
Lecture 7

Introduction to Distributed Programming
System V IPC:

Message Queues, Shared Memory,
Semaphores

1Thursday, October 7, 2010

Introduction to Distributed
Programming

2Thursday, October 7, 2010

Definitions
• “Distributed programming is the spreading of a

computational task across several programs, processes or
processors.” – Chris Brown, Unix Distributed
Programming

• “A distributed system is one in which the failure of a
computer you didn’t even know existed can render your
own computer unusable.” – Leslie Lamport

• “A parallel computer is a set of processors that are able to
work cooperatively to solve a computational problem.” –
Ian Foster, Designing and Building Parallel Programs

• “A distributed system is a system in which multiple
processes coordinate in solving a problem and, in the
process of solving that problem, create other problems.” –
Mark Shacklette

3Thursday, October 7, 2010

Benefits of Distributed
Programming

• Divide and Conquer
– Concurrency
– Parallelism

• Component Reuse via pipelines (Modularity)
• Location Independence
• Scalability
• Resource Sharing

4Thursday, October 7, 2010

Mainframe Topology

Nellie's Dumb Terminal
Wilma's Dumb Terminal Bev's Dumb Terminal

Clarence's Dumb Terminal

Line Printer

Mainframe

5Thursday, October 7, 2010

Sneaker Net

Skip's PC Heather's PC Vicki's PCPrinter
Modem

Fax

Minicomputer

Skip, Vicki here.
Can I come down

and use your
printer?

6Thursday, October 7, 2010

Modern Network

Workstation

Workstation

PC

Print Server

Laptop

Printer

Printer

Mainframe

City
Workstation Workstation

Workstation Workstation

Minicomputer

Printer

7Thursday, October 7, 2010

Problem Space

• Problem 1
– You have 1 hour to peel 1000 potatoes
– You have 10 people available

• Problem 2
– You have 1 hour to do the dishes after a dinner for

1000 guests
– You have 10 people available

• Problem 3
– You have 1 hour to lay the brick around a 5’ square dog

house
– You have 10 people available

8Thursday, October 7, 2010

Facilitating Division of Labor:
Work and Communication

• Single Machine Inter-process Communication
– (Signals)
– Pipes (named and unnamed)
– System V and POSIX IPC

• Multiple Machine Inter-process Communication
– Sockets
– Remote Procedure Calls (Sun ONC, OSF DCE, Xerox

Courier (4.3BSD))
– Distributed Shared Memory (Berkeley mmap)

• Single Machine Division of Labor:
– Processes
– Threads

9Thursday, October 7, 2010

Methods of Solution Distribution:
Input Distribution (Division of Labor)

• Workload Decomposition
– Potato Peelers aboard the USS Enterprise

• loosely coupled (little coordination)
– Roofers or Bricklayers

• tightly coupled (high coordination)
• Software: large database query of all records with a given

characteristic
– Strategy: Divide and Conquer
– Key: Exact same code is operating on different sets of input data

• Software: large matrix multiplication
– Strategy: Divide and Conquer
– Key: Exact same code is operating on different parts of the

matrices

10Thursday, October 7, 2010

Methods of Solution Distribution:
Process Decomposition (Inter-process

Communication)
• Divide not the work, but the process of conducting the work

– Factory Production Line:
• Identical widgets are coming along the converyor belt, but

several things have to be done to each widget
– Dish Washing Example

• collector, washer, dryer, cabinet deployer
• multiple washers and dryers can be employed (using Input

Distribution)
• Software: A Trade Clearing System

– Each trade must be entered, validated, reported, notified
– Each task can run within a different process on a different

processor
– Strategy: divide the work to be done for each trade into separate

processes, thus increasing overall system throughput

11Thursday, October 7, 2010

Problems in Distributed
Solutions

• Data access must be synchronized among multiple
processes

• Multiple processes must be able to communicate
among themselves in order to coordinate activities

• Multiple coordinating processes must be able to
locate one another

12Thursday, October 7, 2010

Interprocess Communication and
Synchronization using

System V IPC

Message Queues
Shared Memory

Semaphores

13Thursday, October 7, 2010

System V IPC

• System V IPC was first introduced in SVR2, but
is available now in most versions of unix

• Message Queues represent linked lists of
messages, which can be written to and read from

• Shared memory allows two or more processes to
share a region of memory, so that they may each
read from and write to that memory region

• Semaphores synchronize access to shared
resources by providing synchronized access
among multiple processes trying to access those
critical resources.

