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Abstract We extend the flattening transformation, which turns nested
into flat data parallelism, to the full higher-order case, including lambda
abstractions and data parallel arrays of functions. Our central observa-
tion is that flattening needs to transform the closures used to represent
functional values. Thus, we use closure conversion before flattening and
introduce array closures to represent arrays of functional values.

1 Introduction

Nested data parallelism [Ble96] enables the concise specification of irregular par-
allel computations involving sparse data structures (e.g., trees and sparse ma-
trixes) and comes with a simple language-based cost model. Following [CKLP01],
we add nested data parallelism to Haskell by including a type of parallel arrays,
denoted [, such that we can use variants of all special list syntax and Prelude
list operations that only involve finite lists. To distinguish arrays from lists, we
add colons to the square brackets (as in [:1,2,3]) and append the suffix P to
function names (e.g., mapP (+1) [1,2,3] adds 1 to each element of [1,2,3]).
The main difference between lists and arrays is that the latter have a parallel
evaluation semantics, i.e., all elements are evaluated as soon as one is demanded.

Given an array of arrays, xs :: [ Float]], we may evaluate the sum of each
subarray by mapP sumP zs. As sumP itself is a parallel operation, we over-
all have a nested parallel computation, where lengthP zs parallel summations
are performed in parallel. A nested array, such as s, generally constitutes an
irregular structure as the subarrays may be of varying length; hence it goes
beyond Fortran’s notion of an array. Nevertheless, we want to avoid a pointer-
based representation, where the outer array is an array of pointers to the subar-
rays, and prefer a flat representation, which stores the elements of all subarrays
in one contiguous block of memory and keeps the information about subar-
ray boundaries in a separate structure called a segment descriptor. For example,
[EL, 29, [, [3, 4, 5] would be represented by the pair ([:2,0, 3], [1, 2, 3, 4, 5])
of segment descriptor and flat value array. This improves locality of reference,
and hence, increases cache utilisation as well as decreases communication on a
distributed-memory parallel machine.
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Flattening is a program transformation that turns nested data structures
into flat representations (of the form just described) and vectorises the code
that operates on these nested structures [Ble90]. For example, mapP sumP zs
turns into sumP! zs, where sumP’ is the lifted variant of sumP that simulta-
neously computes the sum of all segments of a flat representation of a nested
array. In previous work [CKO00], we showed how flat data representations and
vectorised code can be derived for functional programs operating on nested ar-
rays of arbitrary recursive product-sum types. However, we could not flatten
arrays of functions nor vectorise partial function applications. This effectively
restricted the approach to first-order programs and precluded a seamless inte-
gration of nested data parallelism into Haskell or any other functional language.
The present paper closes this gap. We show how to extend flattening to the
higher-order case by introducing an explicit notion of closures, which leads to
the concepts of array closures and closure vectorisation. Consequently, we need
to apply closure conversion [MMHO96] to a program before flattening.

In summary, our main contributions are threefold:

— a flat representation of arrays of functions and closures (Sect. 3);
— a method to combine and concatenate arrays of functions (Sect. 4); and
— a new approach to flattening nested mapPs (Sect. 5).

Before addressing these technical contributions, Sect. 2 explains the shortcom-
ings of previous approaches to flattening with respect to arrays of functions and
partial applications. Space constraints restrict us to an illustration of the core
ideas by example in this paper; more details are available in [Les05].

2 Why Flattening Higher-Order Functions Is Hard?

The flattening transformation comprises (1) a flattened array representation and
(2) code wvectorisation. The flattened array representation turns arrays contain-
ing arbitrary tree structures into tree structures that contain arrays of unbozed
primative types.1 As an example, an array of rose trees storing floats in their
leaves is flattened to a list of arrays of floats. The length of the list corresponds
to the height of the tallest rose tree, and each list element (i.e., array) contains
the floats of one level of the original rose trees.

Code vectorisation pairs every function f with a version fT lifted into vector
space—think of f! as the data-parallel version of f. Code vectorisation also
replaces all computations of the form mapP f by f!. It turns out that code
vectorisation transforms a program exactly such that it can directly operate on
a flattened representation of its array data.

Now for some examples. The code of the identity function id = An.n remains
the same after lifting, but where id’s type is a — «, that of id! is [a] — [a].
The increment function inc = An.1 + n is slightly more interesting. Assuming
its type is Int — Int, the type of of inc' is [Int] — [:Int]. The code of inc! is

1 Arrays of unboxed primitive types are C- or Fortran-style arrays that are essentially
represented as chunks of memory full of integer and floating-point values.



Ans.(replicateP (lengthP ns) 1) +1 ns |, where replicateP n e = [e, ..., €]

(i.e., e repeated n times) and (+') denotes the pairwise addition of two arrays.

