
Lecture 4

Introduction to Unix Processes

Introduction to Systems Programming:
Processes and Signals

1Thursday, October 7, 2010

Introduction to Systems
Programming

Processes
Signals

2Thursday, October 7, 2010

Introduction to Processes
• Multiuser OS

– Ability of an OS to have multiple users using the system
at the same time

• Multitasking OS
– Ability of an OS to run multiple programs at the same

time
– “Pay No Attention To The Man Behind the Screen”

• Concurrency versus Parallelism
– timesharing quantums done by the system scheduler

(called swapper), which is a kernel thread and has
process ID of 0

3Thursday, October 7, 2010

An Analogy
• Assume a computer

scientist is sitting in his
office reading a book.
His eyes are busily
reading each word, his
brain is focused on
processing all this when
there’s a knock on the
door, and the computer
scientist is interrupted by
someone who looks like
this:

4Thursday, October 7, 2010

An Analogy
• Assume a computer

scientist is sitting in his
office reading a book.
His eyes are busily
reading each word, his
brain is focused on
processing all this when
there’s a knock on the
door, and the computer
scientist is interrupted by
someone who looks like
this:

4Thursday, October 7, 2010

What is a Process?
• A process is an executable “cradle” in which a program

may run
• This “cradle” provides an environment in which the

program can run, offering memory resources, terminal IO,
via access to kernel services.

• When a new process is created, a copy of the parent
process’ environment variables is provided as a default to
the new process

• A process is an address space married to a single default
thread of control that executes on code within that address
space

• ps -yal

5Thursday, October 7, 2010

Introduction to Processes
• Other kernel threads are created to run the following

services (various Unix kernels vary, YMMV):
– initd (1): parent initializer of all processes
– keventd (2): kernel event handler
– kswapd (3): kernel memory manager
– kreclaimd (4): reclaims pages in vm when unused
– bdflush (5): cleans memory by flushing dirty buffers

from disk cache
– kupdated (6): maintains sanity of filesystem buffers

6Thursday, October 7, 2010

User and Kernel Space
• System memory is divided into two parts:

– user space
• a process executing in user space is executing in user

mode
• each user process is protected (isolated) from another

(except for shared memory segments and mmapings
in IPC)

– kernel space
• a process executing in kernel space is executing in

kernel mode
• Kernel space is the area wherein the kernel executes
• User space is the area where a user program normally

executes, except when it performs a system call.

7Thursday, October 7, 2010

Anatomy of a System Call
• A System Call is an explicit request to the kernel made via a

software interrupt
• The standard C Library (libc) provides wrapper routines,

which basically provide a user space API for all system
calls, thus facilitating the context switch from user to kernel
mode

• The wrapper routine (in Linux) makes an interrupt call
0x80 (vector 128 in the Interrupt Descriptor Table)

• The wrapper routine makes a call to a system call handler
(sometimes called the “call gate), which executes in kernel
mode

• The system call handler in turns calls the system call
interrupt service routine (ISR), which also executes in
kernel mode.

8Thursday, October 7, 2010

ELF (Executable and Linking
Format)

• Heap is for dynamic memory
demand (malloc())

• Stack is for function call storage
and automatic variables

• BSS (Block Started by Symbol)
stores uninitialized static data

 int array[100];
• Data Segment stores initialized

static data
 char name[] = “bob”;
• Multiple processes can share the

same code segment

dynamic
libraries

unitialized
data area

(BSS)
NULLed out

initialized data
segment

(loaded from object
file on disk)

D
AT

A
S

E
G

M
E

N
T

Heap

Stackgrows

grows

Text Segment
(YCGH)

9Thursday, October 7, 2010

C Language Allocation

dynamic
libraries

unitialized
data area

(BSS)
NULLed out

initialized data
segment

(loaded from object
file on disk)

D
AT

A
S

E
G

M
E

N
T

Heap

Stackgrows

grows

Text Segment
(YCGH)

char * p = malloc(1024);

int iarray[20];

int iarray2[] = { 1,2,3 };

int main() { ... }

int myfunc(int x, float y) { int z; }

10Thursday, October 7, 2010

The Linux Process Descriptor
• Each Linux process is described by a task_struct structure

defined in include/linux/sched.h
• This structure holds information on most aspects of a

process in memory, including, among other items:
– process state
– next and previous task pointers
– next and previous runnable task pointers
– Parent, Child, and Sibling pointers
– tty information
– current directory information
– open file descriptors table
– memory pointers
– signals received

