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Definitions
• “Distributed programming is the spreading of a 

computational task across several programs, processes or 
processors.” – Chris Brown, Unix Distributed 
Programming

• “A distributed system is one in which the failure of a 
computer you didn’t even know existed can render your 
own computer unusable.” – Leslie Lamport

• “A parallel computer is a set of processors that are able to 
work cooperatively to solve a computational problem.” – 
Ian Foster, Designing and Building Parallel Programs

• “A distributed system is a system in which multiple 
processes coordinate in solving a problem and, in the 
process of solving that problem, create other problems.” – 
Mark Shacklette
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Benefits of Distributed 
Programming

• Divide and Conquer
– Concurrency
– Parallelism

• Component Reuse via pipelines (Modularity)
• Location Independence
• Scalability
• Resource Sharing
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Mainframe Topology

Nellie's Dumb Terminal
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Clarence's Dumb Terminal

Line Printer

Mainframe
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Sneaker Net
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and use your
printer?
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Modern Network
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Problem Space

• Problem 1
– You have 1 hour to peel 1000 potatoes
– You have 10 people available

• Problem 2
– You have 1 hour to do the dishes after a dinner for 

1000 guests
– You have 10 people available

• Problem 3
– You have 1 hour to lay the brick around a 5’ square dog 

house
– You have 10 people available
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Facilitating Division of Labor: 
Work and Communication

• Single Machine Inter-process Communication
– (Signals)
– Pipes (named and unnamed)
– System V and POSIX IPC

• Multiple Machine Inter-process Communication
– Sockets
– Remote Procedure Calls (Sun ONC, OSF DCE, Xerox 

Courier (4.3BSD))
– Distributed Shared Memory (Berkeley mmap)

• Single Machine Division of Labor:
– Processes
– Threads
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Methods of Solution Distribution:
Input Distribution (Division of Labor)

• Workload Decomposition
– Potato Peelers aboard the USS Enterprise

• loosely coupled (little coordination)
– Roofers or Bricklayers

• tightly coupled (high coordination)
• Software: large database query of all records with a given 

characteristic
– Strategy:  Divide and Conquer
– Key:  Exact same code is operating on different sets of input data

• Software:  large matrix multiplication
– Strategy:  Divide and Conquer
– Key: Exact same code is operating on different parts of the 

matrices
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Methods of Solution Distribution:
Process Decomposition (Inter-process 

Communication)
• Divide not the work, but the process of conducting the work

– Factory Production Line:
• Identical widgets are coming along the converyor belt, but 

several things have to be done to each widget
– Dish Washing Example

• collector, washer, dryer, cabinet deployer
• multiple washers and dryers can be employed (using Input 

Distribution)
• Software: A Trade Clearing System

– Each trade must be entered, validated, reported, notified
– Each task can run within a different process on a different 

processor
– Strategy:  divide the work to be done for each trade into separate 

processes, thus increasing overall system throughput
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Problems in Distributed 
Solutions

• Data access must be synchronized among multiple 
processes

• Multiple processes must be able to communicate 
among themselves in order to coordinate activities

• Multiple coordinating processes must be able to 
locate one another
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Interprocess Communication and 
Synchronization using 

System V IPC

Message Queues
Shared Memory

Semaphores
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System V IPC

• System V IPC was first introduced in SVR2, but 
is available now in most versions of unix

• Message Queues represent linked lists of 
messages, which can be written to and read from

• Shared memory allows two or more processes to 
share a region of memory, so that they may each 
read from and write to that memory region

• Semaphores synchronize access to shared 
resources by providing synchronized access 
among multiple processes trying to access those 
critical resources.  
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Message Queues

• A Message Queue is a linked list of message 
structures stored inside the kernel’s memory space 
and accessible by multiple processes 

• Synchronization is provided automatically by the 
kernel

• New messages are added at the end of the queue
• Each message structure has a long message type
• Messages may be obtained from the queue either 

in a FIFO manner (default) or by requesting a 
specific type of message (based on message type)
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Message Structs