Slightly more involved is the treatment of sum types. In Haskell, we have

data Fither « 8 = Left o | Right 3
either s (a—7v) = (B—17v) — FEitheraff —
either f g = case z of {Left 2’ — f z'; Right ' — g '}

The flat representation of an array of sums [ Fither a 8] is a product of a selector
and two arrays containing the values of the two alternatives ([:Bool], o], [81]);
e.g., [Left 5, Right 4, Left 2] becomes ([ True, False, Truel, [:5, 2], [4]).

Let us combine these two examples into a larger one:

foo i Either Int Int — Int
foo x = either incid x

We lift this into vector space as foo! zs = either! inclid! zs with
either! f g (sel, left, right) = combineP sel (f left) (g right)

The array primitive combineP :: [Bool] — [a] — [[ov] — [] merges its two ]
arguments, arranging the elements in the order determined by the selector of type
[ Bool]. For example, if we apply foo to [Left 5, Right 4, Left 2:], combineP will
be invoked as combineP [ True, False, True] [:6, 3 [:4], resulting in [:6, 4, 3.
In its full glory, the story is slightly more complicated as we need to replace a
function f by a pair of its original and lifted version (f, f) and adjust all function
applications by adding appropriate projections. However, these details are sec-
ondary for demonstrating the core difficulty in flattening higher-order functions;
please refer to [CK00,CK03] for a more detailed introduction to flattening.

Now, let us turn to the core of the problem that we solve in this paper. We
vary the example function foo to get

bar :: (Either Int Int, Int) — Int
bar (z, y) = either ((+) y) id

The first argument to either, namely (4) y, is a partial application of addition to
the new argument y, replacing the previously added constant 1 with the variable
y. It might seem as if we can lift bar in essentially the same way as foo:

bar' (zs, ys) = either! ((+1) ys) id! xs

Unfortunately, we will see that this gets us into trouble quickly. We flatten
an array of products [:(«, 3)] as a product of arrays ([:a, [:8]). For example,
[(Left 5, 1), (Right 4, 2), (Left 2, 7)] is represented by (([ True, False, True],
[5, 29, [4]), [1, 2, 7]). We can now calculate as follows:

bar' (([ True, False, True], [:5,21, [41), 1,2, 7])
= {Unfolding bar'}

either’ ((4+1) [1,2,7]) id" (|: True, False, True], [:5,2], [:4])
= {Unfolding either'}

combineP [: True, False, True] ((+1) [1,2,7] [5,2]) (id" [4])



Now we have a bogus subexpression: (+1) [1, 2, 7] [}5, 2]. The length of the
two arguments to (+') does not match! This is not only a matter of choosing
an appropriate prefix of the longer array (as with Haskell’s zip With). We would
need to evaluate (+') [1, 7] [:5, 2] to achieve the correct result; i.e., drop the
middle element of the first array. Why does the first argument have to be [1, 7]?
Because the selector [: True, False, True] determines that only the first and third
element may be used by the first argument of either. Unfortunately, the partial
application (+1) [1, 2, 7] drags the entire array [1, 2, 7] into the body of either,
completely disregarding the selector, instead of narrowing the array according
to the selector, as in packP [ True, False, True] 1, 2, 7] = [1, 7.

Similar problems arise from local function definitions with free variables;
e.g., if we replace (+) y in bar by Az’.y + z’, we arrive at the same situation
as above. As we will see next, key to solving these problems is an appropriate
flattened representation of arrays of functions.

3 Flattening Closures

The crucial observation of last section was that either! needs to packP its func-
tional arguments, or rather the arrays embedded in these arguments. Hence, we
need to represent function values in a form that permits array operations (such
as packP) to inspect these values and modify them. The standard method to
separate code from data, and thus make data embedded in function values ex-
plicit, is closure conversion [MMH96]. It replaces all function values by closures,
which are pairs of a closed binary function and its environment. The latter is
a value for the first argument of the binary function and contains all the data
items embedded in the function value represented by the closure.

With flattening, each closure contains two binary functions: the standard
version and its lifted counterpart—we’ll discuss later why this is crucial to our
approach. Thus, we denote closures as expressions ((f,f1), e)) of type a = g if
() = 8, f1: (v, fal) — [B] and e :: v; e.g., we represent (+) 1 by the
closure {(A(vi, v2).v1 + va, M(vsy, vs2).vs1 +1 wsa), 1), or just {((+), (+1)), 1),
where f :: (o, §) — ~yis the uncurried version of f :: « — 3 — . The application
of a closure of type a = (3 to a value z :: avis defined as {(f,f1), e) Tz = f (e, z).

