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ABSTRACT

This paper introduces a new approach to optimising array
algorithms in functional languages. We are specifically aim-
ing at an efficient implementation of irregular array algo-
rithms that are hard to implement in conventional array
languages such as Fortran. We optimise the storage lay-
out of arrays containing complex data structures and reduce
the running time of functions operating on these arrays by
means of equational program transformations. In partic-
ular, this paper discusses a novel form of combinator loop
fusion, which by removing intermediate structures optimises
the use of the memory hierarchy.

We identify a combinator named loopP that provides a
general scheme for iterating over an array and that in con-
junction with an array constructor replicateP is sufficient
to express a wide range of array algorithms. On this ba-
sis, we define equational transformation rules that combine
traversals of loopP and replicateP as well as sequences of
applications of loopP into a single loopP traversal.

Our approach naturally generalises to a parallel imple-
mentation and includes facilities for optimising load balanc-
ing and communication. A prototype implementation based
on the rewrite rule pragma of the Glasgow Haskell Com-
piler is significantly faster than standard Haskell arrays and
approaches the speed of hand coded C for simple examples.

1. INTRODUCTION

Functional programming languages typically focus on lists
rather than arrays due to the more elegant algebraic prop-
erties of the former. Notable exceptions are special purpose
languages like Sisal [9], SAC [32], and FISh [18], which tar-
get applications from computational science and engineer-
ing that are usually implemented in array-centred languages,
such as Fortran. Consequently, the design of these languages
tends to be influenced by their imperative predecessors; in
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fact, SAC is an abbreviation for Single Assignment C and
FISh makes heavy use of imperative features. In line with
this approach, Sisal, SAC, and FISh as well as their imple-
mentations also focus on what the high-performance com-
puting community calls reqular algorithms. These operate
over data structures that can conveniently be stored in rect-
angular arrays and they iterate over regularly shaped index
spaces. For many applications this is not sufficient.

Irregular algorithms that operate on sparse data struc-
tures (such as sparse matrices) or arrays of trees (such as
adaptive or hierarchical numeric algorithms) require richer
data structures and index spaces. Sophisticated data struc-
tures are certainly a key strength of modern functional lan-
guages; so, it stands to reason that if we want to make an
impact on array programming with functional languages,
we should try to beat imperative languages in applications
where irregular algorithms are central. Having realised this,
it is startling that most work on arrays in functional lan-
guages appears to have focused on regular code [2, 12, 14,
23]. May be this is because of the traditional focus on reg-
ular problems in array languages.

Another reason is probably that irregular algorithms are,
independent of the language, much harder to implement ef-
ficiently, especially on parallel architectures. However, Blel-
loch & Sabot [8] observed that every irregular algorithm
can be transformed into a semi-regular one that operates
on a flattened representation of the original nested struc-
tures and uses explicit structural information to represent
the irregularity of the original data. We have previously
shown how this technique, known under the name flatten-
ing transformation, can be generalised to apply to typed,
general-purpose functional languages like Haskell and Stan-
dard ML [11].

However, flattening is only half the story. Flattened array
algorithms are combinator-based and generate many inter-
mediate structures. In fact, they are rather far away from
what previous work identified as being efficient formulations
of array algorithms in general-purpose functional languages:
They should be based on unbozed and updatable arrays [16,
33]. An unboxed array stores the binary representation of an
element (e.g., an integer number) directly, whereas a boxed
array would store a pointer to a heap-allocated cell con-
taining the integer value. Unboxed arrays not only save on
memory, but allow a compiler to better predict the mem-
ory layout, which can lead to large performance improve-
ments due to better cache utilisation. Updatable, or single-
threaded arrays avoid superfluous copying. There are also
approaches that aim at similar efficiency using persistent



arrays [23], but they often do not support unboxed values
well.

Serrarens [33] clearly demonstrates the performance dif-
ference between a straight-forward implementation of an ar-
ray algorithm using lazy arrays and an optimised version
based on unboxed and updatable arrays. He performs the
transformation of the straight-forward into the optimised
implementation manually. This surely is not what we want!

So, the goal of the research presented here is simply stated:
Given a purely functional, combinator-based implementa-
tion of an array algorithm, automatically produce an ef-
ficient implementation that (1) avoids intermediate struc-
tures, (2) uses unboxed arrays, and (3) is based on de-
structive updates. We achieve this by a novel form of loop
fusion—deforestation [37] of arrays if you like—in combina-
tion with standard optimisations like inlining and speciali-
sation operating on overloaded unboxed arrays. While we
are specifically interested in array code generated by the
flattening transformation and present an implementation of
our approach in Haskell, the techniques presented in this pa-
per are neither restricted to flattening-generated code nor to
Haskell, but are generally applicable. In fact, recent work in
the context of Standard ML [4] is exploring an array model
that is very similar to the one that we are discussing and we
expect that our implementation technique is useful in the
Standard ML scenario, too. In summary, the contributions
of this paper are the following:

e Two array combinators (an array constructor and a
loop abstraction) that are sufficient to express a wide
range of array computations (Section 4)

e A novel form of loop fusion based on equational rewrite
rules that amalgamate consecutive loops over arrays
(Section 4)

e Fusion over both arguments of an array variant of
zip—deforestation techniques for lists often stumble
over this case (Section 5.1)

e A method for applying array fusion across function
boundaries of recursive functions (Section 5.2)

e Figures of the running times (Section 6) for a first
implementation (Section 3 & 4.4)

The implementation is based on a number of advanced fea-
tures of the Glasgow Haskell Compiler [35], namely un-
boxed types [29], mutable arrays [26], and optimising rewrite
rules [25]. However, these features merely affect the inter-
nals of our array library—an ordinary user is still provided
with a clean, purely functional interface. In fact, as we
shall discuss in Section 2, we do not even expect the appli-
cation programmer to directly use our array combinators;
instead, we provide a convenient interface based on array
comprehensions and well-known combinators like those for
lists in Haskell’s prelude. The runtime figures indicate that
for some algorithms based on sparse and irregular structures,
our approach to arrays is more efficient than both Haskell’s
standard arrays as well as the corresponding list algorithms.
Moreover, we get very close to the speed of hand-coded C
for simple examples.

