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ABSTRACTThis paper introdu
es a new approa
h to optimising arrayalgorithms in fun
tional languages. We are spe
i�
ally aim-ing at an eÆ
ient implementation of irregular array algo-rithms that are hard to implement in 
onventional arraylanguages su
h as Fortran. We optimise the storage lay-out of arrays 
ontaining 
omplex data stru
tures and redu
ethe running time of fun
tions operating on these arrays bymeans of equational program transformations. In parti
-ular, this paper dis
usses a novel form of 
ombinator loopfusion, whi
h by removing intermediate stru
tures optimisesthe use of the memory hierar
hy.We identify a 
ombinator named loopP that provides ageneral s
heme for iterating over an array and that in 
on-jun
tion with an array 
onstru
tor repli
ateP is suÆ
ientto express a wide range of array algorithms. On this ba-sis, we de�ne equational transformation rules that 
ombinetraversals of loopP and repli
ateP as well as sequen
es ofappli
ations of loopP into a single loopP traversal.Our approa
h naturally generalises to a parallel imple-mentation and in
ludes fa
ilities for optimising load balan
-ing and 
ommuni
ation. A prototype implementation basedon the rewrite rule pragma of the Glasgow Haskell Com-piler is signi�
antly faster than standard Haskell arrays andapproa
hes the speed of hand 
oded C for simple examples.
1. INTRODUCTIONFun
tional programming languages typi
ally fo
us on listsrather than arrays due to the more elegant algebrai
 prop-erties of the former. Notable ex
eptions are spe
ial purposelanguages like Sisal [9℄, SAC [32℄, and FISh [18℄, whi
h tar-get appli
ations from 
omputational s
ien
e and engineer-ing that are usually implemented in array-
entred languages,su
h as Fortran. Consequently, the design of these languagestends to be in
uen
ed by their imperative prede
essors; in�The se
ond author has been working at the University ofTe
hnology, Sydney, while performing the work reported inthis paper.
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fa
t, SAC is an abbreviation for Single Assignment C andFISh makes heavy use of imperative features. In line withthis approa
h, Sisal, SAC, and FISh as well as their imple-mentations also fo
us on what the high-performan
e 
om-puting 
ommunity 
alls regular algorithms. These operateover data stru
tures that 
an 
onveniently be stored in re
t-angular arrays and they iterate over regularly shaped indexspa
es. For many appli
ations this is not suÆ
ient.Irregular algorithms that operate on sparse data stru
-tures (su
h as sparse matri
es) or arrays of trees (su
h asadaptive or hierar
hi
al numeri
 algorithms) require ri
herdata stru
tures and index spa
es. Sophisti
ated data stru
-tures are 
ertainly a key strength of modern fun
tional lan-guages; so, it stands to reason that if we want to make animpa
t on array programming with fun
tional languages,we should try to beat imperative languages in appli
ationswhere irregular algorithms are 
entral. Having realised this,it is startling that most work on arrays in fun
tional lan-guages appears to have fo
used on regular 
ode [2, 12, 14,23℄. May be this is be
ause of the traditional fo
us on reg-ular problems in array languages.Another reason is probably that irregular algorithms are,independent of the language, mu
h harder to implement ef-�
iently, espe
ially on parallel ar
hite
tures. However, Blel-lo
h & Sabot [8℄ observed that every irregular algorithm
an be transformed into a semi-regular one that operateson a 
attened representation of the original nested stru
-tures and uses expli
it stru
tural information to representthe irregularity of the original data. We have previouslyshown how this te
hnique, known under the name 
atten-ing transformation, 
an be generalised to apply to typed,general-purpose fun
tional languages like Haskell and Stan-dard ML [11℄.However, 
attening is only half the story. Flattened arrayalgorithms are 
ombinator-based and generate many inter-mediate stru
tures. In fa
t, they are rather far away fromwhat previous work identi�ed as being eÆ
ient formulationsof array algorithms in general-purpose fun
tional languages:They should be based on unboxed and updatable arrays [16,33℄. An unboxed array stores the binary representation of anelement (e.g., an integer number) dire
tly, whereas a boxedarray would store a pointer to a heap-allo
ated 
ell 
on-taining the integer value. Unboxed arrays not only save onmemory, but allow a 
ompiler to better predi
t the mem-ory layout, whi
h 
an lead to large performan
e improve-ments due to better 
a
he utilisation. Updatable, or single-threaded arrays avoid super
uous 
opying. There are alsoapproa
hes that aim at similar eÆ
ien
y using persistent



arrays [23℄, but they often do not support unboxed valueswell.Serrarens [33℄ 
learly demonstrates the performan
e dif-feren
e between a straight-forward implementation of an ar-ray algorithm using lazy arrays and an optimised versionbased on unboxed and updatable arrays. He performs thetransformation of the straight-forward into the optimisedimplementation manually. This surely is not what we want!So, the goal of the resear
h presented here is simply stated:Given a purely fun
tional, 
ombinator-based implementa-tion of an array algorithm, automati
ally produ
e an ef-�
ient implementation that (1) avoids intermediate stru
-tures, (2) uses unboxed arrays, and (3) is based on de-stru
tive updates. We a
hieve this by a novel form of loopfusion|deforestation [37℄ of arrays if you like|in 
ombina-tion with standard optimisations like inlining and spe
iali-sation operating on overloaded unboxed arrays. While weare spe
i�
ally interested in array 
ode generated by the
attening transformation and present an implementation ofour approa
h in Haskell, the te
hniques presented in this pa-per are neither restri
ted to 
attening-generated 
ode nor toHaskell, but are generally appli
able. In fa
t, re
ent work inthe 
ontext of Standard ML [4℄ is exploring an array modelthat is very similar to the one that we are dis
ussing and weexpe
t that our implementation te
hnique is useful in theStandard ML s
enario, too. In summary, the 
ontributionsof this paper are the following:� Two array 
ombinators (an array 
onstru
tor and aloop abstra
tion) that are suÆ
ient to express a widerange of array 
omputations (Se
tion 4)� A novel form of loop fusion based on equational rewriterules that amalgamate 
onse
utive loops over arrays(Se
tion 4)� Fusion over both arguments of an array variant ofzip|deforestation te
hniques for lists often stumbleover this 
ase (Se
tion 5.1)� A method for applying array fusion a
ross fun
tionboundaries of re
ursive fun
tions (Se
tion 5.2)� Figures of the running times (Se
tion 6) for a �rstimplementation (Se
tion 3 & 4.4)The implementation is based on a number of advan
ed fea-tures of the Glasgow Haskell Compiler [35℄, namely un-boxed types [29℄, mutable arrays [26℄, and optimising rewriterules [25℄. However, these features merely a�e
t the inter-nals of our array library|an ordinary user is still providedwith a 
lean, purely fun
tional interfa
e. In fa
t, as weshall dis
uss in Se
tion 2, we do not even expe
t the appli-
ation programmer to dire
tly use our array 
ombinators;instead, we provide a 
onvenient interfa
e based on array
omprehensions and well-known 
ombinators like those forlists in Haskell's prelude. The runtime �gures indi
ate thatfor some algorithms based on sparse and irregular stru
tures,our approa
h to arrays is more eÆ
ient than both Haskell'sstandard arrays as well as the 
orresponding list algorithms.Moreover, we get very 
lose to the speed of hand-
oded Cfor simple examples.Loop fusion is not a new te
hnique. It has been exten-sively studied (see, e.g., [1, 21, 22, 31, 39℄) and it is usedin varying stages of sophisti
ation in probably all high-per-forman
e 
ompilers. It is often used to in
rease lo
ality of