To solve our problem with lifting partial applications, we need a suitable
representation of partial applications of lifted functions, such as (+1) [1, 2, 7].
Is a closure of the form (((+"), (+'1)), [1, 2, 7)), where (+1) is addition lifted
twice, sufficient? Unfortunately, no! In particular, it prevents typing closure con-
verted, flattened programs. After all, the type of packP is [ Bool] — [a] — [a;
S0, it’s second argument should be an array. Hence, if we want to apply packP
to a closure value, that value should better be the flattened representation of an
array type. Not surprisingly, it turns out that packable closures are the flattened
representation of arrays of functions. They differ slightly from vanilla closures,
as their environment is always an array. In other words, an array closure has the
form (:(f, f1), es) of type a = Bif f = (y,a) — B3, f1 2 ([v], [a]) — [B], and
es :: [7y]. The type oo = [3 represents arrays of standard closures [a = 3.



For example, we represent both the partial application (+7) [1, 2, 7] and
the local function Azs’.ys +' zs’, where ys = [1, 2, 7], by the array closure
¢((+), (M), [1, 2, 7). The closure’s environment fixes the length of arrays
acceptable as the second argument to (+!). We define the application of an array
closure of type a = 3 to a value s :: [a] as {(f, f1), es)) Txs = fT (es, ws).

As we will see in the rest of the paper, this representation directly supports
the full range of array operations. For instance, standard closures can be repli-
cated to array closures simply by replicating the environment:

replicateP n ((f,f1), e) = ((f,f1), replicateP n e)

Conversely, we obtain a standard closure from an array closure by indexing:
Cf M esdlin = ((f, f1), estin) -- I: is indexing of parallel arrays
NB: To convert between standard closures and array closures, it is crucial that

both closure types include the standard and the lifted version of the function.
Pivotal to our running example is the ability to packP array closures:

packP bs ((f,f1), es?) = ((f.fT), packP bs es?)

More generally, an array closure {:(f,f1), es) represents mapP (curry f) es and,
therefore, satisfies the usual parametric map laws [Wad89]. Thus, a wide range
of polymorphic array operations, including permutations, can be implemented
analogously to packP by propagating the operation to the environment.

Now, let us return to the problematic function bar of the previous section.
This time, we replace the two function arguments to either! by array closures:

bar' (zs, ys) = either! (((£), (£1). ys3) {(ido, id)), FO. 0. 019 as

where idy = A(vy, v2).02
idg = A(vs1, vs2).vs2

and re-define either! such that it packs its first two arguments:

either! f g (sel, left, right) =
combineP sel ((packP sel f) 1 left) ((packP (mapP not sel) g) I right)
Now, we can redo the calculation for the bar example:
bar' (([: True, False, True], [:5,21, 41), 1,2, 7])
= {Unfolding bar'}
either! (((4), (£1), [1,2,70) ((ido, id]), £Q 0, 039
([ True, False, Truel, [:5,2], [:41)
= {Unfolding either!}
combineP [ True, False, True
((packP [ True, False, True] (((+), (+1)),[1,2,7]))
((packP [:False, True, False] ((ido, id}), (), (), )19)
= {Applying packP}
combineP [: True, False, True]
G, (ED)SFL 7T 1 65,2) (((ido, idg), ()T § F4d)
= {Unfolding }}
combineP [ True, False, True] ((+1) (11,71, [5,2])) Gid} ([0, [4]))



= {Applying +' and idg}

combineP [ True, False, True] [:6,9] 4]
= {Applying combineP}

[6,4,9]

In summary, to flatten higher-order programs, we first apply closure con-
version to make closures explicit, hence admitting the manipulation of closures
as first-class values. All remaining function values (which now only occur in-
side closures) are supercombinators; i.e, closed functions, which also only use
supercombinators inside. Moreover, we use array closures as the representation
of arrays of functional values, so that we can perform standard array operations,
such as packP, on lifted partial applications and arrays of functions.

4 Combining Closures

Data parallelism dictates that an array closure {¢(f, f1), e:) represents the partial
application of a single function to multiple arguments. Many array operations,
such as replicateP, mapP, and packP, maintain this property, but unfortunately
some don’t. For instance, consider

combineP [ True, False, True:] ¢((4), (+1)), 1,20 ¢((x), (x1)), 313

The result is of type Int = Int and represents the partial applications of both
addition and multiplication. In a data parallel environment, can we express this
as a partial application of a single function?

The following observation suggests a solution: Elementwise application of a
combined closure to an argument array is equivalent to splitting the argument
array, applying the two closures individually, and combining the results:

(combineP [: True, False, True] ¢((+), (+1)), [1, 299 ¢((x), (+1)), 31))
1[4,5,6]
= {Splitting the argument array}
combineP [: True, False, True]
() (+1)), E1, 299 1 E4,69) (€0, (1)), [3399 1 E59)
= {Merging the results}
[5,15,8]

This scheme is easily encoded by a closure (:(capp, capp'), es3) whose environ-
ment es contains the two original closures along with the selector. The function
capp!, defined below, uses the selector to split the argument and combines the
result of applying the two closures.