Loop fusion is not a new technique. It has been exten-
sively studied (see, e.g., [1, 21, 22, 31, 39]) and it is used
in varying stages of sophistication in probably all high-per-
formance compilers. It is often used to increase locality of
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Figure 1: GHC with extra array support

reference, to avoid communication, and to increase the gran-
ularity of parallelism. The unusual features of our approach
are the explicit handling of segmented loops, which are cru-
cial for irregular codes, and the use of equational rewrite
rules to express loop fusion. The latter simplifies the imple-
mentation and is more accessible to formal analysis.

The remainder of the paper is organised as follows: Sec-
tion 2 provides an overview of the various transformations
that we apply. Section 3 outlines the interface and imple-
mentation of the array library. Section 4 presents the two
array combinators over which the fusion rules are defined
and introduces the rules needed to fuse functions consum-
ing a single array. Section 5 covers the more elaborate case
of functions consuming multiple arrays and of fusion across
function boundaries. Section 6 presents benchmarks. Sec-
tion 7 discusses related work and draws conclusions.

2. THE BIG PICTURE

Let us start with an outline of a compilation framework
for functional arrays, which also clarifies the role that loop
fusion has in this framework. Figure 1 displays the main
phases of the Glasgow Haskell Compiler (GHC) [35], which
we enrich with support for arrays (set in bold italic). The
frontend reads Haskell modules, which include syntactic su-
gar for arrays (in the figure, indicated by the array notation
[ - {]). After type checking, the desugarer converts the input
into Core, which is GHC’s central intermediate representa-
tion. We extend the desugarer with a flattening transfor-
mation that maps nested array operations to array combi-
nators that operate only on flat arrays containing elements
of basic type; these combinators are provided by our array
library PArrays. We have previously presented a formalisa-
tion of this flattening transformation [11]. GHC’s simplifier
optimises the Core language using a wide range of source-to-
source transformations [28, 30, 27]. We extend these trans-
formations by equational loop fusion using GHC’s support
for rewrite rules that are specified as pragmas in the source
language [25]. The code generation itself is not affected.



2.1 Parallel Arrays: An Example

As an example, consider a function that multiplies a sparse
matrix by a vector, where the sparse matrix is stored in the
so-called compressed sparse row format [13]. This format
represents a sparse row by an array of column-index/value
pairs, where each pair represents a non-zero element of the
sparse matrix. An array of these sparse rows implements a
sparse matrix. To improve readability, we will take the free-
dom to use the special syntax [: - :] for the array constructor
in the following Haskell code. Please note that, although
we are using Haskell here, the presented concepts apply to
other typed functional languages such as Standard ML, too.

type SparseRow = [:(Int, Float):] -- index, value
type SparseMatriz = [:SparseRow:]

Now consider the multiplication of a sparse matrix with a
dense vector, resulting in another dense vector. Using a little
more special syntax, namely array comprehensions,’ we can
implement sparse-matrix/vector multiplication as follows:

smum it SparseMatriz — [:Float:] — [:Float:]
smym sm vec =
[:sumP [z * (vec!: col) | (col, z) < row:] | row  sm]

products of one row

The function sumP adds up the elements of an array and
the infix operator (!:) represents indexing.

This small algorithm already shows why conventional lists
are often suboptimal for algorithms from scientific comput-
ing. These algorithms tend to use indexing in inner loops;
an operation that is of constant cost for arrays and of cost
proportional to the length of the indexed list for lists. In
smvm, the indexing in the inner array comprehension is fre-
quently executed and, as the index values depend on the
input data, there is little scope for static optimisation.

Despite the bias towards arrays, the processed data struc-
ture as well as the computational behaviour of smvm are
highly irregular, as the number of non-zero elements in dif-
ferent rows may vary significantly. Consequently, the prin-
cipal data structure of conventional array languages like
Fortran—namely regular arrays, where all sub-structures
must be of the same size—is also not appropriate. Over-
all, nested arrays that allow sub-structures of varying size
seem to be the most adequate structure. Other important
algorithms, such as, adaptive iterative algorithms, have sim-
ilar properties.

Blelloch [6] has demonstrated that irregular, nested arrays
are well suited for expressing the parallelism in algorithms
like smvm and others. In fact, the implementation tech-
nique presented in this paper was originally aimed at opti-
mising node programs in parallel implementations of nested
array languages. Consequently, our approach is suitable for
a range of sequential and parallel architectures [10].

The reason for calling these arrays parallel arrays is, how-
ever, more fundamental. Whenever any element of a paral-
lel array is demanded, all elements are evaluated.? In other
words, we assume a parallel evaluation semantics for arrays.
We distinguish combinators over parallel arrays from those
over lists by the suffix “P”, as in sumP.

!There is no conceptual reason for the special syntax. It is
just a matter of presentation.

’In a lazy language like Haskell, this means that they are
evaluated to WHNF.

2.2 Changing the Data Representation

The first program transformation that we apply to a def-
inition like smvm is called flattening and its original formu-
lation is due to Blelloch & Sabot [8]. It converts data struc-
tures containing arrays of non-basic type into structures con-
taining arrays of basic type only and rewrites nested array
iterations into a single, flat iteration. The benefit is twofold:
(1) Traversals over arrays of basic types use the processor
cache more efficiently, as the elements can be stored unboxed
in a contiguous memory region; and (2) it improves load bal-
ancing and data distribution in a parallel implementation.

We recently extended flattening to be suitable for typed
functional languages such as Haskell and Standard ML [11].
In the following, we summarise the main properties of the
code resulting from flattening, as flattened code is the input
to the transformations discussed in this paper.