Haskell &[::℄Type
he
k & Desugarer & FlatteningCore & PArraysCode GenerationC Code / Assembler
Simpli�er

synta
ti
 supportfor parallel arrays nested ! 
at;removes array
omprehensions
additional rulesfor array fusionas input tothe Simpli�erFigure 1: GHC with extra array supportreferen
e, to avoid 
ommuni
ation, and to in
rease the gran-ularity of parallelism. The unusual features of our approa
hare the expli
it handling of segmented loops, whi
h are 
ru-
ial for irregular 
odes, and the use of equational rewriterules to express loop fusion. The latter simpli�es the imple-mentation and is more a

essible to formal analysis.The remainder of the paper is organised as follows: Se
-tion 2 provides an overview of the various transformationsthat we apply. Se
tion 3 outlines the interfa
e and imple-mentation of the array library. Se
tion 4 presents the twoarray 
ombinators over whi
h the fusion rules are de�nedand introdu
es the rules needed to fuse fun
tions 
onsum-ing a single array. Se
tion 5 
overs the more elaborate 
aseof fun
tions 
onsuming multiple arrays and of fusion a
rossfun
tion boundaries. Se
tion 6 presents ben
hmarks. Se
-tion 7 dis
usses related work and draws 
on
lusions.

2. THE BIG PICTURELet us start with an outline of a 
ompilation frameworkfor fun
tional arrays, whi
h also 
lari�es the role that loopfusion has in this framework. Figure 1 displays the mainphases of the Glasgow Haskell Compiler (GHC) [35℄, whi
hwe enri
h with support for arrays (set in bold itali
). Thefrontend reads Haskell modules, whi
h in
lude synta
ti
 su-gar for arrays (in the �gure, indi
ated by the array notation[: � :℄). After type 
he
king, the desugarer 
onverts the inputinto Core, whi
h is GHC's 
entral intermediate representa-tion. We extend the desugarer with a 
attening transfor-mation that maps nested array operations to array 
ombi-nators that operate only on 
at arrays 
ontaining elementsof basi
 type; these 
ombinators are provided by our arraylibrary PArrays . We have previously presented a formalisa-tion of this 
attening transformation [11℄. GHC's simpli�eroptimises the Core language using a wide range of sour
e-to-sour
e transformations [28, 30, 27℄. We extend these trans-formations by equational loop fusion using GHC's supportfor rewrite rules that are spe
i�ed as pragmas in the sour
elanguage [25℄. The 
ode generation itself is not a�e
ted.



2.1 Parallel Arrays: An ExampleAs an example, 
onsider a fun
tion that multiplies a sparsematrix by a ve
tor, where the sparse matrix is stored in theso-
alled 
ompressed sparse row format [13℄. This formatrepresents a sparse row by an array of 
olumn-index/valuepairs, where ea
h pair represents a non-zero element of thesparse matrix. An array of these sparse rows implements asparse matrix. To improve readability, we will take the free-dom to use the spe
ial syntax [: � :℄ for the array 
onstru
torin the following Haskell 
ode. Please note that, althoughwe are using Haskell here, the presented 
on
epts apply toother typed fun
tional languages su
h as Standard ML, too.type SparseRow = [:(Int ; Float):℄ -- index, valuetype SparseMatrix = [:SparseRow :℄Now 
onsider the multipli
ation of a sparse matrix with adense ve
tor, resulting in another dense ve
tor. Using a littlemore spe
ial syntax, namely array 
omprehensions,1 we 
animplement sparse-matrix/ve
tor multipli
ation as follows:smvm :: SparseMatrix ! [:Float :℄! [:Float :℄smvm sm ve
 =[:sumP [:x � (ve
 !: 
ol) j (
ol; x) row:℄| {z }produ
ts of one row j row  sm:℄The fun
tion sumP adds up the elements of an array andthe in�x operator (!:) represents indexing.This small algorithm already shows why 
onventional listsare often suboptimal for algorithms from s
ienti�
 
omput-ing. These algorithms tend to use indexing in inner loops;an operation that is of 
onstant 
ost for arrays and of 
ostproportional to the length of the indexed list for lists. Insmvm, the indexing in the inner array 
omprehension is fre-quently exe
uted and, as the index values depend on theinput data, there is little s
ope for stati
 optimisation.Despite the bias towards arrays, the pro
essed data stru
-ture as well as the 
omputational behaviour of smvm arehighly irregular, as the number of non-zero elements in dif-ferent rows may vary signi�
antly. Consequently, the prin-
ipal data stru
ture of 
onventional array languages likeFortran|namely regular arrays, where all sub-stru
turesmust be of the same size|is also not appropriate. Over-all, nested arrays that allow sub-stru
tures of varying sizeseem to be the most adequate stru
ture. Other importantalgorithms, su
h as, adaptive iterative algorithms, have sim-ilar properties.Blello
h [6℄ has demonstrated that irregular, nested arraysare well suited for expressing the parallelism in algorithmslike smvm and others. In fa
t, the implementation te
h-nique presented in this paper was originally aimed at opti-mising node programs in parallel implementations of nestedarray languages. Consequently, our approa
h is suitable fora range of sequential and parallel ar
hite
tures [10℄.The reason for 
alling these arrays parallel arrays is, how-ever, more fundamental. Whenever any element of a paral-lel array is demanded, all elements are evaluated.2 In otherwords, we assume a parallel evaluation semanti
s for arrays.We distinguish 
ombinators over parallel arrays from thoseover lists by the suÆx \P", as in sumP .1There is no 
on
eptual reason for the spe
ial syntax. It isjust a matter of presentation.2In a lazy language like Haskell, this means that they areevaluated to WHNF.

