i0.Console.OUT.println("Hi from X10!");
}s
}

The native modifier on methods indicates that the method must not have an X10
code body, and @Native implementations must be given for all back ends:

import x10.compiler.Native;

class Plants {
@Native("c++", "printf(\"Hi!\")")
@Native("java", "System.out.println(\"Hi!\")")
static native def printNatively():void;

}

Values may be returned from external code to X10. Scalar types in Java and C++
correspond directly to the analogous types in X10.

import x10.compiler.Native;
class Return {
@Native("c++", "1'")
@Native("java", "1")
static native def one():Int;

}

Parameters may be passed to external code. (#1) is the first parameter, (#2)
the second, and so forth. ((#0) is the name of the enclosing class.) Be aware
that this is macro substitution rather than normal parameter passing; e.g., if the
first actual parameter is i++, and (#1) appears twice in the external code, i will

be incremented twice. For example, a (ridiculous) way to print the sum of two
numbers is:

import x10.compiler.Native;

class Species {
@Native("c++", "printf(\"Sum=%d\", (FL+(#2)) O")
@Native("java", "System.out.println(\"\" + ((#HD+#2)))")
static native def printNatively(x:Int, y:Int):void;

}

Static variables in the class are available in the external code.
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18.2 Native Blocks

Any block may be annotated with @Native(lang, stmt), indicating that, in the
given back end, it should be implemented as stmt. All value variables from the
surrounding context are available inside stmt. For example, the method call
born.example(10), if compiled to Java, changes the field y of a Born object
to 10. If compiled to C++ (for which there is no @Native), it sets it to 3.

import x10.compiler.Native;
class Born {
var y : Int = 1;
public def example(x:Int):Int{
@Native("java", "y=x;")
{y = 35}
return y;
}
}

Note that the code being replaced is a statement — the block {y = 3;} in this case
— so the replacement should also be a statement.

Other X10 constructs may or may not be available in Java and/or C++ code. For
example, type variables do not correspond exactly to type variables in either lan-
guage, and may not be available there. The exact compilation scheme is not fully
specified. You may inspect the generated Java or C++ code and see how to do
specific things, but there is no guarantee that fancy extern coding will continue to
work in later versions of X10.

The full facilities of C++ or Java are available in native code blocks. However,
there is no guarantee that advanced features behave sensibly. You must follow
the exact conventions that the code generator does, or you will get unpredictable
results. Furthermore, the code generator’s conventions may change without notice
or documentation from version to version. In most cases the code should either be
a very simple expression, or a method or function call to external code.

18.3 External Java Code

When X10 is compiled to Java, mentioning a Java class name in native code will
cause the Java compiler to find it in the sourcepath or classpath, in the usual way.
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This requires no particular extra work from the programmer.

18.4 External C++ Code

C++ code can be linked to X10 code, either by writing auxiliary C++ files and
adding them with suitable annotations, or by linking libraries.

18.4.1 Auxiliary C++ Files

Auxiliary C++ code can be written in .h and . cc files, which should be put in the
same directory as the the X10 file using them. Connecting with the library uses
the @NativeCPPInclude (dot_h_file_name) annotation to include the header
file, and the @NativeCPPCompilationUnit(dot_cc_file_name) annotation
to include the C++ code proper. For example:

MyCppCode.h:
void foo();

MyCppCode.cc:

#include <cstdlib>
#include <cstdio>
void foo() {
printf("Hello World!\n");

}
Test.x10:

import x10.compiler.Native;
import x10.compiler.NativeCPPInclude;
import x10.compiler.NativeCPPCompilationUnit;

@NativeCPPInclude ("MyCPPCode.h")
@NativeCPPCompilationUnit ("MyCPPCode.cc")
public class Test {
public static def main (args:Array[String] (1)) {
{ @Native("c++","foo();") {} }
}
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18.4.2 C++ System Libraries

If we want to additionally link to more libraries in /usr/lib for example, it
is necessary to adjust the post-compilation directly. The post-compilation is the
compilation of the C++ which the X10-to-C++ compiler x10c++ produces.

The mechanism used for this is the -post command line parameter to x10c++.
The following example shows how to compile blas into the executable via post
compiler parameters.

x10c++ Test.x10 -post '# # -1 /usr/local/blas # -L /usr/local/blas -1lblas’

e The first # means to use the default compiler for the architecture (from x10rt
properties file).

e The second # is substituted for the .cc files and CXXFLAGS that would
ordinarily be used.

e The third # is substituted for the libraries and LDFLAGS that would ordi-
narily used.

e For the second and third, if a % is used instead of a # then the the substitution
does not occur in that position. The % is erased. The desired parameter value
should appear after the % on the line. This allows a complete override of the
postcompiler behaviour.