To distinguish the type and function names of the orig-
inal from the flattened variants, we underline the latter.
Central to understanding flattening is to understand how
it affects types. Most importantly, flattened data struc-
tures only contain arrays of basic type (Int, Float, and
so on); to distinguish them from the nested arrays of the
source language, we denote them with the type construc-
tor PArray. Flattening represents arrays of arrays—e.g.,
[:[: Float:]:]—by two arrays: a data vector containing all the
elements and a segment descriptor storing the structure, i.e.,
the lengths of all sub-arrays. For example, [:[:Float:]:] be-
comes (Segd, PArray Float) where

type Segd = PArray Int -- segment descriptor

So, the value [[:1, 2, 4], [:1], [:3, 53] is now represented by
the data vector [:1, 2, 4, 3, 5:] and the segment descriptor
[:3, 0, 2. Moreover, arrays of pairs are represented by a
pair of arrays. Considering these two rules, the type for
SparseMatriz should become clear.

type SparseRow = (PArray Int, PArray Float)
type SparseMatriz = (Segd, SparseRow)

Having presented the types, let us have a look at the code
transformation. The flattened code smym makes use of the
three new functions zip WithP, backpermuteP, and sumSP
operating on flat arrays.

smym :: SparseMatriz — PArray Float — PArray Float
smym (segd, (ind, val)) vec =
sumSP segd (mulV (backpermuteP vec ind) val)
where

mulV = zip WithP (*)

A capital “S” in a function name indicates a segmented func-
tion, i.e., a function that takes the segmentation of an ar-
ray into account. For example, sumSP segd arr individually
sums up the sub-arrays of arr as determined by the segment
descriptor segd, resulting in an array of sums. Segmented
functions are known to be useful for the high-performance
implementation of array algorithms [5, 7]. Moreover, the
function backpermuteP is a permutation operation where the
permutation vector gives the source rather than the desti-
nation index of each value. The flattened smvm correlates
to the original smwvm as follows: The backpermuteP per-
forms all the indexing operations wec !: col of the original
code in one collective operation. Then, mulV computes all
products between vector and matrix elements; and finally,



sumSP sums up all products that belong to the same row
of the matrix as indicated by the segment descriptor segd.
Flattened array code uses a whole range of array combina-
tors, such as sumSP and backpermuteP, the most common of
which are defined in Appendix A. The efficient implemen-
tation of programs constructed from these combinators is
the aim of the present paper—whether these programs were
generated by flattening or are hand coded is secondary.

2.3 Fusion of Array Operations

From now on, let us assume that, as in smwm, all ar-
ray computations are based on the combinators from Ap-
pendix A and operate on flat arrays only—with one excep-
tion. For reasons explained in Section 5.1, we can extend
the scope of fusion by also permitting arrays of pairs.

In smuym, we have three array combinators applied in se-
quence, all of whose index space ranges over the non-zero
elements of the sparse matrix. Considering cache perfor-
mance, it is inefficient to implement the combinators in three
distinct iterations unless all data fits into the cache. This is
where loop fusion comes into play. It amalgamates all three
combinators of smym into one, which can be implemented
by a single iteration over the non-zero elements of the sparse
matrix. This leads us to the question of which combinator
can express the result of fusion, in smyvm and in general.

It turns out that, as in the case of list fusion based on
foldr/build [15], we need two elementary array combina-
tors that can express all the others as well as all possible
outcomes of fusion. The first of these two combinators, the
array constructor replicateP n v, simply creates an array of
length n with all elements having the value v. The second,
the array consumer loopP, is more involved, as it can express
various forms of mapping, reduction, scan, and permutation
operations as well as combinations of them. Its type is

loopP :: (e — a — (Maybe €', a)) -- m: mutator

—(a = a) -- h: segment
— (a — Bool) - p: collect
—a -- accumulator
— SPArray e

— (SPArray €', PArray a, a)

where SPArray is a PArray paired with its segment descrip-
tor. An expression of the form loopP m h p a pa traverses
the segmented input array pa once from left to right. The
most interesting argument is the mutator m, which can be
regarded as a combination of the functions that are passed
to the list combinators map, filter, and foldl. It is applied to
each array element e, which it either maps to Just e'; or, if
its filtering component requires so, to Nothing.® In addition,
the mutator can use and update the accumulator a, which
enables the implementation of fold and scan functionality.
The remaining two arguments, A and p, determine the
behaviour of the loop at segment boundaries. The function
h updates the accumulator at each segment boundary; for
example, in the case of a segmented sum, it would reset the
accumulator. Finally, p is used at the end of each segment
to determine whether the current accumulator value is in-
cluded into the accumulator array PArray a of the result.
Overall, the loop produces three results: (1) an array con-
taining all e’ returned by the mutator m, (2) an array of
accumulator values sampled in dependence on p, and (3)

®In Haskell, Maybe a is a value that is either Nothing or
Just v, where v must be of type a.

the final accumulator value. Section 4.1 defines loopP more
precisely.

Given loopP, we can now present the fully fused vari-
ant of smvm, which is the result of applying the technique
presented in this paper to smvm (where zipP is the array
version of Haskell’s list function zip):

smom :: SparseMatriz — PArray Float — PArray Float

smum (segd, (ind, val)) vec = projAccs
(loopP combine (const 0) (const True) 0 segdIndVal)
where
segdIndVal = (segd, (zipP ind val))

combine (i, v) acc = (Nothing,

(vec ! i) * v + acc)

The code essentially traverses the segmented array of in-
dex/value pairs segdIndVal and in each iteration extracts
the vector element vec !: i corresponding to the column in-
dex of a matrix value v. The product of the two values is
added to the running sum maintained in the accumulator.
The running sum is stored in the accumulator array (this is
what const True specifies) and reset to zero at each segment
boundary (this is what const 0 specifies).

How we get from smwum to the fully fused code of smvm
is described in the rest of this paper. Figure 4, in Section 6,
shows the improved running time of the fused code over
smvm as well as over the same algorithm implemented with
standard Haskell arrays or with lists.