2.2 Changing the Data RepresentationThe �rst program transformation that we apply to a def-inition like smvm is 
alled 
attening and its original formu-lation is due to Blello
h & Sabot [8℄. It 
onverts data stru
-tures 
ontaining arrays of non-basi
 type into stru
tures 
on-taining arrays of basi
 type only and rewrites nested arrayiterations into a single, 
at iteration. The bene�t is twofold:(1) Traversals over arrays of basi
 types use the pro
essor
a
he more eÆ
iently, as the elements 
an be stored unboxedin a 
ontiguous memory region; and (2) it improves load bal-an
ing and data distribution in a parallel implementation.We re
ently extended 
attening to be suitable for typedfun
tional languages su
h as Haskell and Standard ML [11℄.In the following, we summarise the main properties of the
ode resulting from 
attening, as 
attened 
ode is the inputto the transformations dis
ussed in this paper.To distinguish the type and fun
tion names of the orig-inal from the 
attened variants, we underline the latter.Central to understanding 
attening is to understand howit a�e
ts types. Most importantly, 
attened data stru
-tures only 
ontain arrays of basi
 type (Int , Float , andso on); to distinguish them from the nested arrays of thesour
e language, we denote them with the type 
onstru
-tor PArray . Flattening represents arrays of arrays|e.g.,[:[:Float :℄:℄|by two arrays: a data ve
tor 
ontaining all theelements and a segment des
riptor storing the stru
ture, i.e.,the lengths of all sub-arrays. For example, [:[:Float :℄:℄ be-
omes (Segd ; PArray Float) wheretype Segd = PArray Int -- segment des
riptorSo, the value [:[:1; 2; 4:℄; [::℄; [:3; 5:℄:℄ is now represented bythe data ve
tor [:1; 2; 4; 3; 5:℄ and the segment des
riptor[:3; 0; 2:℄. Moreover, arrays of pairs are represented by apair of arrays. Considering these two rules, the type forSparseMatrix should be
ome 
lear.type SparseRow = (PArray Int ; PArray Float)type SparseMatrix = (Segd ; SparseRow )Having presented the types, let us have a look at the 
odetransformation. The 
attened 
ode smvm makes use of thethree new fun
tions zipWithP , ba
kpermuteP , and sumSPoperating on 
at arrays.smvm :: SparseMatrix ! PArray Float ! PArray Floatsmvm (segd ; (ind ; val)) ve
 =sumSP segd (mulV (ba
kpermuteP ve
 ind) val)wheremulV = zipWithP (�)A 
apital \S" in a fun
tion name indi
ates a segmented fun
-tion, i.e., a fun
tion that takes the segmentation of an ar-ray into a

ount. For example, sumSP segd arr individuallysums up the sub-arrays of arr as determined by the segmentdes
riptor segd , resulting in an array of sums. Segmentedfun
tions are known to be useful for the high-performan
eimplementation of array algorithms [5, 7℄. Moreover, thefun
tion ba
kpermuteP is a permutation operation where thepermutation ve
tor gives the sour
e rather than the desti-nation index of ea
h value. The 
attened smvm 
orrelatesto the original smvm as follows: The ba
kpermuteP per-forms all the indexing operations ve
 !: 
ol of the original
ode in one 
olle
tive operation. Then, mulV 
omputes allprodu
ts between ve
tor and matrix elements; and �nally,



sumSP sums up all produ
ts that belong to the same rowof the matrix as indi
ated by the segment des
riptor segd .Flattened array 
ode uses a whole range of array 
ombina-tors, su
h as sumSP and ba
kpermuteP , the most 
ommon ofwhi
h are de�ned in Appendix A. The eÆ
ient implemen-tation of programs 
onstru
ted from these 
ombinators isthe aim of the present paper|whether these programs weregenerated by 
attening or are hand 
oded is se
ondary.
2.3 Fusion of Array OperationsFrom now on, let us assume that, as in smvm, all ar-ray 
omputations are based on the 
ombinators from Ap-pendix A and operate on 
at arrays only|with one ex
ep-tion. For reasons explained in Se
tion 5.1, we 
an extendthe s
ope of fusion by also permitting arrays of pairs.In smvm, we have three array 
ombinators applied in se-quen
e, all of whose index spa
e ranges over the non-zeroelements of the sparse matrix. Considering 
a
he perfor-man
e, it is ineÆ
ient to implement the 
ombinators in threedistin
t iterations unless all data �ts into the 
a
he. This iswhere loop fusion 
omes into play. It amalgamates all three
ombinators of smvm into one, whi
h 
an be implementedby a single iteration over the non-zero elements of the sparsematrix. This leads us to the question of whi
h 
ombinator
an express the result of fusion, in smvm and in general.It turns out that, as in the 
ase of list fusion based onfoldr/build [15℄, we need two elementary array 
ombina-tors that 
an express all the others as well as all possibleout
omes of fusion. The �rst of these two 
ombinators, thearray 
onstru
tor repli
ateP n v , simply 
reates an array oflength n with all elements having the value v . The se
ond,the array 
onsumer loopP , is more involved, as it 
an expressvarious forms of mapping, redu
tion, s
an, and permutationoperations as well as 
ombinations of them. Its type isloopP :: (e ! a ! (Maybe e 0; a)) -- m: mutator! (a ! a) -- h: segment! (a ! Bool) -- p: 
olle
t! a -- a

umulator! SPArray e! (SPArray e 0; PArray a; a)where SPArray is a PArray paired with its segment des
rip-tor. An expression of the form loopP m h p a pa traversesthe segmented input array pa on
e from left to right. Themost interesting argument is the mutator m, whi
h 
an beregarded as a 
ombination of the fun
tions that are passedto the list 
ombinators map, �lter , and foldl . It is applied toea
h array element e, whi
h it either maps to Just e 0; or, ifits �ltering 
omponent requires so, to Nothing .3 In addition,the mutator 
an use and update the a

umulator a, whi
henables the implementation of fold and s
an fun
tionality.The remaining two arguments, h and p, determine thebehaviour of the loop at segment boundaries. The fun
tionh updates the a

umulator at ea
h segment boundary; forexample, in the 
ase of a segmented sum, it would reset thea

umulator. Finally, p is used at the end of ea
h segmentto determine whether the 
urrent a

umulator value is in-
luded into the a

umulator array PArray a of the result.Overall, the loop produ
es three results: (1) an array 
on-taining all e 0 returned by the mutator m, (2) an array ofa

umulator values sampled in dependen
e on p, and (3)3In Haskell, Maybe a is a value that is either Nothing orJust v ; where v must be of type a.

the �nal a

umulator value. Se
tion 4.1 de�nes loopP morepre
isely.Given loopP , we 
an now present the fully fused vari-ant of smvm, whi
h is the result of applying the te
hniquepresented in this paper to smvm (where zipP is the arrayversion of Haskell's list fun
tion zip):smvm :: SparseMatrix ! PArray Float ! PArray Floatsmvm (segd ; (ind ; val)) ve
 = projA

s(loopP 
ombine (
onst 0) (
onst True) 0 segdIndVal)wheresegdIndVal = (segd ; (zipP ind val))
ombine (i ; v) a