Crucially, this approach fits nicely with the rest of the flattening transforma-
tion, as the environment can be directly represented by a parallel array of type
[ Either (Int = Int) (Int = Int)]. As described in Section 2, this is flattened to
the product ([:Bool], Int = Int, Int = Int) which stores precisely the selector
and the two closures and is constructed by combineP as follows:

combineP bs fs gs = {(capp, capp'), (bs, fs, gs)})
where we define the split/combine procedure as follows



capp! :: (([Bool],a = B,a = B), a]) — [3]
capp' ((bs, fs, gs), xs) =
combineP bs (fs T packP bs zs) (gs T packP (mapP not bs) xs)
Our definition of capp! sequentialises the two applications of fs and gs. This is
a natural consequence of data parallelism, as fs and gs will generally be entirely
different computations. This corresponds closely to either! from Section 3.

The result of combineP is a regular array closure and, thus, naturally sup-
ports all array operations. For instance, packing clearly has the desired semantics
by propagating the operation into the environment. Moreover, indexing extracts
a single element from the environment by, depending on the index, selecting it
from either of the two closures. Depending on which closure is selected, the re-
sult will be embedded into a Left or Right constructor. Applying the resulting
closure to an argument invokes capp which is implemented as

capp = (Either (o= B) (= B), a) =
capp (h, =) = case hof {Left f — ftx; Right g — g7z}

In fact, capp! is, as expected, precisely the lifted version of capp; i.e., we can
derive capp! from capp by vectorisation.

This idea can be extended to other joining operations, such as concatenation,
which is a special case of combining, but we only have space to discuss combineP.

5 Nesting Closures

The purpose of the flattening transformation is the elimination of nested par-
allelism, of which the archetypal example is the nested application of mapP, as
in mapP (mapP (14)) [[1,2], [, [3,4, 5], which increments every integer ele-
ment while preserving the array’s nesting structure. As discussed in Section 1,
the nested array of our example is implemented by the flattened representation
([2,0,3],[1,2,3,4,5]), where the the segment descriptor 2,0, 3: encodes the
nesting structure. In the flat representation, we can increment all integer ele-
ments without affecting the nesting structure by simply applying the non-nested
mapP (+1) to the second component of the representation. So, we have

mapP (mapP f) (segd, xs) = (segd, mapP f xs)
In the following, we discuss how to realise this with array closures.

After closure conversion, mapP expects a closure as its first argument, which
we simply replicate to get an array closure that we can apply as follows:

mapP i (a=0) — [a] — [5]

mapP ¢ zs = replicateP (lengthP xs) ¢ { xs

The partial application mapP (1+) in our nested example ultimately evalu-
ates to ((mapP, mapP"), (((4), (+1)), 1)), which we map over the nested array:

mapP (((mapP, mapP"), (), (")), 1)) (£2,0,3],[1,2,3,4,5])
= {Unfolding mapP}

replicateP 3 {(mapP, mapP"), (), (£1)), 1)) 1 (£2,0,31,[1,2,3,4,5)
= {Unfolding replicateP twice}




{(mapP, mapP "), (1), (1)), £1, 1,113 1 (£2,0,3], [1,2,3,4, 5])
= {Unfolding 1}
mapP! (E((+), (+1), L, 1,199, (2,0,3], F1,2,3,4,5))
Not surprisingly, the two nested applications of mapP are resolved to a single
application of mapP!. The implementation of the latter can be derived by lifting
the definition of mapP; here, we present a slightly simplified version:

mapP! :: (a = B) — ([Int], o) — ([Int], [3])
mapPT ((f,f1), es)) (segd, zs) = (segd, ((f,f"), ezpandP segd es3) § zs)

where
expandP [ny,...,ng] for, .o ak] = [T, ®1, 0, Ty e, Tk
—— ——
ni times ny times

Conceptually, the mapped array closure contains one element for each subarray
of the nested array. Hence, we blow the array closure up, such that each element
is replicated as often as the length of the corresponding subarray dictates—this
is the job of expandP. Afterwards, we can simply apply the expanded array
closure to the representation of the nested array. The nesting structure remains
invariant under this operation. Returning to our example, we now have:

mapP (((+), (£1)), 1, 1,113 ((2,0,33,[1,2,3,4,5])
= {Unfolding mapP'}

((2,0,3], (), (£"),[1,1,1,1,19) 1 [1,2,3,4,5])
= {Unfolding 1}

(12,0.3], [2,3.4,5,6)

As expected, the result is the flat representation of [:[2, 3], [:{, [4, 5, 6]]; moreover,
it has been computed in one parallel step.
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