3. BASIC ARRAYS

Before diving into the details of loop fusion, let us look
more closely at the array type. PArray e is the type of arrays
containing elements of basic type e, where e is guaranteed
to be stored unboxed (cf. [29] regarding unboxed values in
Haskell). The restriction on element types is enforced by a
type class PAE (meaning “Parallel Array Element”):

class PAE e where
(%) :: PArraye — Int — e

There are instances of PAF for all basic Haskell types, such
as Int, Float, and so on. The use of overloading has the ad-
vantage that we can store elements unboxed in these arrays,
which in turn improves performance significantly (cf. [33]
for a benchmark). In fact, this overloading-based approach
to unboxed arrays was inspired by the Haskell libraries of
GHC [36], which in turn follow the Clean array library [16].

The above class definition is not complete. In fact, most
of the class methods are impure and operate on a mutable
variant of PArray. These state-based, monadic functions
include operations for allocating uninitialised arrays, and
reading and writing to these arrays. The impure functions
are not visible to a user of the library and as the details
are not relevant to this paper, we spare them. More about
destructive array functions in Haskell can be found in [26].

The impure methods of PAE are used to implement the
purely functional, basic array combinators replicateP and
loopP on which array fusion is based. Finally, the user-
visible interface of the PArrays library is defined in terms
of the basic combinators replicateP and loopP. It includes
array versions of the common list processing functions, for
example, mapP, zipWithP, filterP, enumFromToP, foldP*,

“The function foldP leaves the reduction order unspecified,



sumP as well as segmented versions where this makes sense.
Moreover, array-specific functions, such as permutations (e.g.,
backpermuteP), are included.

As mentioned earlier, we assume a parallel evaluation se-
mantics for arrays; i.e., whenever a single element of an array
is demanded, the whole array is evaluated. Such arrays are
also called strict. They are less flexible than lazy arrays [2],
but necessary as we would like to guarantee a clear parallel
interpretation of our array combinators [11].

Furthermore, we use the following two abbreviations for
segment descriptors and segmented arrays:

type Segd = PArray Int
type SPArray e = (Segd, PArray e)

As an example of a simple combinator-based array pro-
gram, consider the following definition:

sumSq :: Int — Int
sumSq n = sumP (mapP square (enumFromToP 1 n))
where
square z = T * 2

First, sumSq generates an array containing the values 1 up
to n over which, then, the scalar function square is mapped.
Finally, the result of applying mapP is summed up. The
two intermediate arrays (produced by enumFromToP and
mapP, respectively) can both be eliminated by fusion.

4. FUSION: THE SIMPLE CASE

Section 2.3 already mentioned that previous work indi-
cates that successful fusion techniques are based on a small
number of combinators over which equational fusion rules
are defined and which are sufficiently expressive to denote all
computations that we want to consider for fusion [15, 24, 34].
The most successful approach—in terms of actual usage—to
equational fusion, namely foldr/build [15], is restricted to
handling structure traversals that are expressed in terms of
a combinator library—such as, e.g., the Haskell Prelude. We
impose the same restriction. However, as functional arrays
are generally processed by combinators implementing bulk
operations and not by recursive traversals, this restriction is
of little practical consequence in the case of arrays.

In the remainder of this section, we will first define the
meaning of the loopP combinator in more detail, and then,
explore the basic fusion rules. We defer the more compli-
cated cases to the following section.

4.1 TheloopP Combinator

Now, we will finally provide a precise definition of the se-
mantics of the combinator loopP, whose type and intuition
we discussed in Section 2.3. For the purpose of keeping
the definition concise, we represent arrays as lists and seg-
mented arrays as list of lists. In other words, we define the
denotational semantics of loopP, but ignore the operational
properties of arrays for the moment.

-- Just for the purpose...
-- ...of this definition

loopP m h p ao [ ] = ([] y 1] ,a(’))

loopP m h p ao (seg : segs) = (seg' : segs’, as', a')

type PArray a = [a]
type SPArray a = [[a]]

and thus, requires an associative reduction function—this is
useful for the parallel implementation.

where
(seg’ | a) = loopr m (h ao) seg
(Segsl, as, a’) = loopP m h p a segs

as' = if p athen a : as else as

loop1 :: (e — a — (Maybe €', a))

— a — PArray e — (PArray €', a)
ooprmay[] = (] ,a))
loopt m aj (e : es) = (es”, a")

where

(me, a' )= meaq)

(es', a'"') = loopr m a' es

es" = case me of

Nothing — es'
Juste' — e':es

The auxiliary function loop; handles the traversal of a single
segment of the segmented array. For each segment, it re-
turns the corresponding segment of the result array (which
will be shorter if m ever returns Nothing) as well as the
value of the accumulator after the whole segment has been
processed. The function loopP invokes loop: once for each
segment and combines the resulting segments into the first
component of its result. Moreover, it applies h to the ac-
cumulator value before processing a segment and uses p to
determine the accumulator values that are collected into the
second component of the overall result.

The arguments h and p are only needed to implement ar-
ray traversals which take the segmentation structure of an
array into account. As some functions, most notably mapP,
are entirely oblivious to an array’s segmentation, we make
their definitions more readable by introducing the abbrevi-
ation loopA:

loopA m a pa = loopP m id (const False) a pa

In fact, we will define some fusion rules in terms of loopA
instead of loopP where this increases readability without
omitting important information.

For example, we can now define mapP and sumP as fol-
lows:

mapP f = let me_ = (Just (f e), () ) in loopA m ()
sumP = let mea= (Nothing , e + a)inloopA a 0

Given the definition of loopP, it is not difficult to see that
it can only produce arrays of a size smaller or equal to that
of its input array, which raises the question as to how we
generate new arrays; for example, to implement a combi-
nator, such as enumFromToP, which we used in sumSq in
Section 3.

4.2 Array Generation with replicateP

Fortunately, it turns out that a simple combinator, which
corresponds to the list function replicate in Haskell, is all
that is needed to generate arrays:

replicateP :: PAE e = Int — e — PArray e

It generates arrays of arbitrary size, where all elements are
initialised to the same value.