19 Definite Assignment

X10 requires, reasonably enough, that every variable be set before it is read.
Sometimes this is easy, as when a variable is declared and assigned together:

var x : Int = 0;
assert x == 0;

However, it is convenient to allow programs to make decisions before initializing
variables.

def example(a:Int, b:Int) {
val max:Int;
// max cannot be read here.
if (a > b) max = a;
else max = b;
assert max >= a && max >= b;

}

This is particularly useful for val variables. vars could be initialized to a default
value and then reassigned with the right value, but vals must be initialized once
correctly and cannot be changed.

However, one must be careful — and the X10 compiler enforces this care. Without
the else clause, the preceding code might not give max a value by the assert.

This leads to the concept of definite assignment [?]. A variable is definitely as-
signed at a point in code if, no matter how that point in code is reached, the vari-
able has been assigned to. In X10, variables must be definitely assigned before
they can be read.

As X10 requires that val variables not be initialized twice, we need the dual con-
cept as well. A variable is definitely unassigned at a point in code if it cannot have
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been assigned there. For example, immediately after val x:Int, x is definitely
unassigned.

At some points in code, a variable might be neither definitely assigned nor defi-
nitely unassigned. Such states are not always useful.

def example(flag : Boolean) {
var x : Int;
if (flag) x = 1;
// X is neither def. assigned nor unassigned.
X = 2;
// x is def. assigned.

This shows that we cannot simply define “definitely unassigned” as “not definitely
assigned”. If x had been a val rather than a var, the previous example would not
be allowed.

Unfortunately, a completely accurate definition of “definitely assigned” or “def-
initely unassigned” is undecidable — impossible for the compiler to determine.
So, X10 takes a conservative approximation of these concepts. If X10’s definition
says that x is definitely assigned (or definitely unassigned), then it will be assigned
(or not assigned) in every execution of the program.

However, there are programs which X10’s algorithm says are incorrect, but which
actually would behave properly if they were executed. In the following example,
flag is either true or false, and in either case x will be initialized. However,
X10’s analysis does not understand this — thought it would understand if the
example were coded with an if-else rather than a pair of ifs. So, after the two
if statements, x is not definitely assigned, and thus the assert statement, which
reads it, is forbidden.

def example(flag:Boolean) {
var x : Int;
if (flag) x = 1;
if (!flag) x = 2;
// Not Allowed: assert x < 3;
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19.1 Technical Details of Definite Assignment

Definite assignedness for local variables is determined by one algorithm; definited
assignedness for fields by a different one.

Local variables (but not fields) allow asynchronous assignment. A local variable
can be assigned in an async statement, and, when the async is finished, the
variable is definitely assigned. Example:

val a : Int;
finish {
async {
a=1;
3

// a is not definitely assigned here

}

assert a==1;



20 Grammar

In this grammar, X’ denotes an optional X element.

MethodInvocation ::=  MethodPrimaryPrefix ( ArgumentList’ ) (1)
| MethodSuperPrefix ( ArgumentList’ )
| MethodClassNameSuperPrefix ( ArgumentList’ )
Mod = abstract (2)
| Annotation
| atomic
| final
| native
| private
| protected
| public
| static
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MethMods

TypeDefDecl

Properties
PropertyList

Property
MethodDecl
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transient

clocked

Mods’

MethMods property

MethMods Mod

Mods® type Id TypeParams’ FormalParams’
WhereClause® = Type ;

( PropertyList )

Property

PropertyList , Property

Annotations’ Id ResultType

MethMods def Id TypeParams® FormalParams
WhereClause® HasResultType® Offers’ MethodBody
MethMods operator TypeParams’ ( Formal-
Param ) BinOp ( FormalParam ) WhereClause®
HasResultType® Offers’ MethodBody

MethMods operator TypeParams® PrefixOp ( For-
malParam ) WhereClause’ HasResultType® Offers’
MethodBody

MethMods operator TypeParams® this BinOp
( FormalParam ) WhereClause’ HasResultType’
Offers’ MethodBody

MethMods operator TypeParams’ ( Formal-
Param ) BinOp this WhereClause® HasResultType®
Offers’ MethodBody

MethMods operator TypeParams® PrefixOp this
WhereClause® HasResultType® Offers’ MethodBody
MethMods operator this TypeParams® For-
malParams WhereClause® HasResultType’ Offers’