• Each message structure must start with a 
long message type:

struct mymsg {
 long msg_type;
 char mytext[512]; /* rest of message */
 int somethingelse;
 float dollarval;
};
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Message Queue Limits

• Each message queue is limited in terms of both 
the maximum number of messages it can contain 
and the maximum number of bytes it may contain

• New messages cannot be added if either limit is 
hit (new writes will normally block)

• On linux, these limits are defined as (in /usr/
include/linux/msg.h):
– MSGMAX 8192  /*total number of messages */
– MSBMNB 16384  /* max bytes in a queue */
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Obtaining a Message Queue
 #include <sys/types.h>

#include <sys/ipc.h>
#include <sys/msg.h>
int msgget(key_t key, int msgflg);

• key is either a number or the constant IPC_PRIVATE
• a msgid is returned
• key_t ftok(const char * path, int id) will return a key value for IPC 

usage
• The key parameter is either a non-zero identifier for the queue to be 

created or the value IPC_PRIVATE, which guarantees that a new 
queue is created.

• The msgflg parameter is the read-write permissions for the queue 
OR’d with one of two flags:
– IPC_CREAT will create a new queue or return an existing one
– IPC_EXCL added will force the creation of a new queue, or return 

an error
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Writing to a Message Queue

 int msgsnd(int msqid, const void * msg_ptr, size_t 
msg_size, int msgflags);

• msgqid is the id returned from the msgget call
• msg_ptr is a pointer to the message structure
• msg_size is the size of that structure
• msgflags defines what happens when the queue is 

full, and can be set to the following:
– IPC_NOWAIT (non-blocking, return –1 immediately if 

queue is full)
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Reading from a Message Queue
 int msgrcv(int msqid, const void * msg_ptr, size_t msg_size, long 

msgtype, int msgflags);

• msgqid is the id returned from the msgget call
• msg_ptr is a pointer to the message structure
• msg_size is the size of that structure
• msgtype is set to:

= 0  first message available in FIFO stack
> 0 first message on queue whose type equals type
< 0 first message on queue whose type is the lowest value

  less than or equal to the absolute value of 
msgtype

• msgflags defines what happens when no message of the appropriate 
type is waiting, and can be set to the following:
– IPC_NOWAIT (non-blocking, return –1 immediately if queue is 

empty)
• example:  ~mark/pub/51081/message.queues/potato.*.c
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Message Queue Control
struct msqid_ds {
  ...    /* pointers to first and last messages on queue */
  __time_t msg_stime;        /* time of last msgsnd command */
  __time_t msg_rtime;        /* time of last msgrcv command */
  ...
  unsigned short int __msg_cbytes; /* current number of bytes on queue */
  msgqnum_t msg_qnum;        /* number of messages currently on queue */
  msglen_t msg_qbytes;      /* max number of bytes allowed on queue */
  ...        /* pids of last msgsnd() and msgrcv() */
};
• int msgctl(int msqid, int cmd, struct msqid_ds * buf);
• cmd can be one of:

– IPC_RMID destroy the queue specified by msqid
– IPC_SET  set the uid, gid, mode, and qbytes for the

   queue, if adequate permission is 
available

– IPC_STAT get the current msqid_ds struct for the queue
• example:  query.c
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Shared Memory

• Normally, the Unix kernel prohibits one process 
from accessing (reading, writing) memory 
belonging to another process

• Sometimes, however, this restriction is 
inconvenient

• At such times, System V IPC Shared Memory can 
be created to specifically allow one process to 
read and/or write to memory created by another 
process
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Advantages of Shared Memory

• Random Access
– you can update a small piece in the middle of a 

data structure, rather than the entire structure
• Efficiency

– unlike message queues and pipes, which copy 
data from the process into memory within the 
kernel, shared memory is directly accessed

– Shared memory resides in the user process 
memory, and is then shared among other 
processes
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Disadvantages of Shared Memory

• No automatic synchronization as in pipes or 
message queues (you have to provide any 
synchronization).  Synchronize with semaphores 
or signals.