With the help of replicateP, we can indeed implement the
function enumFromToP mentioned in the previous section:

o (PAE e, Num e)
=e — e — PArraye

enumFromToP



enumFromToP from to = projMap $
loopA mut from (replicateP len 1)
where
len = (to — from + 1) ‘maz‘ 0
mut e acc = (Just ace, acc + e)

where projMap (pa, -, ) = pa projects the first component
of result of a loop. Unfortunately, this is a rather wasteful
definition. First, replicateP constructs an array consisting
of 1s only; and then, the actual result is computed from the
array of 1s by loopA. Obviously, it would be more efficient to
generate the resulting array in a single iteration, but neither
loopP nor replicateP are able to do the job on their own.

An interesting property of parallel arrays of unit type ()
can help us out of this dilemma: The only informational
content of an array of type PArray () is its length. This
property depends on the parallel evaluation semantics, as it
guarantees that the whole array is undefined if only a single
element is undefined (which is not the case for lazy arrays).
As a consequence, there is no need to ever construct an array
of type PArray (); simply storing its length is sufficient. We
can implement this special representation easily using the
overloading provided by the type class PAE:

instance PAF () where

_hi=()

As a result, the evaluation of replicateP n () is very cheap.
So, it is the ideal candidate for providing an array over which
loopP can iterate to produce a new array. This indeed leads
us to our first fusion rule:®

(loop/replicate fusion)Vmane.
loopA m a (replicateP n e)
loopA (A — m e) a (replicate n ())

It states that any occurrence of replicateP followed by loopA
should be replaced by generation of a unit array followed
by a modified call to loopA, where the mutator m contains
the constant e inline. Due to the optimised representation
of unit arrays, this rule removes the explicit construction
of the intermediate array. It should be obvious how the
rule (loop/replicate fusion) optimises the implementation of
enumFromToP stated earlier.

Generally, we denote rewrite rules as follows:

(rule name) Vo1 ... v,. exp1 — exps

where the v; are the free variables in the rules. These rules
should be read as replace every occurrence of expi by exps.

4.3 Fusion Rules for Loops

More sophisticated is the fusion of two consecutive loops:

(loop/loop fusion) V m1 a1 m2 as pa.
loopA mso as (projMap (loopA m1 a1 pa)) —

®The same rule for loopP does not add anything new, so we
leave it with the simpler loopA.

let
mg e (acci, acca) =
case m, e accy of
(Nothing, acc}) — (Nothing, (accy, accs))
(Just €' | accy) —
case ms e’ accs of
(Nothing, accy) — (Nothing, (accy, accy))
(Just ez , accy) — (Just e2 , (accy, accy))

in

droplstAcc (loopA ms (a1, a2) pa)
The most interesting aspect is the way in which the mu-
tators m; and ma of the two loops are combined into one,
called ms. The new mutator first applies m; and, only if
that returns a result, with Just e’, that would have been
stored in the intermediate array, it calls ma. Moreover, the
accumulators of the two loops are combined into a single
accumulator of pair type. As a consequence, the second and
third component of the result of the fused loop have to be
adjusted to obtain the same result that is produced by the
loops before fusion. This adjustment is performed by

droplstAcc :: (PAE e1, PAE e3) =
(z, PArray (e1, e2), (e1, e2)) — (x, PArray es, e2)
droplstAcc (pa, as, (a1, a2)) = (pa, mapP snd as, az)

To cater for the case where more than two consecutive
loops are to be fused, we have to ensure that any droplstAcc
followed by a projMap is eliminated. We achieve this by a
simple rewrite rule:

(projMap/droplstAcc elimination) Vv.
projMap (droplstAcc v) — projMap v

4.4 Rewrite Rules in GHC

GHC supports the specification of equational rewrite rules
that are used by the Simplifier (see Figure 1) to apply domain-
specific optimisations [25]. These rules are included as prag-
mas into source files. In our case, they are part of the defi-
nition of the PArrays library.

For example, the elimination rule for droplstAcc stated
at the end of the previous subsection is denoted as

{—# RULES
“projMap/droplstAcc”

forall v. projMap (droplstAcc v) = projMap v
#-1}

This rule will make the optimiser spot occurrences of the
pattern projMap(droplstAcc v), where v can be an arbitrary
expression, and replace it by the right-hand side of the rule.

The rewrite mechanism offered by GHC facilitates the im-
plementation of array support considerably—it would not
have been possible to provide a prototype implementation
in the given time frame otherwise. However, the implemen-
tation of such rules in practise can be challenging, due to the
interaction with other optimisations such as inlining. On the
other hand, the optimisations provided by the Simplifier by
default are crucial to simplify and efficiently implement the
loop bodies generated by our library.

4.5 How it all works together

Let us now go back to the sumSq example (from Section 3)
to see how the different techniques work together. We start
from the definition of sumSq after unfolding the definitions



for mapP and sumP as well as that for enumFromToP after
application of (loop/replicate fusion):

sumSqn =
projAcc $ loopAfi0 $
projMap$ loopA f2 ()  $
projMap$ loopA fz n pa

where
fi ea = (Nothing, e + a) - sumP
f2 e - = (Just (square e), ()) -- mapP
fa_a= (Justa, a + 1) -- enumFromToP
size = (m—n + 1) ‘maz‘ 0

pa

As pa and size do not change, we omit them in the next step
of the transformation. The rule (loop/loop fusion) is im-
mediately applicable, and fuses the loops of enumFromToP
and mapP into a single loop. For f» as well as f3, the first
component of the result pair is a Just value, independent of
the actual values of their arguments. Therefore, the case-
distinction introduced by the fusion rule can be eliminated
by GHC’s Simplifier. Moreover, (projMap/droplstAcc elimi-
nation) fires once. Overall, we get the definition

replicateP size ()

sumSqn =
projAcc $ loopA f1 08
projMap$ loopA fu (n, ()) pa
where
fa-(a, -) = (Just (square a), (a + 1))
fiea = (Nothing, e + a)

The next application of (loop/loop fusion), then, fuses the
remaining two loops, resulting in a definition with a single
loop, which does not create any array at all:

sumSqn =
projAcc § loopA f5 ((n, (), 0)
where
fs -((a1,-), a2) = (Nothing,
((a1 + 1, (), square a1 + a2))
size = (m—n+1) ‘maz‘ 0
pa = replicateP size ()

5. ADVANCED FUSION

In the presentation of fusion, so far, we have ignored
two additional complications. Firstly, some functions, like
zip WithP, consume two or more arrays in lockstep. We
might want to fuse such functions with the producers of both
arrays. This is tricky, and important list-based fusion tech-
niques are not able to fuse two consumers. Secondly, for a
fusion rule to fire, the fused combinators have to be adjacent
in the program code, which we usually achieve by combining
inlining with simplification. There are, however, situations,
such as the function boundaries of recursive functions, where
inlining is not applicable. In the rest of this section, we shall
illustrate our solutions to these two problems.