MethodBody
MethMods operator this TypeParams® For-
malParams = ( FormalParam ) WhereClause’

HasResultType® Offers’ MethodBody

MethMods operator TypeParams’® ( FormalParam
) as Type WhereClause® Offers’ MethodBody
MethMods operator TypeParams® ( FormalParam
) as ? WhereClause’ HasResultType® Offers’
MethodBody

MethMods operator TypeParams’® ( FormalParam
) WhereClause® HasResultType® Offers’ Method-
Body

(3)

(4)

(5)
(6)

(7)
(8)
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PropertyMethodDecl

ExplicitCtorInvocation

NormallnterfaceDecl

ClassInstCreationExp

AssignPropertyCall
Type

FunctionType
ClassType

AnnotatedType
ConstrainedType

PlaceType
SimpleNamedType
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MethMods 1d  TypeParams’  FormalParams
WhereClause® HasResultType® MethodBody
MethMods 1d ~ WhereClause®  HasResultType®
MethodBody

this TypeArguments’ ( ArgumentList’) ;

super TypeArguments’ ( ArgumentList’ ) ;
Primary . this TypeArguments’ ( ArgumentList’ )

Primary . super TypeArguments’ ( ArgumentList’
)3

Mods’ interface Id TypeParamsWithVariance’
WhereClause® ExtendsInterfaces’ InterfaceBody
new TypeName TypeArguments’ ( ArgumentList’ )
ClassBody’

new TypeName [ Type ] [ ArgumentList’ ]

Primary . new Id TypeArguments® ( ArgumentList’
) ClassBody7

AmbiguousName . new Id TypeArguments’ (
ArgumentList’ ) ClassBody’

property TypeArguments’ ( ArgumentList’ ) ;
FunctionType

ConstrainedType

TypeParams? ( FormalParamList’ ) WhereClause’
Offers’ => Type

NamedType

Type Annotations

NamedType

AnnotatedType

( Type )

PlaceExp

TypeName

9)

(10)

(11)

(12)

(13)
(14)

(15)
(16)

(17)
(18)

(19)
(20)



DepNamedType

NamedType

DepParams :

TypeParamsWithVariance
TypeParams
FormalParams
Conjunction

SubtypeConstraint

WhereClause
ExistentialList

ClassDecl

NormalClassDecl

StructDecl

CtorDecl
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Primary . Id

DepNamedType . 1d

SimpleNamedType DepParams
SimpleNamedType Arguments
SimpleNamedType Arguments DepParams
SimpleNamedType TypeArguments
SimpleNamedType TypeArguments DepParams
SimpleNamedType TypeArguments Arguments
SimpleNamedType TypeArguments Arguments Dep-
Params

SimpleNamedType

DepNamedType

{ ExistentialList’ Conjunction? }

[ TypeParamWithVarianceList ]

[ TypeParamlList ]

( FormalParamList’ )

Exp

Conjunction , Exp

Type <: Type

Type :> Type

DepParams

FormalParam

ExistentialList ; FormalParam

StructDecl

NormalClassDecl

Mods® class Id  TypeParamsWithVariance’
Properties’  WhereClause®  Super’  Interfaces’
ClassBody

Mods® struct Id TypeParamsWithVariance’
Properties’ WhereClause® Interfaces’ ClassBody
Mods® def this TypeParams® FormalParams
WhereClause® HasResultType® Offers’ CtorBody

(21)

(22)

(23)
(24)

(25)
(26)
(27)
(28)

(29)
(30)

(31)

(32)

(33)

(34)
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Super ::= extends ClassType (35)
FieldKeyword n= val (36)
| var
VarKeyword n= val (37)
| var
FieldDecl = Mods’ FieldKeyword FieldDeclarators ; (38)
| Mods’ FieldDeclarators ;
Statement ::=  AnnotationStatement (39)
| ExpStatement
AnnotationStatement = Annotations’ NonExpStatement (40)
NonExpStatement = Block (41)
| EmptyStatement
| AssertStatement
| SwitchStatement
| DoStatement
| BreakStatement
| ContinueStatement
| ReturnStatement
| ThrowStatement
| TryStatement
| LabeledStatement
| IfThenStatement
| IfThenElseStatement
| WhileStatement
| ForStatement
| AsyncStatement
| AtStatement
| AtomicStatement
| WhenStatement
| AtEachStatement
| FinishStatement
| NextStatement
| ResumeStatement
| AssignPropertyCall
| OfferStatement
OfferStatement = offer Exp ; (42)
IfThenStatement = 1if ( Exp ) Statement (43)
IfThenElseStatement = 1if ( Exp ) Statement else Statement (44)