11Thursday, October 7, 2010

Task State
• TASK_RUNNING: running or waiting to be executed
• TASK_INTERRUPTIBLE: a sleeping or suspended

process, can be awakened by signal
• TASK_STOPPED: process is stopped (as by a debugger or

SIGTSTP, Ctrl-Z)
• TASK_ZOMBIE: process is in “walking dead” state

waiting for parent process to issue wait() call
• TASK_UNINTERRUPTIBLE: task is performing critical

operation and should not be interrupted by a signal
(usually used with device drivers)

12Thursday, October 7, 2010

Signal Processing

“Introduction to Interprocess
Communication”

13Thursday, October 7, 2010

What is a Signal?
• A signal is a software interrupt delivered to a

process by the OS because:
– it did something (oops)
– the user did something (pressed ^C)
– another process wants to tell it something (SIGUSR?)

• A signal is asynchronous, it may be raised at any
time (almost)

• Some signals are directly related to hardware
(illegal instruction, arithmetic exception, such as
attempt to divide by 0)

• Others are purely software signals (interrupt, bad
system call, segmentation fault)

14Thursday, October 7, 2010

Common Signals

• SIGHUP (1): sent to a process when its
controlling terminal has disconnected

• SIGINT (2): Ctrl-C (or DELETE key)
• SIGQUIT (3): Ctrl-\ (default produces core)
• SIGSEGV (11): Segmentation fault
• SIGILL (4): Illegal instruction (default core)
• SIGUSR[1,2]: User-defined signals (10,12)
• kill –l will list all signals
• SIGFPE (8): Floating Point Exception (divide

by 0; integer overflow; floating-point underflow)

15Thursday, October 7, 2010

Chris Brown’s Top 6 List of Things to
Do with a Signal Once You Trap It

1. Ignore a signal
2. Clean up and terminate
3. Handle Dynamic Configuration (SIGHUP)
4. Report status, dump internal tables
5. Toggle debugging on/off
6. Implement a timeout condition
 (cf. Chris Brown, Unix Distributed

Programming, Prentice Hall, 1994)

16Thursday, October 7, 2010

Reliable and Unreliable Signal APIs

• Signal model provided by AT&T Version 7 was
“not reliable”, meaning that signals could get
“lost” on the one hand, and programs could not
turn signal delivery “off” during critical sections,
on the other hand.

• BSD 4.3 and System V Release 3 delivered
reliable signals, which solved many of the
problems with signals present in Version 7.

• And if that weren’t enough, SVR4 introduced
POSIX signals.

17Thursday, October 7, 2010

Signal Disposition

• Ignore the signal (most signals can simply be
ignored, except SIGKILL and SIGSTOP)

• Handle the signal disposition via a signal handler
routine. This allows us to gracefully shutdown a
program when the user presses Ctrl-C (SIGINT).

• Block the signal. In this case, the OS queues
signals for possible later delivery

• Let the default apply (usually process termination)

18Thursday, October 7, 2010

Original Signal Handling (Version 7)

• Two includes: <sys/types.h> and <signal.h>
• void (*signal(int sig, void (*handler)(int)))(int)

– Translation?
• handler can either be:

– a function (that takes a single int which is the signal)
– the constant SIG_IGN
– the constant SIG_DFL

• signal will return SIG_ERR in case of error
• Examples: (in ~mark/pub/51081/signals): nosignal.c and

ouch.c

19Thursday, October 7, 2010

Original Signal Handling (Version 7)

• Stopping processing until a signal is received:
– int pause(void); // must include <unistd.h>

• Sending signals (2 forms)
– int kill (pid_t, int sig);
– int raise(int sig); // notice can’t specify which process

• Printing out signal information (#include <siginfo.h>)
– void psignal(int sig, const char *s);

• Examples: ouch.c, sigusr.c, fpe.c

20Thursday, October 7, 2010

Alarming Signals

• SIGALRM can be used as a kind of “alarm clock”
for a process

• By setting a disposition for SIGALRM, a process
can set an alarm to go off in x seconds with the
call:
– unsigned int alarm(unsigned int numseconds)

• Alarms can be interrupted by other signals
• Examples: mysleep.c, impatient.c

21Thursday, October 7, 2010

BSD and SysV Handle Unreliability
Issue—In Incompatible Ways

• Berkeley Unix 4.2BSD responded with inventing
a new signal API, but it also rewrote the original
signal() function to be reliable

• Thus, old code that used signal() could now work
unchanged with reliable signals, optionally calling
the new API (sigvec(), etc.)