14Thursday, October 7, 2010

Message Queues

• A Message Queue is a linked list of message
structures stored inside the kernel’s memory space
and accessible by multiple processes

• Synchronization is provided automatically by the
kernel

• New messages are added at the end of the queue
• Each message structure has a long message type
• Messages may be obtained from the queue either

in a FIFO manner (default) or by requesting a
specific type of message (based on message type)

15Thursday, October 7, 2010

Message Structs

• Each message structure must start with a
long message type:

struct mymsg {
 long msg_type;
 char mytext[512]; /* rest of message */
 int somethingelse;
 float dollarval;
};

16Thursday, October 7, 2010

Message Queue Limits

• Each message queue is limited in terms of both
the maximum number of messages it can contain
and the maximum number of bytes it may contain

• New messages cannot be added if either limit is
hit (new writes will normally block)

• On linux, these limits are defined as (in /usr/
include/linux/msg.h):
– MSGMAX 8192 /*total number of messages */
– MSBMNB 16384 /* max bytes in a queue */

17Thursday, October 7, 2010

Obtaining a Message Queue
 #include <sys/types.h>

#include <sys/ipc.h>
#include <sys/msg.h>
int msgget(key_t key, int msgflg);

• key is either a number or the constant IPC_PRIVATE
• a msgid is returned
• key_t ftok(const char * path, int id) will return a key value for IPC

usage
• The key parameter is either a non-zero identifier for the queue to be

created or the value IPC_PRIVATE, which guarantees that a new
queue is created.

• The msgflg parameter is the read-write permissions for the queue
OR’d with one of two flags:
– IPC_CREAT will create a new queue or return an existing one
– IPC_EXCL added will force the creation of a new queue, or return

an error

18Thursday, October 7, 2010

Writing to a Message Queue

 int msgsnd(int msqid, const void * msg_ptr, size_t
msg_size, int msgflags);

• msgqid is the id returned from the msgget call
• msg_ptr is a pointer to the message structure
• msg_size is the size of that structure
• msgflags defines what happens when the queue is

full, and can be set to the following:
– IPC_NOWAIT (non-blocking, return –1 immediately if

queue is full)

19Thursday, October 7, 2010

Reading from a Message Queue
 int msgrcv(int msqid, const void * msg_ptr, size_t msg_size, long

msgtype, int msgflags);

• msgqid is the id returned from the msgget call
• msg_ptr is a pointer to the message structure
• msg_size is the size of that structure
• msgtype is set to:

= 0 first message available in FIFO stack
> 0 first message on queue whose type equals type
< 0 first message on queue whose type is the lowest value

 less than or equal to the absolute value of
msgtype

• msgflags defines what happens when no message of the appropriate
type is waiting, and can be set to the following:
– IPC_NOWAIT (non-blocking, return –1 immediately if queue is

empty)
• example: ~mark/pub/51081/message.queues/potato.*.c

20Thursday, October 7, 2010

Message Queue Control
struct msqid_ds {
 ... /* pointers to first and last messages on queue */
 __time_t msg_stime; /* time of last msgsnd command */
 __time_t msg_rtime; /* time of last msgrcv command */
 ...
 unsigned short int __msg_cbytes; /* current number of bytes on queue */
 msgqnum_t msg_qnum; /* number of messages currently on queue */
 msglen_t msg_qbytes; /* max number of bytes allowed on queue */
 ... /* pids of last msgsnd() and msgrcv() */
};
• int msgctl(int msqid, int cmd, struct msqid_ds * buf);
• cmd can be one of:

– IPC_RMID destroy the queue specified by msqid
– IPC_SET set the uid, gid, mode, and qbytes for the

 queue, if adequate permission is
available

– IPC_STAT get the current msqid_ds struct for the queue
• example: query.c

21Thursday, October 7, 2010

Shared Memory

• Normally, the Unix kernel prohibits one process
from accessing (reading, writing) memory
belonging to another process

• Sometimes, however, this restriction is
inconvenient

• At such times, System V IPC Shared Memory can
be created to specifically allow one process to
read and/or write to memory created by another
process

22Thursday, October 7, 2010

Advantages of Shared Memory

• Random Access
– you can update a small piece in the middle of a

data structure, rather than the entire structure
• Efficiency

– unlike message queues and pipes, which copy
data from the process into memory within the
kernel, shared memory is directly accessed

– Shared memory resides in the user process
memory, and is then shared among other
processes

23Thursday, October 7, 2010

Disadvantages of Shared Memory

• No automatic synchronization as in pipes or
message queues (you have to provide any
synchronization). Synchronize with semaphores
or signals.