EmptyStatement
LabeledStatement
LoopStatement

ExpStatement
StatementExp

AssertStatement

SwitchStatement
SwitchBlock

SwitchBlockStatementGromps

SwitchBlockStatementGromp

SwitchLabels

SwitchLabel

WhileStatement
DoStatement

Id : LoopStatement
ForStatement
WhileStatement
DoStatement
AtEachStatement
StatementExp ;
Assignment
PrelncrementExp
PreDecrementExp
PostIncrementExp
PostDecrementExp
MethodInvocation

ClassInstCreationExp

assert Exp ;
assert Exp : Exp ;

switch ( Exp ) SwitchBlock
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{ SwitchBlockStatementGroups? SwitchLabels’ }

SwitchBlockStatementGroup

SwitchBlockStatementGroups

mentGroup

SwitchLabels BlockStatements

SwitchLabel

SwitchLabels SwitchLabel

case ConstantExp :
default :

while ( Exp ) Statement
do Statement while ( Exp ) ;

SwitchBlockState-

(43)
(46)
(47)

(48)
(49)

(50)
(51)

(52)
(53)

(54)
(55)
(56)

(57)
(58)
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ForStatement

BasicForStatement
Forlnit

ForUpdate
StatementExpList

BreakStatement
ContinueStatement
ReturnStatement
ThrowStatement
TryStatement

Catches

CatchClause
Finally
ClockedClause
AsyncStatement

AtStatement
AtomicStatement

CHAPTER 20. GRAMMAR

BasicForStatement
EnhancedForStatement

for ( Forlnit® ; Exp? ; ForUpdate? ) Statement

StatementExpList
LocalVariableDecl
StatementExpList

StatementExp

StatementExpList , StatementExp
break Id’ ;

continue Id’ ;

return Exp’ ;

throw Exp ;

try Block Catches

try Block Catches’ Finally
CatchClause

Catches CatchClause

catch ( FormalParam ) Block
finally Block

clocked ( ClockList )

async ClockedClause’ Statement
clocked async Statement

at PlaceExpSingleList Statement
atomic Statement

(59)

(60)
(61)

(62)
(63)

(64)
(65)
(66)
(67)
(68)

(69)

(70)
(71)
(72)
(73)

(74)
(75)



WhenStatement =
AtEachStatement =

EnhancedForStatement ::=

FinishStatement =

PlaceExpSingleList n=
PlaceExp =
NextStatement =
ResumeStatement =
ClockList =

Clock =
CastExp =

TypeParamWithVarianceLzst

TypeParamlList n=

TypeParamWithVariance ::=

TypeParam n=
AssignmentExp n=
ClosureExp n=
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when ( Exp ) Statement

ateach ( Looplndex in Exp ) ClockedClause’
Statement

ateach ( Exp ) Statement

for ( LoopIndex in Exp ) Statement

for ( Exp ) Statement
finish Statement
clocked finish Sratement
( PlaceExp )

Exp

next ;

resume ;

Clock

ClockList , Clock

Exp

Primary

ExpName

CastExp as Type
TypeParamWithVariance

TypeParamWithVarianceList , TypeParamWithVari-
ance

TypeParam

TypeParamlList , TypeParam

1d

+1d

-1d

1d

Exp -> Exp

FormalParams ~ WhereClause’  HasResultType®
Offers’ => ClosureBody

(76)
(77)

(78)

(79)

(80)
(81)
(82)
(83)
(84)

(85)
(86)

(87)

(88)

(89)

(90)
(91)
(92)
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LastExp
ClosureBody

AtExp

FinishExp
identifier
TypeName
ClassName
TypeArguments
TypeArgumentList
PackageName
ExpName
MethodName
PackageOrTypeName

AmbiguousName

CompilationUnit

ImportDecls
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Exp
Conditional Exp

Annotations’ { BlockStatements’ LastExp }

Annotations’ Block

at PlaceExpSingleList ClosureBody
finish ( Exp ) Block
IDENTIFIER

Id

TypeName . Id
TypeName

[ TypeArgumentList ]
Type

TypeArgumentList , Type
Id

PackageName . Id

1d

AmbiguousName . 1d

Id

AmbiguousName . Id

1d

PackageOrTypeName . 1d
1d

AmbiguousName . 1d
PackageDecl’ TypeDecls’
PackageDecl’ ImportDecls TypeDecls’