5.1 Traversing Two Arrays Simultaneously
The flattened version of the sparse-matrix vector multipli-
cation code smvm from Section 2.2 contained the equation

mulV = zip WithP (x)

which implements vectorised multiplication—i.e., multipli-
cation lifted pointwise. In smwvm, mulV was applied to
the result of a backpermuteP and one of the arguments to

smvm. In Appendix A, backpermuteP is defined in terms
of loopP. So, we would obviously like to fuse zip WithP
and backpermuteP. Furthermore, in some applications of
smyvm—after the definition of smvm has been inlined—the
second argument to zip WithP may also be the result of an
application of loopP or replicateP. In this case, we want
to fuse zip WithP with both of its arguments. Otherwise, if
only one of the arguments is in the “right” form (i.e., the
result of replicateP or loopP), we want fuse this argument
into the loop. The list fusion method foldr/build imple-
mented in GHC is not able to perform fusion in all these
cases [15]—instead, fusion is only possible for a single argu-
ment that has to be fixed when implementing zip. Other
approaches [34, 24] claim to fuse zip fully, but the details
are not entirely clear and no working system including these
techniques is available.

Our approach to this problem consists of two components:
(1) an unboxed representation for arrays of pairs and (2) a
set of specialised fusion rules.

5.1.1 Arrays of Pairs are Pairs of Arrays

Let us now consider functions that consume two or more
arrays in lockstep. As with generators, we can reduce the
problem to a single function, in this case zipP. For example,
we can implement zip WithP by zipP followed by a loop:

2ipWithP :: (PAE a, PAE b, PAE c¢)
= (a—=b—>c)
— PArray a — PArray b — PArray c
zip WithP f pa1 pas = loopA applyF () (2ipP pai paz)
where
applyF (1, e2) - = (Just (f ex e2), ()

In Section 2.2, we mentioned that flattening represents an
array of pairs as a pair of arrays—as witnessed in the type
SparseRow. This actually means that zipP does not have
to traverse the argument arrays at all, nor does it produce a
new array. Instead, it produces a pair containing references
to the two arrays. Having only one function, namely zipP,
which handles the lockstep traversal of multiple arrays, sim-
plifies the corresponding fusion rules significantly.

Nevertheless, we need to represent values of type PArray
(e1, e2) and define array operations on them, while retaining
the property that arrays store unboxed basic data only. Or
in other words, how can we implement an instance of PAFE
for pairs? We do so by performing a runtime dispatch on the
element type of arrays. In fact, as all elements of PArray
must be instances of the type class PAFE, it suffices to define
an instance for pairs that goes as follows:

instance (PAE e1, PAE e;) = PAE (e1, e2) where
(PAPair pai paz) 1 i = (par ! @ 2 e1, pas 1 i 1 e2)

Here PA Pair is the pair constructor that we use to represent
arrays of pairs.

It is interesting to note the relationship between our use of
overloading and Harper & Morrisett’s [17] intensional type
analysis. As Weirich [38] has also observed, type classes
can be used to implement some forms of intensional type
analysis. In essence, the method dispatch via dictionaries
that implements type classes is used to realise Harper &
Morrisett’s typecase. This relationship provides a route
to implementing our approach in a compiler that supports
typecase, but not type classes.



5.1.2 Fusion Rules fasipP

We now have to consider two cases for which the fusion
rules should fire: The argument array of zipP can either
be a result of an application of replicateP or loopP. For the
former, we can drag the generation into the succeeding loop,
thereby eliminating zipP altogether. Again, we specify the
rules for loopA only, to keep the presentation clearer:

(zip/replicate fusion) Vm a n e; ess.
loopA m a (zipP (replicateP n e1) es2) —
loopA (Ae — m (e1, €)) a esz

We omit the symmetric rule for fusing the second argument.

We handle fusion of a loopP that occurs as an argument to
zipP by propagating the loopP through zipP. The side con-
dition is that the mutator of the loop never drops elements,
which implies that the loop preserves the length of the ar-
ray. We can express this constraint by using an auxiliary
function restricting the loop function:

mapSFL:: (e — a — (e',a))
— (e = a — (Maybe €', a))
mapSFL (e, a) = (Just e, a)

Now the fusion rule is

(zip/loop propagation) Vf a es1 ess.
2ipP (loopA (mapSFL f) a es1) esa —
loopA (mapSFL f') a (2ipP es1 es2)
where
f'(e1, e2) a = let (e1, a') = felain((er, e), a')

Again, we omit the corresponding rule for the second argu-
ment. The use of mapSFL allows us to express the side con-
dition without leaving the framework of applicative rewrite
rules, which is what GHC supports. Having to use these
special functions may seem too restrictive, but consider that
this is not visible at the interface of the array library, which
consists of combinators such as mapP and foldP. We use
mapSFL only in the library-internal implementation of the
combinators.