 = (Nothing ;(ve
 !: i) � v + a

)The 
ode essentially traverses the segmented array of in-dex/value pairs segdIndVal and in ea
h iteration extra
tsthe ve
tor element ve
 !: i 
orresponding to the 
olumn in-dex of a matrix value v . The produ
t of the two values isadded to the running sum maintained in the a

umulator.The running sum is stored in the a

umulator array (this iswhat 
onst True spe
i�es) and reset to zero at ea
h segmentboundary (this is what 
onst 0 spe
i�es).How we get from smvm to the fully fused 
ode of smvmis des
ribed in the rest of this paper. Figure 4, in Se
tion 6,shows the improved running time of the fused 
ode oversmvm as well as over the same algorithm implemented withstandard Haskell arrays or with lists.
3. BASIC ARRAYSBefore diving into the details of loop fusion, let us lookmore 
losely at the array type. PArray e is the type of arrays
ontaining elements of basi
 type e; where e is guaranteedto be stored unboxed (
f. [29℄ regarding unboxed values inHaskell). The restri
tion on element types is enfor
ed by atype 
lass PAE (meaning \Parallel Array Element"):
lass PAE e where(!:) :: PArray e ! Int ! e: : :There are instan
es of PAE for all basi
 Haskell types, su
has Int ; Float ; and so on. The use of overloading has the ad-vantage that we 
an store elements unboxed in these arrays,whi
h in turn improves performan
e signi�
antly (
f. [33℄for a ben
hmark). In fa
t, this overloading-based approa
hto unboxed arrays was inspired by the Haskell libraries ofGHC [36℄, whi
h in turn follow the Clean array library [16℄.The above 
lass de�nition is not 
omplete. In fa
t, mostof the 
lass methods are impure and operate on a mutablevariant of PArray . These state-based, monadi
 fun
tionsin
lude operations for allo
ating uninitialised arrays, andreading and writing to these arrays. The impure fun
tionsare not visible to a user of the library and as the detailsare not relevant to this paper, we spare them. More aboutdestru
tive array fun
tions in Haskell 
an be found in [26℄.The impure methods of PAE are used to implement thepurely fun
tional, basi
 array 
ombinators repli
ateP andloopP on whi
h array fusion is based. Finally, the user-visible interfa
e of the PArrays library is de�ned in termsof the basi
 
ombinators repli
ateP and loopP . It in
ludesarray versions of the 
ommon list pro
essing fun
tions, forexample, mapP , zipWithP , �lterP , enumFromToP , foldP4,4The fun
tion foldP leaves the redu
tion order unspe
i�ed,



sumP as well as segmented versions where this makes sense.Moreover, array-spe
i�
 fun
tions, su
h as permutations (e.g.,ba
kpermuteP ), are in
luded.As mentioned earlier, we assume a parallel evaluation se-manti
s for arrays; i.e., whenever a single element of an arrayis demanded, the whole array is evaluated. Su
h arrays arealso 
alled stri
t. They are less 
exible than lazy arrays [2℄,but ne
essary as we would like to guarantee a 
lear parallelinterpretation of our array 
ombinators [11℄.Furthermore, we use the following two abbreviations forsegment des
riptors and segmented arrays:type Segd = PArray Inttype SPArray e = (Segd ; PArray e)As an example of a simple 
ombinator-based array pro-gram, 
onsider the following de�nition:sumSq :: Int ! IntsumSq n = sumP (mapP square (enumFromToP 1 n))wheresquare x = x � xFirst, sumSq generates an array 
ontaining the values 1 upto n over whi
h, then, the s
alar fun
tion square is mapped.Finally, the result of applying mapP is summed up. Thetwo intermediate arrays (produ
ed by enumFromToP andmapP , respe
tively) 
an both be eliminated by fusion.
4. FUSION: THE SIMPLE CASESe
tion 2.3 already mentioned that previous work indi-
ates that su

essful fusion te
hniques are based on a smallnumber of 
ombinators over whi
h equational fusion rulesare de�ned and whi
h are suÆ
iently expressive to denote all
omputations that we want to 
onsider for fusion [15, 24, 34℄.The most su

essful approa
h|in terms of a
tual usage|toequational fusion, namely foldr/build [15℄, is restri
ted tohandling stru
ture traversals that are expressed in terms ofa 
ombinator library|su
h as, e.g., the Haskell Prelude. Weimpose the same restri
tion. However, as fun
tional arraysare generally pro
essed by 
ombinators implementing bulkoperations and not by re
ursive traversals, this restri
tion isof little pra
ti
al 
onsequen
e in the 
ase of arrays.In the remainder of this se
tion, we will �rst de�ne themeaning of the loopP 
ombinator in more detail, and then,explore the basi
 fusion rules. We defer the more 
ompli-
ated 
ases to the following se
tion.
4.1 TheloopP CombinatorNow, we will �nally provide a pre
ise de�nition of the se-manti
s of the 
ombinator loopP , whose type and intuitionwe dis
ussed in Se
tion 2.3. For the purpose of keepingthe de�nition 
on
ise, we represent arrays as lists and seg-mented arrays as list of lists. In other words, we de�ne thedenotational semanti
s of loopP , but ignore the operationalproperties of arrays for the moment.type PArray a = [a℄ -- Just for the purpose. . .type SPArray a = [[a℄℄ -- . . . of this de�nitionloopP m h p a0 [ ℄ = ([ ℄ ; [ ℄ ; a0)loopP m h p a0 (seg : segs) = (seg 0 : segs 0; as 0; a 0 )and thus, requires an asso
iative redu
tion fun
tion|this isuseful for the parallel implementation.

where(seg 0 ; a ) = loop1 m (h a0) seg(segs 0; as; a 0) = loopP m h p a segsas 0 = if p a then a : as else asloop1 :: (e ! a ! (Maybe e 0; a))! a ! PArray e ! (PArray e 0; a)loop1 m a 00 [ ℄ = ([ ℄ ; a 00 )loop1 m a 00 (e : es) = (es 00; a 00)where(me; a 0 ) = m e a 00(es 0 ; a 00) = loop1 m a 0 eses 00 = 
aseme ofNothing ! es 0Just e 0 ! e 0 : es 0The auxiliary fun
tion loop1 handles the traversal of a singlesegment of the segmented array. For ea
h segment, it re-turns the 
orresponding segment of the result array (whi
hwill be shorter if m ever returns Nothing) as well as thevalue of the a

umulator after the whole segment has beenpro
essed. The fun
tion loopP invokes loop1 on
e for ea
hsegment and 
ombines the resulting segments into the �rst
omponent of its result. Moreover, it applies h to the a
-
umulator value before pro
essing a segment and uses p todetermine the a

umulator values that are 
olle
ted into these
ond 
omponent of the overall result.The arguments h and p are only needed to implement ar-ray traversals whi
h take the segmentation stru
ture of anarray into a

ount. As some fun
tions, most notably mapP ,are entirely oblivious to an array's segmentation, we maketheir de�nitions more readable by introdu
ing the abbrevi-ation loopA:loopA m a pa = loopP m id (
onst False) a paIn fa
t, we will de�ne some fusion rules in terms of loopAinstead of loopP where this in
reases readability withoutomitting important information.For example, we 
an now de�ne mapP and sumP as fol-lows:mapP f = letm e = (Just (f e); () ) in loopA m ()sumP = letm e a = (Nothing ; e + a) in loopA a 0Given the de�nition of loopP , it is not diÆ
ult to see thatit 
an only produ
e arrays of a size smaller or equal to thatof its input array, whi
h raises the question as to how wegenerate new arrays; for example, to implement a 
ombi-nator, su
h as enumFromToP , whi
h we used in sumSq inSe
tion 3.
4.2 Array Generation with repli
atePFortunately, it turns out that a simple 
ombinator, whi
h
orresponds to the list fun
tion repli
ate in Haskell, is allthat is needed to generate arrays:repli
ateP :: PAE e ) Int ! e ! PArray eIt generates arrays of arbitrary size, where all elements areinitialised to the same value.With the help of repli
ateP , we 
an indeed implement thefun
tion enumFromToP mentioned in the previous se
tion:enumFromToP :: (PAE e; Num e)) e ! e ! PArray e



enumFromToP from to = projMap $loopA mut from (repli
ateP len 1)wherelen = (to � from + 1) `max ` 0mut e a