ImportDecls PackageDecl ImportDecls’ TypeDecls’

PackageDecl ImportDecls
ImportDecls’ TypeDecls’
ImportDecl

ImportDecls ImportDecl

PackageDecl

(93)
(94)

(95)
(96)
(97)
(98)
(99)
(100)
(101)
(102)
(103)
(104)
(105)
(106)

(107)

(108)
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TypeDecls :=  TypeDecl (109)
| TypeDecls TypeDecl
PackageDecl ::=  Annotations’ package PackageName ; (110)
ImportDecl = SingleTypelmportDecl (111)
| TypelmportOnDemandDecl
SingleTypelmportDecl ::= import TypeName ; (112)
TypelmportOnDemandDect import PackageOrTypeName . * ; (113)
TypeDecl ::= ClassDecl (114)
| InterfaceDecl
| TypeDefDecl
|
Interfaces ::= 1implements InterfaceTypelList (115)
InterfaceTypelList = Type (116)
| InterfaceTypeList , Type
ClassBody = {C lassBodyDecls? } (117)
ClassBodyDecls ::= ClassBodyDecl (118)
| ClassBodyDecls ClassBodyDecl
ClassBodyDecl ::=  ClassMemberDecl (119)
| CtorDecl
ClassMemberDecl = FieldDecl (120)
| MethodDecl
| PropertyMethodDecl
| TypeDefDecl
| ClassDecl
| InterfaceDecl
|
FormalDeclarators ::=  FormalDeclarator (121)
| FormalDeclarators , FormalDeclarator
FieldDeclarators .= FieldDeclarator (122)

| FieldDeclarators , FieldDeclarator
VariableDeclaratorsWithEype VariableDeclaratorWithType (123)
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| VariableDeclaratorsWithType , VariableDeclarator-

WithType
VariableDeclarators ::= VariableDeclarator (124)
| VariableDeclarators , VariableDeclarator
Variablelnitializer n= Exp (125)
ResultType m= : Type (126)
HasResultType m= : Type (127)
| <: Dype
FormalParamlList .= FormalParam (128)
| FormalParamlList , FormalParam
LoopIndexDeclarator  := Id HasResultType® (129)

| [ IdList ] HasResultType’
| Id [ IdList ] HasResultType’

LoopIndex = Mods’ LoopIndexDeclarator (130)
| Mods’ VarKeyword LoopIndexDeclarator

FormalParam = Mods’ FormalDeclarator (131)
| Mods’ VarKeyword FormalDeclarator
| Type

Offers = offers Type (132)

ExceptionTypelList :i=  ExceptionType (133)
| ExceptionTypeList , ExceptionType

ExceptionType = ClassType (134)

MethodBody i= = LastExp ; (135)

= Annotations’ { BlockStatements’ LastExp }

= Annotations’ Block

Annotations’ Block

CtorBody ::= = CtorBlock (136)
| CtorBlock
| = ExplicitCtorInvocation
| = AssignPropertyCall
o

CtorBlock = { ExplicitCtorInvocati0n7 BlockStatements’ } (137)



Arguments
InterfaceDecl
ExtendsInterfaces
InterfaceBody

InterfaceMemberDecls

InterfaceMemberDecl

Annotations
Annotation

Id

Block
BlockStatements

BlockStatement

IdList

FormalDeclarator

FieldDeclarator
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( ArgumentList’ )
NormallnterfaceDecl
extends Type
ExtendsiInterfaces , Type

{ InterfaceMemberDecls’ }
InterfaceMemberDecl

InterfaceMemberDecls InterfaceMemberDecl
MethodDecl
PropertyMethodDecl
FieldDecl

ClassDecl

InterfaceDecl

TypeDefDecl

Annotation

Annotations Annotation

@ NamedType

identifier

{ BlockStatements’ }
BlockStatement
BlockStatements BlockStatement
LocalVariableDeclStatement
ClassDecl

TypeDefDecl

Statement

Id

IdList , Id

1d ResultType

[ IdList ] ResultType

Id [ IdList ] ResultType

Id HasResultType

(138)
(139)
(140)
(141)
(142)

(143)

(144)
(145)
(146)
(147)
(148)

(149)

(150)

(151)

(152)
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VariableDeclarator

VariableDeclaratorWithType

LocalVariableDeclStatement

LocalVariableDecl

Primary

OperatorFunction
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Id HasResultType® = Variablelnitializer

Id HasResultType® = Variablelnitializer

[ IdList ] HasResultType? = Variablelnitializer
Id [ IdList ] HasResultType? = Variablelnitializer
Id HasResultType = Variablelnitializer