• Luckily, few programmers used the new
(incompatible) API, most stuck with signal()
usage

22Thursday, October 7, 2010

BSD and SysV Handle Unreliability
Issue—In Incompatible Ways

• AT&T SVR3 provided reliable signals through a new API,
and kept the older signal() code unreliable (for backward
compatibility reasons)

• Introduced a new primary function:
– void (*sigset(int sig, void (*handler)(int)))(int)
– Since sigset accepted the same parameters as before:

• #define signal sigset /* would port older or BSD4.2
code */

• Introduced a new default for disposition: SIG_HOLD (in
addition to SIG_DFL, SIG_IGN)

23Thursday, October 7, 2010

BSD and SysV Handle Unreliability
Issue—In Incompatible Ways

• SVR3 added its own set of new functions for reliable
signals:
– int sighold(int sig); /*adds sig to the signal mask

 disposition */
– int sigrelse(int sig); /* removes sig from the signal

 mask disposition, and
waits
 for signal to arrive
(suspends)*/

– int sigignore(int sig); /* sets disposition of sig to
 SIG_IGN */

– int sigpause(int sig); /* combination of sigrelse and
 pause(), but safe */

• examples (sigset.c)
24Thursday, October 7, 2010

Enter POSIX Signals
• Uses the concept of signal sets from 4.2BSD
• A signal set is a bitmask of signals that you want to

block, i.e., signals that you specifically don’t want
to handle

• Each bit in the bitmask (an array of 2 unsigned
longs) corresponds to a given signal (i.e., bit 10 ==
SIGUSR1)

• All signals not masked (not blocked) will be
delivered to your process

• In POSIX signals, a blocked signal is not thrown
away, but buffered as pending, should it become
unmasked by the process at some later time

25Thursday, October 7, 2010

Central POSIX Functions

• int sigaddset(sigset_t * set, int signo);
– adds a particular signal to the set

• int sigemptyset(sigset_t * set);
– Zeros out the bitmask (program wants all signals)

• int sigfillset(sigset_t * set);
– Masks all signals (blocks all signals)

• int sigdelset(sigset_t * set, int signo);
– unmasks signo from the set (program wants the signal)

• int sigsend(idtype_t idtype, id_t id, int sig);
• int sigsuspend(const sigset_t * set);

26Thursday, October 7, 2010

POSIX sigaction
 int sigaction (int sig, const struct sigaction *iact, struct

sigaction *oact);

• sa_flags
– * SA_RESTART flag to automatically restart interrupted system

calls
– * SA_NOCLDSTOP flag to turn off SIGCHLD signaling when

children die.
– * SA_RESETHAND clears the handler (ie. resets the default) when

the signal is delivered (recidivist).
– * SA_NOCLDWAIT flag on SIGCHLD to inhibit zombies.
– * SA_SIGINFO flag indicates use value in sa_sigaction over

sa_handler

struct sigaction {
 __sighandler_t sa_handler;
 void (*sa_sigaction)(int, siginfo_t *, void *);
 unsigned long sa_flags
 …
 sigset_t sa_mask; //set of signals to be BLOCKED
};

27Thursday, October 7, 2010

POSIX Reentrant Functions
• Reentrant functions are those functions which are

safe for reentrance:
– Scenario: a signal SIGUSR1 is received in the

middle of myfunc().
– The handler for SIGUSR1 is called, which

makes a call to myfunc()
– myfunc() has just been “reentered”

• A function “safe” for reentrance is one that:
– defines no static data
– calls only reentrant functions or functions that

do not raise signals

28Thursday, October 7, 2010

POSIX Reentrant-Safe Functions
• alarm, sleep, pause
• fork, execle, execve
• stat, fstat
• open, close, creat, lseek, read, write, fcntl, fstat
• sigaction, sigaddset, sigdelset, sig* etc.
• chdir, shmod, chown, umask, uname

29Thursday, October 7, 2010