5.2 Fusion over Function Boundaries

Equational fusion has a serious weakness: For the fusion
rules to fire, the combinators have to appear adjacently in
the program code. Given specialised functions such as mapP
and foldP, which are defined in terms of loopP, this is vir-
tually never the case in the source code. So, the whole
technique relies on other optimisation techniques—in par-
ticular, inlining—to convert the code such that fusion rules
can fire. However, there are situations, where inlining alone
does not help. Consider the following (slightly artificial)
function definition:®

foo :: PArray Int — Int
foozs | nullPzs =0
| otherwise = let
n = lengthP xs
. v = sumPuzxs
in
foo (replicateP (n — 1) v)
The function reduces its argument array to a scalar from
which it produces another array, which is passed to the next
recursion. In other words, the array created by the subex-
pression replicateP (n — 1) v is immediately consumed and

This situation also occurs frequently in realistic functions.

discarded in the next recursive step. It is clearly a waste of
time and memory to build it in the first place.

As discussed earlier, sumP is implemented in terms of
loopP, so after inlining sumP the array constructed by the
application of replicateP is immediately consumed by a loop P
in the following recursion. A perfect opportunity for fusion,
but the use of replicateP and loopP are separated by a func-
tion boundary. Thus, the fusion rule cannot fire!

This is very similar to the situation, where a primitive
value is boxed for a (recursive) function call, only to be im-
mediately unboxed by the callee. Recognising that replicateP
is an array constructor and loopP a destructor, the situation
is very similar indeed. With this insight, it is not surprising
that the idea behind the constructor specialisation technique
of [25] provides the seed for a solution of our problem.

The essential idea is to generate a specialised version of foo
for the case, where it is called with an argument constructed
by replicateP. In this case, we can pull the use of replicateP
into foo’s body and obtain the following variant:

fooR @ Int = Int — Int
fooRnv | nullPzs = 0
| otherwise = let
n = lengthP zs

. v = sumP xs
in
foo (replicateP (n — 1) v)
where
zs = replicateP n v

Now sumP is immediately applied to the result of replicateP
and, after some inlining, (loop/replicate fusion) can fire. All
that is left to be done, is to replace every occurrence foo with
an argument applying replicateP by an appropriate call to
fooR. Again, GHC’s rewrite rules come to the rescue. For
each specialised version of a function, we generate a simple
rule like this:

(foo/replicateP specialisation) Vn v.
foo (replicateP n v) — fooR n v

When applied in the body of fooR itself, fooR becomes re-
cursive. In combination with (loop/replicate fusion), we get

fooR x Int — Int — Int
fooRnv| n==0 =10
| otherwise = fooR (n — 1) v
where
v = projAcc (loopA mut 0 (replicateP n ()))
mut _ (i, a) = (Nothing, (i + 1, i + a))

Voila! We have successfully eliminated all arrays. As men-
tioned, replicateP n () does not actually construct an array,
so loopA will compile to a simple loop adding up 1 to n.

6. PERFORMANCE

The figures presented in this section were obtained with a
first experimental implementation of equational loop fusion
on the basis of GHC’s rewrite rules. We used the current de-
velopment version of GHC (version 5.01) with the following
optimisation options -02 -fliberate-case-threshold100
-funfolding-use-threshold10 -fno-method-sharing. In
addition, we patched the compiler to use a maximum worker-
wrapper argument count of 20 (rather than the default of
6). All C code was compiled with gcc 2.96 using -02. All
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Figure 2: Performance of sumSq

tests were executed on an unloaded 333MHz PII with 256kB
second level cache, running GNU /Linux.

6.1 Basic Loop Kernels

6.1.1 Sum-Square

The function sumSq from Section 3 is an extreme exam-
ple that demonstrates the possible impact that loop fusion
can have, as all intermediate structures can be eliminated.
Figure 2 displays the performance of applying sumSq to
values between 1,000,000 and 5,000,000. There are four
versions: (1) “fused”, fully fused and optimised; (2) “not
fused,” but still optimised; (3) “lists (fused)”, the Haskell
program sum (map square [1..n]), which GHC fuses using
foldr/build; and (4) “C”, the following C code:

result = 0;
for (i = 0; i < size; i++)
result += i * i;

The fully optimised and fused array code is only 26% to
39% slower than the C version. Moreover, loop fusion im-
proves the running time of this function by a factor of 4.5 to
5 over the flattened code as it can remove all arrays from this
code. The list-based program is slower, as GHC manages to
eliminate only one out of the two intermediate structures
with its current Prelude definitions.

6.1.2 Sieve of Eratosthenes

The second benchmark is a simple version of the Sieve of
Eratosthenes to compute the prime numbers up to a given
bound. Using standard Haskell arrays, the algorithms is as
follows:

primes :: Int — [Int]
primesn | n < 2 =
| otherwise =
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Figure 3: Performance of the prime sieve

let
sqrPrms = primes $ ceiling (sqrt (fromIntegral n))
sieves = concat
2 *p,3xp..n — 1]| p + sqrPrms]
range = (2:Int, n — 1)
flags = accumArray (&&) True range
(zip sieves (repeat False))
in

[n]| (n, f) « assocs flags, f]

Figure 3 displays the execution times for (1) standard
Haskell arrays, (2) an equivalent program using PArrays,
and (2) a corresponding C program based on inplace up-
dates. This benchmark clearly shows that PArrays perform
at least an order of magnitude better than standard Haskell
arrays in GHC. However, the hand-written C code is still by
a factor of 4 to 5.5 faster than our array library. The main
reason for this performance gap is that the code requires
a so-called “default back permute”, a permutation function
very similar to standard Haskell’s accumArray. This func-
tion cannot be expressed with loopP in its current form,
which means that it cannot fuse with adjacent loops.

6.1.3 Sparse Matrix Vector Multiplication

Figure 4 displays the running times for the sparse matrix
vector multiplication smvm applied to a set of matrices with
160,000 non-zero elements, but varying density (from dense
to 0.1% non-zero elements). The figure contains curves for
(1) standard Haskell arrays, (2) PArrays optimised, but not
fused, (3) PArrays fully fused, and (4) hand-written C code.
The version of the code using standard Haskell arrays is
fused by GHC using foldr/build (Haskell arrays are con-
structed and reduced via lists). Nevertheless, they are not
able to compete with the code based on PArray. Compar-
ing the execution times for the fused and not fused, but
flattened PArray code, we see that loop fusion improves the
performance of the code by a factor of 4 to 6. Nevertheless,
the hand-coded C program is still nearly a factor of 2 faster
than the fused PArrays code. As there is still one unbox-
ing operation performed per segment in the flattened matrix
representation, we hope to be able to close that gap further
by improving unboxing.