[ IdList 1 HasResultType = Variablelnitializer
1d [ IdList 1 HasResultType = Variablelnitializer
LocalVariableDecl ;

Mods® VarKeyword VariableDeclarators
Mods® VariableDeclaratorsWithType
Mods’ VarKeyword FormalDeclarators
here

[ ArgumentList® ]

Literal

self

this

ClassName . this
CExp)
ClassInstCreationExp
FieldAccess
MethodInvocation
MethodSelection
OperatorFunction
TypeName . +
TypeName . -
TypeName . *
TypeName . /
TypeName . %
TypeName . &
TypeName . |
TypeName . ~

TypeName . <<
TypeName . >>
TypeName . >>>
TypeName . <
TypeName . <=

(153)

(154)

(155)

(156)

(157)

(158)



Literal

BooleanLiteral
ArgumentList

FieldAccess

MethodlInvocation

MethodSelection

PostfixExp
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TypeName . >=

TypeName . >

TypeName . ==

TypeName . =

IntegerLiteral

LongLiteral

UnsignedIntegerLiteral
UnsignedLongLiteral
FloatingPointLiteral

DoubleLiteral

BooleanlLiteral

CharacterLiteral

StringLiteral

null

true

false

Exp

ArgumentList , Exp

Primary . Id

super . Id

ClassName . super . Id

Primary . class

super . class

ClassName . super . class

MethodName TypeArguments® ( ArgumentList’ )
Primary . Id TypeArguments® ( ArgumentList’ )
super . Id TypeArguments’ ( ArgumentList’ )
ClassName . super . Id TypeArguments’
ArgumentList? )

Primary TypeArguments’ ( ArgumentList’ )
MethodName . ( FormalParamList’ )

Primary . Id . ( FormalParamList" )

super . Id . ( FormalParamList’ )

ClassName . super . Id . ( FormalParamlList’ )
CastExp

(159)

(160)
(161)

(162)

(163)

(164)

(165)
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PostIncrementExp
PostDecrementExp
UnannotatedUnaryExp ::

UnaryExp

PrelncrementExp
PreDecrementExp
UnaryExpNotPlusMinus ::

MultiplicativeExp

AdditiveExp

ShiftExp

RangeExp

Relational Exp

CHAPTER 20.

PostIncrementExp
PostDecrementExp
PostfixExp ++
PostfixExp --
PrelncrementExp

PreDecrementExp

+ UnaryExpNotPlusMinus

- UnaryExpNotPlusMinus
UnaryExpNotPlusMinus
UnannotatedUnaryExp
Annotations UnannotatedUnaryExp
++ UnaryExpNotPlusMinus

-- UnaryExpNotPlusMinus
PostfixExp

“ UnaryExp

I UnaryExp

UnaryExp

MultiplicativeExp * UnaryExp
MultiplicativeExp / UnaryExp
MultiplicativeExp % UnaryExp
MultiplicativeExp

AdditiveExp + MultiplicativeExp
AdditiveExp - MultiplicativeExp
AdditiveExp

ShiftExp << AdditiveExp
ShiftExp >> AdditiveExp
ShiftExp >>> AdditiveExp
ShiftExp

ShiftExp . . ShiftExp

RangeExp

SubtypeConstraint
RelationalExp < RangeExp
RelationalExp > RangeExp

GRAMMAR

(166)
(167)
(168)

(169)

(170)
(171)
(172)

(173)

(174)

(175)

(176)

(177)



EqualityExp

AndExp
ExclusiveOrExp
InclusiveOrExp
ConditionalAndExp
ConditionalOrExp

Conditional Exp

AssignmentExp

Assignment

LeftHandSide

AssignmentOperator

Relational Exp <= RangeExp
Relational Exp >= RangeExp
RelationalExp instanceof Type
Relational Exp in ShiftExp
Relational Exp

EqualityExp == Relational Exp
EqualityExp = Relational Exp
Type == Type

EqualityExp

AndExp & EqualityExp

AndExp

ExclusiveOrExp ~ AndExp
ExclusiveOrExp

InclusiveOrExp | ExclusiveOrExp
InclusiveOrExp

ConditionalAndExp && InclusiveOrExp

ConditionalAndExp

ConditionalOrExp | | Conditional AndExp

ConditionalOrExp
ClosureExp

AtExp

FinishExp

ConditionalOrExp ? Exp : Conditional Exp

Assignment
Conditional Exp

LeftHandSide AssignmentOperator AssignmentExp
ExpName ( ArgumentList’ ) AssignmentOperator