 = (Just a

; a

 + e)where projMap (pa; ; ) = pa proje
ts the �rst 
omponentof result of a loop. Unfortunately, this is a rather wastefulde�nition. First, repli
ateP 
onstru
ts an array 
onsistingof 1s only; and then, the a
tual result is 
omputed from thearray of 1s by loopA. Obviously, it would be more eÆ
ient togenerate the resulting array in a single iteration, but neitherloopP nor repli
ateP are able to do the job on their own.An interesting property of parallel arrays of unit type ()
an help us out of this dilemma: The only informational
ontent of an array of type PArray () is its length. Thisproperty depends on the parallel evaluation semanti
s, as itguarantees that the whole array is unde�ned if only a singleelement is unde�ned (whi
h is not the 
ase for lazy arrays).As a 
onsequen
e, there is no need to ever 
onstru
t an arrayof type PArray (); simply storing its length is suÆ
ient. We
an implement this spe
ial representation easily using theoverloading provided by the type 
lass PAE :instan
e PAE ()where!: i = (): : :As a result, the evaluation of repli
ateP n () is very 
heap.So, it is the ideal 
andidate for providing an array over whi
hloopP 
an iterate to produ
e a new array. This indeed leadsus to our �rst fusion rule:5hloop/repli
ate fusioni 8m a n e :loopA m a (repli
ateP n e) 7!loopA (� ! m e) a (repli
ate n ())It states that any o

urren
e of repli
ateP followed by loopAshould be repla
ed by generation of a unit array followedby a modi�ed 
all to loopA, where the mutator m 
ontainsthe 
onstant e inline. Due to the optimised representationof unit arrays, this rule removes the expli
it 
onstru
tionof the intermediate array. It should be obvious how therule hloop/repli
ate fusioni optimises the implementation ofenumFromToP stated earlier.Generally, we denote rewrite rules as follows:hrule namei 8v1 : : : vn : exp1 7! exp2where the vi are the free variables in the rules. These rulesshould be read as repla
e every o

urren
e of exp1 by exp2.
4.3 Fusion Rules for LoopsMore sophisti
ated is the fusion of two 
onse
utive loops:hloop/loop fusioni 8m1 a1 m2 a2 pa:loopA m2 a2 (projMap (loopA m1 a1 pa)) 7!5The same rule for loopP does not add anything new, so weleave it with the simpler loopA.

letm3 e (a

1; a

2) =
asem1 e a

1 of(Nothing ; a

01)! (Nothing ; (a

01; a

2))(Just e 0 ; a

01)!
asem2 e 0 a

2 of(Nothing ; a

02)! (Nothing ; (a

01; a

02))(Just e2 ; a

02)! (Just e2 ; (a

01; a

02))indrop1stA

 (loopA m3 (a1; a2) pa)The most interesting aspe
t is the way in whi
h the mu-tators m1 and m2 of the two loops are 
ombined into one,
alled m3. The new mutator �rst applies m1 and, only ifthat returns a result, with Just e 0, that would have beenstored in the intermediate array, it 
alls m2. Moreover, thea

umulators of the two loops are 
ombined into a singlea

umulator of pair type. As a 
onsequen
e, the se
ond andthird 
omponent of the result of the fused loop have to beadjusted to obtain the same result that is produ
ed by theloops before fusion. This adjustment is performed bydrop1stA

 :: (PAE e1; PAE e2) )(x ; PArray (e1; e2); (e1; e2)) ! (x ; PArray e2; e2)drop1stA

 (pa; as; (a1; a2)) = (pa; mapP snd as; a2)To 
ater for the 
ase where more than two 
onse
utiveloops are to be fused, we have to ensure that any drop1stA

followed by a projMap is eliminated. We a
hieve this by asimple rewrite rule:hprojMap/drop1stA

 eliminationi 8v :projMap (drop1stA

 v) 7! projMap v
4.4 Rewrite Rules in GHCGHC supports the spe
i�
ation of equational rewrite rulesthat are used by the Simpli�er (see Figure 1) to apply domain-spe
i�
 optimisations [25℄. These rules are in
luded as prag-mas into sour
e �les. In our 
ase, they are part of the de�-nition of the PArrays library.For example, the elimination rule for drop1stA

 statedat the end of the previous subse
tion is denoted asf�# RULES\projMap/drop1stA

"forall v : projMap (drop1stA

 v) = projMap v#�gThis rule will make the optimiser spot o

urren
es of thepattern projMap(drop1stA

 v), where v 
an be an arbitraryexpression, and repla
e it by the right-hand side of the rule.The rewrite me
hanism o�ered by GHC fa
ilitates the im-plementation of array support 
onsiderably|it would nothave been possible to provide a prototype implementationin the given time frame otherwise. However, the implemen-tation of su
h rules in pra
tise 
an be 
hallenging, due to theintera
tion with other optimisations su
h as inlining. On theother hand, the optimisations provided by the Simpli�er bydefault are 
ru
ial to simplify and eÆ
iently implement theloop bodies generated by our library.
4.5 How it all works togetherLet us now go ba
k to the sumSq example (from Se
tion 3)to see how the di�erent te
hniques work together. We startfrom the de�nition of sumSq after unfolding the de�nitions



for mapP and sumP as well as that for enumFromToP afterappli
ation of hloop/repli
ate fusioni:sumSq n =projA

 $ loopA f1 0 $projMap$ loopA f2 () $projMap$ loopA f3 n pawheref1 e a = (Nothing ; e + a) -- sumPf2 e = (Just (square e); ()) -- mapPf3 a = (Just a ; a + 1) -- enumFromToPsize = (m � n + 1) `max ` 0pa = repli
ateP size ()As pa and size do not 
hange, we omit them in the next stepof the transformation. The rule hloop/loop fusioni is im-mediately appli
able, and fuses the loops of enumFromToPand mapP into a single loop. For f2 as well as f3, the �rst
omponent of the result pair is a Just value, independent ofthe a
tual values of their arguments. Therefore, the 
ase-distin
tion introdu
ed by the fusion rule 
an be eliminatedby GHC's Simpli�er. Moreover, hprojMap/drop1stA

 elimi-nationi �res on
e. Overall, we get the de�nitionsumSq n =projA

 $ loopA f1 0 $projMap$ loopA f4 (n; ()) pawheref4 (a; ) = (Just (square a); (a + 1))f1 ea = (Nothing ; e + a)The next appli
ation of hloop/loop fusioni, then, fuses theremaining two loops, resulting in a de�nition with a singleloop, whi
h does not 
reate any array at all:sumSq n =projA