We have also tested a purely list-based version of smuvm,
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but despite foldr/build, the code was too slow to be dis-
played in the graph.

6.2 Barnes-HutN-Body Code

The largest example that we have tested to date is an
implementation of the Barnes-Hut N-body algorithm [3],
which computes the gravitational forces between a set of
particles. This code is highly irregular and centred around
a tree-shaped spatial decomposition. We have compared a
standard Haskell implementation of the code with a version
using a combination of arrays and trees as discussed in [19].
For the benchmark, we used a standard “Plummer” distribu-
tion of 1000 to 9000 particles. The array-based code clearly
outperforms the standard Haskell code; although, the abso-
lute performance still leaves significant room for improve-
ment.

7. CONCLUSIONS

The two main techniques that we use in the implementa-
tion of arrays, flattening and fusion, happen in two different
stages of the compilation, yet they do interact. The initial
motivation to use fusion was to ease shortcomings of the
flattening transformation by combining sequences of array

traversals into fewer, but more complex operations that ex-
hibit better locality of reference. More surprisingly, however,
flattening, or more precisely the flattened representation of
the data types, also simplifies fusion: By expressing all ar-
ray generators in terms of replicateP of unit type, we could
simplify the framework. Similarly, the zip problem is sim-
plified by the fact that zipP itself does not actually produce
a new array, since arrays of pairs are represented by a pair
of arrays.

7.1 Related Work

Loop fusion for imperative languages is well researched [1,
39, 21, 22, 31]. However, the challenges and techniques
of loop fusion in imperative and functional contexts differ
significantly. The extensive use of index calculations and
side effects in imperative array algorithms often requires so-
phisticated analysis techniques before loops can be manip-
ulated. In functional and, in particular, combinator-based
approaches the data flow is more explicit, which provides
more scope for transformations. In a functional context,
it is especially important to remove intermediate structures
and superfluous copying and, instead, use update-in-place.

Anderson & Hudak [2] argue for monolithic, lazy arrays
defined by Haskell array comprehensions and adapt sub-
script analysis, such that it can be used to implement some
algorithms more efficiently. They focus on regular code.

Ellmenreich, Lengauer & Griebl [14] also handle Haskell
array comprehensions and adapt an analysis that was orig-
inally introduced for imperative programs to the functional
case. They also focus on regular code.

Chuang [12] introduced combinator-based arrays for ML.
He stays quite close to typical list combinators, but also
considers update-in-place. He mentions loop fusion briefly,
but only in the form of typical list fusion rules, such as fusion
of map f o map g. The emphasis is, again, on regular code.

O’Neill & Burton [23] introduce a method for fast persis-
tent arrays. They, as well as related approaches, essentially
aim at a fast, purely functional update operation for single
elements without copying the whole array. This provides
some of the efficiency gains of update-in-place, but com-
pletely ignores the issue of unboxing.

7.2 Future Work

So far, we only appeal to intuition to reason that the
rewrite rules are indeed optimisations. A more systematic
treatment requires a cost model which takes into account the
cost of memory access, and ideally, even the memory hier-
archy to guide transformations. Moreover, we are currently
investigating how we can extend the scope of the transfor-
mation to include tupling; i.e., combining two independent
loops over structures of the same size. Such a transforma-
tion cannot be expressed as a simple rewrite rule, as it re-
quires that certain side conditions hold. Dependent types
or constraint-based analysis may provide a solution here.

Moreover, we plan to integrate the approach presented
here with our previous work on integrating fusion with a
distributed implementation of arrays [20]. The distributed
implementation will use the parallel semantics of PArrays
to make use of multiple processing nodes.
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APPENDIX

A. THE ARRAY LIBRARY & RULES

Figure 6 displays part of the interface of the PArrays li-
brary and provides definitions for some of the combinators
that can be defined in terms of replicateP and loopP.

data PArray e
type Segd = PArray Int
type SPArray e = (Segd, PArray e)

1dSAL :: PAE a = a — a
1dSAL acc = acc

noSAL :: PAE a = a — ()
noSAL acc = ()

falseSPL :: PAE acc = a — Bool
falseSPL _ = False

noAL :: ()
noAL = ()

mapEFL :: (PAE e, PAE ¢') =
(e = €e') - (e = a — (Maybe €', a))
mapEFLf = Aea — (Just$f e, a)

foldEFL :: (PAE e, PAE a) =
(e 5 a — a) - (e = a — (Maybe (), a))
foldEFLf = Xea — (Nothing, f € a)

scanEFL :: (PAE e, PAE acc) =
(e > a — a) > (e > a — (Maybe a, a))
scanEFLf = MNea — (Just a, f e a)

projMap :: (a, b, ¢) — a
projMap (z, y, z) =
projAces :: (a, b, c) — b
projAccs (z, y, z) = y

projAcc :: (a, b, ¢) — ¢
projAcc (z, y, 2) = =z

mapP :: (PAE e, PAE ¢') =
(e — €') — SPArray e — SPArray ¢’
mapP f =
projMap . loopP(mapEFL f) noSAL falseSPL noAL

filterP :: PAE e =
(e — Bool) — SPArray e — SPArray e
filterP p =
projMap $ loopP (filterEFL p) noSAL falseSPL noAL

enumFromToP ::
Int — Int — SPArray Int
enumFromToP start end =

projMap $ loopP (scanEFL (+)) 1dSAL falseSPL start pa

where
len = 0‘maz‘ (end — start + 1)
pa = replicateP len 1

foldP :: (PAE e, PAE ¢') =

(e - ¢ — €)= e — SPArraye — ¢
foldP gn =

projAcc . loopP (foldEFL g) idSAL falseSPL n

Figure 6: Common array combinators