AssignmentExp

Primary ( ArgumentList’ ) AssignmentOperator As-

signmentExp
ExpName
FieldAccess
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(178)

(179)
(180)
(181)
(182)
(183)

(184)

(185)

(186)

(187)

(188)
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Exp
ConstantExp
PrefixOp

BinOp
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AssignmentExp
Exp

(189)
(190)
(191)

(192)
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A Change Log

A.1 Changes from X10 v2.0.6

This document summarizes the main changes between X10 2.0.6 and X10 2.1.
The descriptions are intended to be suggestive rather than definitive; see the lan-
guage specification for full details.

A.1.1 Object Model
1. Objects are now local rather than global.

(a) The home property is gone.

(b) at(P)S produces deep copies of all objects reachable from lexically
exposed variables in S when it executes S. (Warning: They are copied
even in at (here)S.)

2. The GlobalRef[T] struct is the only way to produce or manipulate cross-
place references.

(a) GlobalRef’s have a home property.
(b) Use GlobalRef[Foo] (foo) to make a new global reference.

(c) Use myGlobalRef() to access the object referenced; this requires
here == myGlobalRef.home.

3. The ! type modifier is no longer needed or present.

4. global modifiers are now gone:
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(a) global methods in interfaces are now the default.

(b) global fields are gone. In some cases object copying will produce the
same effect as global fields. In other cases code must be rewritten. It
may be desirable to mark nonglobal fields transient in many cases.

(c) global methods are now marked @Global instead. Methods intended
to be non-global may be marked @Pinned.

A.1.2 Constructors

1. proto types are gone.

2. Constructors and the methods they call must satisfy a number of static
checks.

(a) Constructors can only invoke private or final methods, or methods
annotated @NonEscaping.

(b) Methods invoked by constructors cannot read fields before they are
written.

(c) The compiler ensures this with a detailed protocol.

3. It is still impossible for X10 constructors to leak references to this or ob-
serve uninitialized fields of an object. Now, however, the mechanisms en-
forcing this are less obtrusive than in 2.0.6; the burden is largely on the
compiler, not the programmer.

A.1.3 TImplicit clocks for each finish

Most clock operations can be accomplished using the new implicit clocks.

1. A finish may be qualified with clocked, which gives it a clock.

2. An async in a clocked finish may be marked clocked. This registers
it on the same clock as the enclosing finish.

3. clocked async S and clocked finish S may use next in the body of
S to advance the clock.
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4. When the body of a clocked finish completes, the clocked finishis
dropped form the clock. It will still wait for spawned asyncs to terminate,
but such asyncs need to wait for it.

A.1.4 Asynchronous initialization of val

vals can be initialized asynchronously. As always with vals, they can only be
read after it is guaranteed that they have been initialized. For example, both of
the prints below are good. However, the commented-out print in the async is
bad, since it is possible that it will be executed before the initialization of a.

val a:Int;
finish {
async {
a =1;
print("a='

1

+ a);
}
async {
// WRONG: print("a=" + a);
3
ks

print("a='

+ a);

A.1.5 Main Method

The signature for the main method is now:

def main(Array[String]) {..}

or, if the arguments are actually used,

def main(Cargv: Array[String] (1)) {..}

A.1.6 Assorted Changes

1. The syntax for destructuring a point now uses brackets rather than braces:
for( [i] in 1..10 ), rather than the prior (i).
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A.1.7 Safety of atomic and when blocks

1. Static effect annotations (safe, sequential, nonblocking, pinned) are
no longer used. They have been replaced by dynamic checks.

2. Using an inappropriate operation in the scope of an atomic or when con-
struct will throw I11egalOperationException. The following are inap-

propriate:

e when

resume () or next on clocks

e async

Future.make(), or Future. force().

e at

A.1.8 Removed Topics

The following are gone:

1. foreach is gone.
2. All vars are effectively shared, so shared is gone.

3. The place clause on async is gone. async (P) S should be written at (P)
async S.

4. Checked exceptions are gone.
5. future is gone.
6. await ... or ... is gone.

7. const is gone.
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A.1.9 Deprecated

The following constructs are still available, but are likely to be replaced in a future
version:

sl

. ValRail.

Rail.
ateach

offers. The offers concept was experimental in 2.1, but was determined
inadequate. It has not been removed from the compiler yet, but it will be
soon. In the meantime, traces of it are still visible in the grammar. They
should not be used and can safely be ignored.