 $ loopA f5 ((n; ()); 0)wheref5 ((a1; ); a2) = (Nothing ;((a1 + 1; ()); square a1 + a2))size = (m � n + 1) `max ` 0pa = repli
ateP size ()
5. ADVANCED FUSIONIn the presentation of fusion, so far, we have ignoredtwo additional 
ompli
ations. Firstly, some fun
tions, likezipWithP , 
onsume two or more arrays in lo
kstep. Wemight want to fuse su
h fun
tions with the produ
ers of botharrays. This is tri
ky, and important list-based fusion te
h-niques are not able to fuse two 
onsumers. Se
ondly, for afusion rule to �re, the fused 
ombinators have to be adja
entin the program 
ode, whi
h we usually a
hieve by 
ombininginlining with simpli�
ation. There are, however, situations,su
h as the fun
tion boundaries of re
ursive fun
tions, whereinlining is not appli
able. In the rest of this se
tion, we shallillustrate our solutions to these two problems.
5.1 Traversing Two Arrays SimultaneouslyThe 
attened version of the sparse-matrix ve
tor multipli-
ation 
ode smvm from Se
tion 2.2 
ontained the equationmulV = zipWithP (�)whi
h implements ve
torised multipli
ation|i.e., multipli-
ation lifted pointwise. In smvm, mulV was applied tothe result of a ba
kpermuteP and one of the arguments to

smvm. In Appendix A, ba
kpermuteP is de�ned in termsof loopP . So, we would obviously like to fuse zipWithPand ba
kpermuteP . Furthermore, in some appli
ations ofsmvm|after the de�nition of smvm has been inlined|these
ond argument to zipWithP may also be the result of anappli
ation of loopP or repli
ateP . In this 
ase, we wantto fuse zipWithP with both of its arguments. Otherwise, ifonly one of the arguments is in the \right" form (i.e., theresult of repli
ateP or loopP), we want fuse this argumentinto the loop. The list fusion method foldr/build imple-mented in GHC is not able to perform fusion in all these
ases [15℄|instead, fusion is only possible for a single argu-ment that has to be �xed when implementing zip. Otherapproa
hes [34, 24℄ 
laim to fuse zip fully, but the detailsare not entirely 
lear and no working system in
luding thesete
hniques is available.Our approa
h to this problem 
onsists of two 
omponents:(1) an unboxed representation for arrays of pairs and (2) aset of spe
ialised fusion rules.
5.1.1 Arrays of Pairs are Pairs of ArraysLet us now 
onsider fun
tions that 
onsume two or morearrays in lo
kstep. As with generators, we 
an redu
e theproblem to a single fun
tion, in this 
ase zipP . For example,we 
an implement zipWithP by zipP followed by a loop:zipWithP :: (PAE a;PAE b;PAE 
)) (a ! b ! 
)! PArray a ! PArray b ! PArray 
zipWithP f pa1 pa2 = loopA applyF () (zipP pa1 pa2)whereapplyF (e1; e2) = (Just (f e1 e2); ())In Se
tion 2.2, we mentioned that 
attening represents anarray of pairs as a pair of arrays|as witnessed in the typeSparseRow . This a
tually means that zipP does not haveto traverse the argument arrays at all, nor does it produ
e anew array. Instead, it produ
es a pair 
ontaining referen
esto the two arrays. Having only one fun
tion, namely zipP ,whi
h handles the lo
kstep traversal of multiple arrays, sim-pli�es the 
orresponding fusion rules signi�
antly.Nevertheless, we need to represent values of type PArray(e1; e2) and de�ne array operations on them, while retainingthe property that arrays store unboxed basi
 data only. Orin other words, how 
an we implement an instan
e of PAEfor pairs? We do so by performing a runtime dispat
h on theelement type of arrays. In fa
t, as all elements of PArraymust be instan
es of the type 
lass PAE ; it suÆ
es to de�nean instan
e for pairs that goes as follows:instan
e (PAE e1; PAE e2) ) PAE (e1; e2)where(PAPair pa1 pa2) !: i = (pa1 !: i :: e1; pa2 !: i :: e2)Here PAPair is the pair 
onstru
tor that we use to representarrays of pairs.It is interesting to note the relationship between our use ofoverloading and Harper & Morrisett's [17℄ intensional typeanalysis. As Weiri
h [38℄ has also observed, type 
lasses
an be used to implement some forms of intensional typeanalysis. In essen
e, the method dispat
h via di
tionariesthat implements type 
lasses is used to realise Harper &Morrisett's type
ase. This relationship provides a routeto implementing our approa
h in a 
ompiler that supportstype
ase, but not type 
lasses.



5.1.2 Fusion Rules forzipPWe now have to 
onsider two 
ases for whi
h the fusionrules should �re: The argument array of zipP 
an eitherbe a result of an appli
ation of repli
ateP or loopP . For theformer, we 
an drag the generation into the su

eeding loop,thereby eliminating zipP altogether. Again, we spe
ify therules for loopA only, to keep the presentation 
learer:hzip/repli
ate fusioni 8m a n e1 es2:loopA m a (zipP (repli
ateP n e1) es2) 7!loopA (� e ! m (e1; e)) a es2We omit the symmetri
 rule for fusing the se
ond argument.We handle fusion of a loopP that o

urs as an argument tozipP by propagating the loopP through zipP . The side 
on-dition is that the mutator of the loop never drops elements,whi
h implies that the loop preserves the length of the ar-ray. We 
an express this 
onstraint by using an auxiliaryfun
tion restri
ting the loop fun
tion:mapSFL :: (e ! a ! (e 0; a))! (e ! a ! (Maybe e 0; a))mapSFL (e; a) = (Just e; a)Now the fusion rule ishzip/loop propagationi 8f a es1 es2:zipP (loopA (mapSFL f ) a es1) es2 7!loopA (mapSFL f 0) a (zipP es1 es2)wheref 0 (e1; e2) a = let (e 01; a 0) = f e1 a in ((e 01; e2); a 0)Again, we omit the 
orresponding rule for the se
ond argu-ment. The use of mapSFL allows us to express the side 
on-dition without leaving the framework of appli
ative rewriterules, whi
h is what GHC supports. Having to use thesespe
ial fun
tions may seem too restri
tive, but 
onsider thatthis is not visible at the interfa
e of the array library, whi
h
onsists of 
ombinators su
h as mapP and foldP . We usemapSFL only in the library-internal implementation of the
ombinators.
5.2 Fusion over Function BoundariesEquational fusion has a serious weakness: For the fusionrules to �re, the 
ombinators have to appear adja
ently inthe program 
ode. Given spe
ialised fun
tions su
h as mapPand foldP , whi
h are de�ned in terms of loopP , this is vir-tually never the 
ase in the sour
e 
ode. So, the wholete
hnique relies on other optimisation te
hniques|in par-ti
ular, inlining|to 
onvert the 
ode su
h that fusion rules
an �re. However, there are situations, where inlining alonedoes not help. Consider the following (slightly arti�
ial)fun
tion de�nition:6foo :: PArray Int ! Intfoo xs j nullP xs = 0j otherwise = letn = lengthP xsv = sumP xsinfoo (repli
ateP (n � 1) v)The fun
tion redu
es its argument array to a s
alar fromwhi
h it produ
es another array, whi
h is passed to the nextre
ursion. In other words, the array 
reated by the subex-pression repli
ateP (n � 1) v is immediately 
onsumed and6This situation also o

urs frequently in realisti
 fun
tions.