• You must remember that pointers are only valid 
within a given process.  Thus, pointer offsets 
cannot be assumed to be valid across inter-process 
boundaries.  This complicates the sharing of 
linked lists or binary trees.
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Creating Shared Memory
int shmget(key_t key, size_t size, int shmflg);
• key is either a number or the constant 

IPC_PRIVATE (man ftok)
• a shmid is returned
• key_t ftok(const char * path, int id) will return a 

key value for IPC usage
• size is the size of the shared memory data
• shmflg is a rights mask (0666) OR’d with one of 

the following:
– IPC_CREAT  will create or attach
– IPC_EXCL  creates new or it will error 

    if it exists
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Attaching to Shared Memory
• After obtaining a shmid from shmget(), you need 

to attach or map the shared memory segment to 
your data reference:

void * shmat(int shmid, void * shmaddr, int shmflg)
• shmid is the id returned from shmget()
• shmaddr is the shared memory segment address.  

Set this to NULL and let the system handle it.
• shmflg is one of the following (usually 0):

– SHM_RDONLY sets the segment readonly
– SHM_RND  sets page boundary access
– SHM_SHARE_MMU set first available aligned 

    address
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Shared Memory Control
struct shmid_ds {
 int shm_segsz;   /* size of segment in bytes */
  __time_t shm_atime;        /* time of last shmat command */
  __time_t shm_dtime;        /* time of last shmdt command */
  ...
  unsigned short int __shm_npages; /* size of segment in pages */
  msgqnum_t shm_nattach;        /* number of current attaches */
    ...       /* pids of creator and last shmop */
};

• int shmctl(int shmid, int cmd, struct shmid_ds * buf);
• cmd can be one of:

– IPC_RMID destroy the memory specified by shmid
– IPC_SET  set the uid, gid, and mode of the shared mem
– IPC_STAT get the current shmid_ds struct for the queue

• example: ~mark/pub/51081/shared.memory/linux/*
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Matrix Multiplication

• Multiply two n x n matrices, a and b
• One each iteration, a row of A multiplies a 

column of b, such that:

 
 
 

                                       n 

ci,j = !ai,kbk,j 
                                  k=1 
 

cp,k = cp,k + ap,p-1bp-1,k 
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Semaphores

• Shared memory is not access controlled by the 
kernel

• This means critical sections must be protected 
from potential conflicts with multiple writers

• A critical section is a section of code that would 
prove problematic if two or more separate 
processes wrote to it simultaneously

• Semaphores were invented to provide such 
locking protection on shared memory segments
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System V Semaphores
• You can create an array of semaphores that can be 

controlled as a group
• Semaphores (Dijkstra, 1965) may be binary (0/1), or 

counting
1 == unlocked (available resource)
0 == locked

• Thus:
– To unlock a semaphore, you +INCREMENT it
– To lock a semaphore, you -DECREMENT it

• Spinlocks are busy waiting semaphores that constantly 
poll to see if they may proceed (Dekker’s Algorithm)
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How Semaphores Work
• A critical section is defined
• A semaphore is created to protect it
• The first process into the critical section locks the critical 

section
• All subsequent processes wait on the semaphore, and they 

are added to the semaphore’s “waiting list”
• When the first process is out of the critical section, it 

signals the semaphore that it is done
• The semaphore then wakes up one of its waiting processes 

to proceed into the critical section
• All waiting and signaling are done atomically
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How Semaphores “Don’t” Work:
Deadlocks and Starvation

• When two processes (p,q) are both waiting on a 
semaphore, and p cannot proceed until q signals, and q 
cannot continue until p signals.  They are both asleep, 
waiting.  Neither can signal the other, wake the other up.  
This is called a deadlock. 
– P1 locks a which succeeds, then waits on b
– P2 locks b which succeeds, then waits on a

• Indefinite blocking, or starvation, occurs when one 
process is constantly in a wait state, and is never signaled.  
This often occurs in LIFO situations.

• example:  ~mark/pub/51081/semaphores/linux/
shmem.matrix.multiplier2.c
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