A.2 Changes from X10 v2.0

e Any is now the top of the type hierarchy (every object, struct and func-

tion has a type that is a subtype of Any). Any defines home, at, toString,
typeName, equals and hashCode. Any also defines the methods of Equals,
so Equals is not needed any more.

e Revised discussion of incomplete types.

e The manual has been revised and brought into line with the current imple-

mentation.

A.3 Changes from X10 v1.7

The language has changed in the following way:

e Type system changes: There are now three kinds of entities in an X10

computation: objects, structs and functions. Their associated types are class
types, struct types and function types.

Class and struct types are called container types in that they specify a col-
lection of fields and methods. Container types have a name and a signature
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(the collection of members accessible on that type). Collection types sup-
port primitive equality == and may support user-defined equality if they
implement the x10.1lang.Equals interface.

Container types (and interface types) may be further qualified with con-
straints.

A function type specifies a set of arguments and their type, the result type,
and (optionally) a guard. A function application type-checks if the argu-
ments are of the given type and the guard is satisfied, and the return value
is of the given type. A function type does not permit == checks. Closure
literals create instances of the corresponding function type.

Container types may implement interfaces and zero or more function types.

All types support a basic set of operations that return a string representation,
a type name, and specify the home place of the entity.

The type system is not unitary. However, any type may be used to instantiate
a generic type.

There is no longer any notion of value classes. value classes must be
re-written into structs or (reference) classes.

Global object model: Objects are instances of classes. Each object is asso-
ciated with a globally unique identifier. Two objects are considered identical
==if their ids are identical. Classes may specify global fields and methods.
These can be accessed at any place. (global fields must be immutable.)

Proto types. For the decidability of dependent type checking it is necessary
that the property graph is acyclic. This is ensured by enforcing rules on the
leakage of this in constructors. The rules are flexible enough to permit
cycles to be created with normal fields, but not with properties.

Place types. Place types are now implemented. This means that non-global
methods can be invoked on a variable, only if the variable’s type is either a
struct type or a function type, or a class type whose constraint specifies that
the object is located in the current place.

There is still no support for statically checking array access bounds, or per-
forming place checks on array accesses.



B Options

B.0.1 Compiler Options

The X10 compilers have many useful options.

B.0.2 Optimization: -0 or -optimize

This flag causes the compiler to generate optimized code.

B.0.3 Debugging: -DEBUG=boolean

This flag, if true, causes the compiler to generate debugging information. It is
false by default.

B.0.4 Call Style: -STATIC_CALLS=boolean, -VERBOSE_CALLS=boolean

By default, if a method call could be correct but is not necessarily correct, the
X10 compiler generates a dynamic check to ensure that it is correct before it is
performed. For example, the following code:

def use(n:Int{self == 0}) {}
def test(x:Int) {
use(x); // creates a dynamic cast

}

compiles with -STATIC_CALLS=false, even though it is possible that x ! =0 when
use(x) is called. In this case, the compiler inserts a cast, which has the effect of
checking that the call is correct before it happens:
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def use(n:Int{self == 0}) {}
def test(x:Int) {

use(x as Int{self == 0});
}

The compiler produces a warning that it inserted some dynamic casts. If you then
want to see what it did, use -VERBOSE_CALLS.

You may also turn on static checking, with the -STATIC_CALLS flag. With static
checking, calls that cannot be proved correct statically will be marked as errors.
The program without the dynamic cast fails to compile with ~-STATIC_CALLS.

B.0.5 Help: -help and -- -help

These options cause the compiler to print a list of all command-line options.

B.0.6 Source Path: -sourcepath path

This option tells the compiler where to look for X10 source code.

B.0.7 Class Path: -classpath path

This option tells the compiler where to look for compiled code in class files.

B.0.8 Output Directory: -d directory

This option tells the compiler to produce its output files in the specified directory.

B.0.9 Runtime -x10rt impl

This option tells which runtime implementation to use. The choices are lapi,
pgp, sockets, mpi, and standalone.

B.1 Execution Options: Java

The Java execution command x10 has a number of options as well.
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B.1.1 -NUMBER OF LOCAL PLACES=number

This option controls how many Places the system will run on. The default is four,
but you may control it as you wish.

B.1.2 Heap Size: -mx size

Sets the maximum size of the heap.

B.1.3 Help: -h

Prints a listing of all execution options.

The X10 language has been developed as part of the IBM PERCS Project, which
is supported in part by the Defense Advanced Research Projects Agency (DARPA)
under contract No. NBCH30390004.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.
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