dis
arded in the next re
ursive step. It is 
learly a waste oftime and memory to build it in the �rst pla
e.As dis
ussed earlier, sumP is implemented in terms ofloopP , so after inlining sumP the array 
onstru
ted by theappli
ation of repli
ateP is immediately 
onsumed by a loopPin the following re
ursion. A perfe
t opportunity for fusion,but the use of repli
ateP and loopP are separated by a fun
-tion boundary. Thus, the fusion rule 
annot �re!This is very similar to the situation, where a primitivevalue is boxed for a (re
ursive) fun
tion 
all, only to be im-mediately unboxed by the 
allee. Re
ognising that repli
atePis an array 
onstru
tor and loopP a destru
tor, the situationis very similar indeed. With this insight, it is not surprisingthat the idea behind the 
onstru
tor spe
ialisation te
hniqueof [25℄ provides the seed for a solution of our problem.The essential idea is to generate a spe
ialised version of foofor the 
ase, where it is 
alled with an argument 
onstru
tedby repli
ateP . In this 
ase, we 
an pull the use of repli
atePinto foo's body and obtain the following variant:fooR :: Int ! Int ! IntfooR n v j nullP xs = 0j otherwise = letn = lengthP xsv = sumP xsinfoo (repli
ateP (n � 1) v)wherexs = repli
ateP n vNow sumP is immediately applied to the result of repli
atePand, after some inlining, hloop/repli
ate fusioni 
an �re. Allthat is left to be done, is to repla
e every o

urren
e foo withan argument applying repli
ateP by an appropriate 
all tofooR. Again, GHC's rewrite rules 
ome to the res
ue. Forea
h spe
ialised version of a fun
tion, we generate a simplerule like this:hfoo/repli
ateP spe
ialisationi 8n v :foo (repli
ateP n v) 7! fooR n vWhen applied in the body of fooR itself, fooR be
omes re-
ursive. In 
ombination with hloop/repli
ate fusioni, we getfooR :: Int ! Int ! IntfooR n v j n == 0 = 0j otherwise = fooR (n � 1) vwherev = projA

 (loopA mut 0 (repli
ateP n ()))mut (i ; a) = (Nothing ; (i + 1; i + a))Voila! We have su

essfully eliminated all arrays. As men-tioned, repli
ateP n () does not a
tually 
onstru
t an array,so loopA will 
ompile to a simple loop adding up 1 to n.
6. PERFORMANCEThe �gures presented in this se
tion were obtained with a�rst experimental implementation of equational loop fusionon the basis of GHC's rewrite rules. We used the 
urrent de-velopment version of GHC (version 5.01) with the followingoptimisation options -O2 -fliberate-
ase-threshold100-funfolding-use-threshold10 -fno-method-sharing. Inaddition, we pat
hed the 
ompiler to use a maximumworker-wrapper argument 
ount of 20 (rather than the default of6). All C 
ode was 
ompiled with g

 2.96 using -O2. All



0

100

200

300

400

500

600

700

800

900

1000

1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

R
un

tim
e 

in
 m

s

N

lists (fused)
PArrays, NOT fused

PArrays, fused
C

Figure 2: Performan
e of sumSqtests were exe
uted on an unloaded 333MHz PII with 256kBse
ond level 
a
he, running GNU/Linux.
6.1 Basic Loop Kernels

6.1.1 Sum-SquareThe fun
tion sumSq from Se
tion 3 is an extreme exam-ple that demonstrates the possible impa
t that loop fusion
an have, as all intermediate stru
tures 
an be eliminated.Figure 2 displays the performan
e of applying sumSq tovalues between 1,000,000 and 5,000,000. There are fourversions: (1) \fused", fully fused and optimised; (2) \notfused," but still optimised; (3) \lists (fused)", the Haskellprogram sum (map square [1::n℄); whi
h GHC fuses usingfoldr/build; and (4) \C", the following C 
ode:result = 0;for (i = 0; i < size; i++)result += i * i;The fully optimised and fused array 
ode is only 26% to39% slower than the C version. Moreover, loop fusion im-proves the running time of this fun
tion by a fa
tor of 4:5 to5 over the 
attened 
ode as it 
an remove all arrays from this
ode. The list-based program is slower, as GHC manages toeliminate only one out of the two intermediate stru
tureswith its 
urrent Prelude de�nitions.
6.1.2 Sieve of EratosthenesThe se
ond ben
hmark is a simple version of the Sieve ofEratosthenes to 
ompute the prime numbers up to a givenbound. Using standard Haskell arrays, the algorithms is asfollows:primes :: Int ! [Int ℄primes n j n � 2 = [℄j otherwise =
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Figure 3: Performan
e of the prime sieveletsqrPrms = primes $ 
eiling (sqrt (fromIntegral n))sieves = 
on
at[[2 � p; 3 � p :: n � 1℄ j p  sqrPrms℄range = (2 :: Int ; n � 1)
ags = a

umArray (&&)True range(zip sieves (repeat False))in[n j (n; f ) asso
s 
ags; f ℄Figure 3 displays the exe
ution times for (1) standardHaskell arrays, (2) an equivalent program using PArrays ,and (2) a 
orresponding C program based on inpla
e up-dates. This ben
hmark 
learly shows that PArrays performat least an order of magnitude better than standard Haskellarrays in GHC. However, the hand-written C 
ode is still bya fa
tor of 4 to 5:5 faster than our array library. The mainreason for this performan
e gap is that the 
ode requiresa so-
alled \default ba
k permute", a permutation fun
tionvery similar to standard Haskell's a