• You must remember that pointers are only valid
within a given process. Thus, pointer offsets
cannot be assumed to be valid across inter-process
boundaries. This complicates the sharing of
linked lists or binary trees.

24Thursday, October 7, 2010

Creating Shared Memory
int shmget(key_t key, size_t size, int shmflg);
• key is either a number or the constant

IPC_PRIVATE (man ftok)
• a shmid is returned
• key_t ftok(const char * path, int id) will return a

key value for IPC usage
• size is the size of the shared memory data
• shmflg is a rights mask (0666) OR’d with one of

the following:
– IPC_CREAT will create or attach
– IPC_EXCL creates new or it will error

 if it exists

25Thursday, October 7, 2010

Attaching to Shared Memory
• After obtaining a shmid from shmget(), you need

to attach or map the shared memory segment to
your data reference:

void * shmat(int shmid, void * shmaddr, int shmflg)
• shmid is the id returned from shmget()
• shmaddr is the shared memory segment address.

Set this to NULL and let the system handle it.
• shmflg is one of the following (usually 0):

– SHM_RDONLY sets the segment readonly
– SHM_RND sets page boundary access
– SHM_SHARE_MMU set first available aligned

 address

26Thursday, October 7, 2010

Shared Memory Control
struct shmid_ds {
 int shm_segsz; /* size of segment in bytes */
 __time_t shm_atime; /* time of last shmat command */
 __time_t shm_dtime; /* time of last shmdt command */
 ...
 unsigned short int __shm_npages; /* size of segment in pages */
 msgqnum_t shm_nattach; /* number of current attaches */
 ... /* pids of creator and last shmop */
};

• int shmctl(int shmid, int cmd, struct shmid_ds * buf);
• cmd can be one of:

– IPC_RMID destroy the memory specified by shmid
– IPC_SET set the uid, gid, and mode of the shared mem
– IPC_STAT get the current shmid_ds struct for the queue

• example: ~mark/pub/51081/shared.memory/linux/*

27Thursday, October 7, 2010

Matrix Multiplication

• Multiply two n x n matrices, a and b
• One each iteration, a row of A multiplies a

column of b, such that:

 n

ci,j = !ai,kbk,j
 k=1

cp,k = cp,k + ap,p-1bp-1,k

28Thursday, October 7, 2010

Semaphores

• Shared memory is not access controlled by the
kernel

• This means critical sections must be protected
from potential conflicts with multiple writers

• A critical section is a section of code that would
prove problematic if two or more separate
processes wrote to it simultaneously

• Semaphores were invented to provide such
locking protection on shared memory segments

29Thursday, October 7, 2010

System V Semaphores
• You can create an array of semaphores that can be

controlled as a group
• Semaphores (Dijkstra, 1965) may be binary (0/1), or

counting
1 == unlocked (available resource)
0 == locked

• Thus:
– To unlock a semaphore, you +INCREMENT it
– To lock a semaphore, you -DECREMENT it

• Spinlocks are busy waiting semaphores that constantly
poll to see if they may proceed (Dekker’s Algorithm)

30Thursday, October 7, 2010

How Semaphores Work
• A critical section is defined
• A semaphore is created to protect it
• The first process into the critical section locks the critical

section
• All subsequent processes wait on the semaphore, and they

are added to the semaphore’s “waiting list”
• When the first process is out of the critical section, it

signals the semaphore that it is done
• The semaphore then wakes up one of its waiting processes

to proceed into the critical section
• All waiting and signaling are done atomically

31Thursday, October 7, 2010

How Semaphores “Don’t” Work:
Deadlocks and Starvation

• When two processes (p,q) are both waiting on a
semaphore, and p cannot proceed until q signals, and q
cannot continue until p signals. They are both asleep,
waiting. Neither can signal the other, wake the other up.
This is called a deadlock.
– P1 locks a which succeeds, then waits on b
– P2 locks b which succeeds, then waits on a

• Indefinite blocking, or starvation, occurs when one
process is constantly in a wait state, and is never signaled.
This often occurs in LIFO situations.

• example: ~mark/pub/51081/semaphores/linux/
shmem.matrix.multiplier2.c

32Thursday, October 7, 2010