umArray . This fun
-tion 
annot be expressed with loopP in its 
urrent form,whi
h means that it 
annot fuse with adja
ent loops.
6.1.3 Sparse Matrix Vector MultiplicationFigure 4 displays the running times for the sparse matrixve
tor multipli
ation smvm applied to a set of matri
es with160,000 non-zero elements, but varying density (from denseto 0:1% non-zero elements). The �gure 
ontains 
urves for(1) standard Haskell arrays, (2) PArrays optimised, but notfused, (3) PArrays fully fused, and (4) hand-written C 
ode.The version of the 
ode using standard Haskell arrays isfused by GHC using foldr/build (Haskell arrays are 
on-stru
ted and redu
ed via lists). Nevertheless, they are notable to 
ompete with the 
ode based on PArray . Compar-ing the exe
ution times for the fused and not fused, but
attened PArray 
ode, we see that loop fusion improves theperforman
e of the 
ode by a fa
tor of 4 to 6. Nevertheless,the hand-
oded C program is still nearly a fa
tor of 2 fasterthan the fused PArrays 
ode. As there is still one unbox-ing operation performed per segment in the 
attened matrixrepresentation, we hope to be able to 
lose that gap furtherby improving unboxing.We have also tested a purely list-based version of smvm,
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Figure 4: Timing of smvm (160k non-zero elements)
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Figure 5: Performan
e of the Barnes-Hut 
odebut despite foldr/build, the 
ode was too slow to be dis-played in the graph.
6.2 Barnes-HutN -Body CodeThe largest example that we have tested to date is animplementation of the Barnes-Hut N -body algorithm [3℄,whi
h 
omputes the gravitational for
es between a set ofparti
les. This 
ode is highly irregular and 
entred arounda tree-shaped spatial de
omposition. We have 
ompared astandard Haskell implementation of the 
ode with a versionusing a 
ombination of arrays and trees as dis
ussed in [19℄.For the ben
hmark, we used a standard \Plummer" distribu-tion of 1000 to 9000 parti
les. The array-based 
ode 
learlyoutperforms the standard Haskell 
ode; although, the abso-lute performan
e still leaves signi�
ant room for improve-ment.
7. CONCLUSIONSThe two main te
hniques that we use in the implementa-tion of arrays, 
attening and fusion, happen in two di�erentstages of the 
ompilation, yet they do intera
t. The initialmotivation to use fusion was to ease short
omings of the
attening transformation by 
ombining sequen
es of array

traversals into fewer, but more 
omplex operations that ex-hibit better lo
ality of referen
e. More surprisingly, however,
attening, or more pre
isely the 
attened representation ofthe data types, also simpli�es fusion: By expressing all ar-ray generators in terms of repli
ateP of unit type, we 
ouldsimplify the framework. Similarly, the zip problem is sim-pli�ed by the fa
t that zipP itself does not a
tually produ
ea new array, sin
e arrays of pairs are represented by a pairof arrays.
7.1 Related WorkLoop fusion for imperative languages is well resear
hed [1,39, 21, 22, 31℄. However, the 
hallenges and te
hniquesof loop fusion in imperative and fun
tional 
ontexts di�ersigni�
antly. The extensive use of index 
al
ulations andside e�e
ts in imperative array algorithms often requires so-phisti
ated analysis te
hniques before loops 
an be manip-ulated. In fun
tional and, in parti
ular, 
ombinator-basedapproa
hes the data 
ow is more expli
it, whi
h providesmore s
ope for transformations. In a fun
tional 
ontext,it is espe
ially important to remove intermediate stru
turesand super
uous 
opying and, instead, use update-in-pla
e.Anderson & Hudak [2℄ argue for monolithi
, lazy arraysde�ned by Haskell array 
omprehensions and adapt sub-s
ript analysis, su
h that it 
an be used to implement somealgorithms more eÆ
iently. They fo
us on regular 
ode.Ellmenrei
h, Lengauer & Griebl [14℄ also handle Haskellarray 
omprehensions and adapt an analysis that was orig-inally introdu
ed for imperative programs to the fun
tional
ase. They also fo
us on regular 
ode.Chuang [12℄ introdu
ed 
ombinator-based arrays for ML.He stays quite 
lose to typi
al list 
ombinators, but also
onsiders update-in-pla
e. He mentions loop fusion brie
y,but only in the form of typi
al list fusion rules, su
h as fusionof map f Æ map g . The emphasis is, again, on regular 
ode.O'Neill & Burton [23℄ introdu
e a method for fast persis-tent arrays. They, as well as related approa
hes, essentiallyaim at a fast, purely fun
tional update operation for singleelements without 
opying the whole array. This providessome of the eÆ
ien
y gains of update-in-pla
e, but 
om-pletely ignores the issue of unboxing.
7.2 Future WorkSo far, we only appeal to intuition to reason that therewrite rules are indeed optimisations. A more systemati
treatment requires a 
ost model whi
h takes into a

ount the
ost of memory a

ess, and ideally, even the memory hier-ar
hy to guide transformations. Moreover, we are 
urrentlyinvestigating how we 
an extend the s
ope of the transfor-mation to in
lude tupling; i.e., 
ombining two independentloops over stru
tures of the same size. Su
h a transforma-tion 
annot be expressed as a simple rewrite rule, as it re-quires that 
ertain side 
onditions hold. Dependent typesor 
onstraint-based analysis may provide a solution here.Moreover, we plan to integrate the approa
h presentedhere with our previous work on integrating fusion with adistributed implementation of arrays [20℄. The distributedimplementation will use the parallel semanti
s of PArraysto make use of multiple pro
essing nodes.
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APPENDIX

A. THE ARRAY LIBRARY & RULESFigure 6 displays part of the interfa
e of the PArrays li-brary and provides de�nitions for some of the 
ombinatorsthat 
an be de�ned in terms of repli
ateP and loopP .

data PArray etype Segd = PArray Inttype SPArray e = (Segd ; PArray e)idSAL :: PAE a ) a ! aidSAL a

 = a

noSAL :: PAE a ) a ! ()noSAL a

 = ()falseSPL :: PAE a

 ) a ! BoolfalseSPL = FalsenoAL :: ()noAL = ()mapEFL :: (PAE e ; PAE e 0))(e ! e 0) ! (e ! a ! (Maybe e 0; a))mapEFL f = � e a ! (Just $ f e; a)foldEFL :: (PAE e ; PAE a) )(e ! a ! a) ! (e ! a ! (Maybe (); a))foldEFL f = � e a ! (Nothing ; f e a)s
anEFL :: (PAE e ; PAE a

) )(e ! a ! a) ! (e ! a ! (Maybe a; a))s
anEFL f = � e a ! (Just a; f e a)projMap :: (a; b; 
) ! aprojMap (x ; y ; z) = xprojA

s :: (a; b; 
) ! bprojA

s (x ; y ; z) = yprojA

 :: (a; b; 
) ! 
projA

 (x ; y ; z) = zmapP :: (PAE e; PAE e 0) )(e ! e 0) ! SPArray e ! SPArray e 0mapP f =projMap : loopP(mapEFL f ) noSAL falseSPL noAL�lterP :: PAE e )(e ! Bool) ! SPArray e ! SPArray e�lterP p =projMap $ loopP (�lterEFL p) noSAL falseSPL noALenumFromToP ::Int ! Int ! SPArray IntenumFromToP start end =projMap $ loopP (s
anEFL (+)) idSAL falseSPL start pawherelen = 0 `max ` (end � start + 1)pa = repli
ateP len 1foldP :: (PAE e; PAE e 0))(e ! e 0 ! e 0) ! e 0 ! SPArray e ! e 0foldP g n =projA

 : loopP (foldEFL g) idSAL falseSPL nFigure 6: Common array 
ombinators


