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Introduction to AWK
• Written by Alfred Aho, Peter Weinberger, Brian 
Kernighan in 1977.

• awk is primarily a filter that provides a rich 
language in which to display and minipulate 
incoming data

• Whereas grep & Co. allows you to search through 
a text file and look for something, awk lets you 
search through a text file and actually do 
something once you’ve found what you’re looking 
for
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awk and C

• awk shares many syntactic similarities with the C 
programming language (Kernighan was heavily 
involved in both)

• Whereas a C program requires the program author 
to open and close files, and move from one line to 
the next in the input, find and isolate the tokens 
within a given line, keep track of the total number 
of lines and the current number of tokens, awk 
does all this for you automatically

• Therefore, we say that awk is “input-driven”, it 
must work on lines of input

4Thursday, October 7, 2010



awk Processing
• awk processes incoming text according to lines which are 

called records and elements within those lines called 
fields.

• awk processes commands called pattern-actions, or rules.  
If a pattern matches, the associated action is performed

• Actions are enclosed in braces {}
• Patterns, if present, are stated before actions outside of 

braces
• In an awk rule, either the pattern or the action may be 

missing, but not both:
– if the pattern is missing, the action is performed on 

every line of the input
– if the action is missing, the default action is to print the 

line out to stdout
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awk program structure

• Multiple BEGIN sections (optional)
• Multiple END sections (optional)
• Multiple recursive blocks which will operate on 

each record (line) of the input file
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awk Program Flow
• Process optional BEGIN block
• Open the file (either specified during invocation or from 

STDIN) 
• Read each line (record) of the input file and parse records 

into fields referenced by $n
– $0 denotes the entire record
– each field is demarked by $1, $2, $3, $4, etc.

• Execute each block defined in the awk program on each 
record (input line)

• Execute optional END block
• Close the file
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awk Patterns

• Patterns may be composed of:
– /regular expressions/

• awk '/[2-3]/' five.lines
• awk '$2 ~ /[2-3]/' five.lines

– A single expression
• awk ‘$2 > 3’ five.lines

– A pair of patterns, separated by a comma 
indicating a range of records:
• awk ‘$2 == “2”, $2 == “4”’ five.lines
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awk Built-in Variables

• FS:  Input field separator (default ‘ ’)
• OFS: Output field separator (default ‘ ’)
• RS:  Record Separator (default ‘\n’)
• ARGC: C-style arg count
• ARGV: C-style arg vector (offset 0)
• NF:  number of fields in current record
• NR: number of records processed so far
• NOTE:  Do NOT put a $ in front of these 

variables (i.e., don’t say “$NR” but just “NR”)
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Example Blocks
What do the following do?

• awk ‘$4 > 0 {print $1,”from”,$6}’ some.data
• awk ‘{print}’ some.data
• awk ‘{print}’
• awk ‘NF > 0’ some.data
• awk '/n/; /e/' five.lines
• awk ‘/text/ {print}’
• awk ‘BEGIN {print “Hello World”}’
• awk '{ $1 = "THE LINE"; print}' five.lines
• ypcat passwd | awk -F: ‘$1 ~ /mark/ { print $1,"is a bozo"}‘
• awk ‘BEGIN {print $3-$4 }’ some.data
• awk '{print "Balance for",$1,"from",$6,"is:",$3-$4}' 

some.data
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A Sample Program
ypcat passwd |
awk 'BEGIN{FS=":"}    #could use –F”:” on comand line
{print "Login id:", $1; 
print "userid:", $3; 
print "group id:", $4; 
print "Full Name:", $5; 
print "default shell:", $7; 
print " " ;}'
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String-Matching Patterns
• /regex/

– matches when the current record contains a substring matched by 
regex

– /ksh/ { ... } # process lines that contain the letters ‘ksh’
• expression ~ /regex/

– matches if the string value of expression (can be a field like $3) 
contains a substring matched by regex

– $7 ~ /ksh/ { ... }  # process records whose 7th field contains the 
letters ‘ksh’

• expression !~ /regex/
– matches if the string value of expression (can be a field like $3) 

does NOT contain a substring matched by regex
– $3 !~ /[4-6]/ { ... }  # process records whose 3rd field does not 

contain a 4, 5, or a 6
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awk Functions
 math functions: cos, int, log, sin, sqrt
 length(s)  returns length of string
 index(s,t)  returns pos of substr s in string t
 substr(s,p,m) returns substring of string s beginning

   at p, going length of m
 split(string, arrayname[, fieldsep])

   split splits string into tokens 
separated
   by the optional fieldsep and stores the
   tokens in the array arrayname

 gawk C-like extensions:
 toupper() 
 tolower()  
 sprintf("fmt",expr)

 Example (what is my regex matching, revisited):
 echo '111111' | awk '{sub (/1/, "X"); print }'
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awk Arrays
• awk provides functionality for one-dimensional 

arrays (and by extension, multidimensional arrays)
• Arrays are associative in awk, meaning that a value 

is associated with an index (as opposed to a 
memory-based non-associated array scheme in C 
for example)

• By default, array indices begin at 0 as in C
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awk Arrays continued
• This means that indexes (which are always 

converted to strings) may either be integral or 
textual (i.e., a string)
– array[1] may return “un”
– array[three] may return “trois”
awk ‘BEGIN{
for (i in ARGV)
print “Item”,i,“is:”,ARGV[i]
}’ one two three 
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Array Syntax
• To reference an array element:

– array[index]
• To discover if an index exists in an array:

– if ( three in array )
• print “three in French is”,array[three]

• To walk through an array:
– for( x in array ) print array[x]

• To delete an individual element at an index:
– delete array[index]
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Creating an Array using split()

split1.sh:
echo 'un deux trois quatre' |awk '{split($0,array)}

END{
for (x in array) print "index:",x":",array[x];}‘
split2.sh:
echo 'un deux trois quatre' |
awk '{split($0,array)}
END{if ( 3 in array ) 
print "three in French is",array[3]}'
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Real World Example

• from Aho, Kernighan, Weinberger, The 
AWK Programming Lanugage, chap. 4:

• cat countries
• cat prep.3
• cat form.3
• awk -f prep.3 countries countries | awk -f 

form.3
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Review of C Programming Tools

Compilation
Linkage
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The Four Stages of Compilation

• preprocessing
• compilation
• assembly
• linking
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gcc driver program (toplev.c)

• cpp: C PreProcessor
• cc1: RTL (Register Transfer Language) processor
• as: assembler
• ld: loader (linker)
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The GNU CC Compilation Process
• GCC is portable:

– multiplatform (intel, MIPS, RISC, Sparc, 
Motorola, etc.)

– multiOS (BSD,AIX, Linux, HPUX, mach, IRIX, 
minix, msdos, Solaris, Windoze, etc.)

– Multilingual (C, Objective C, C++, Fortran, etc.)
• Single first parsing pass that generates a parsing 

tree
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The GNU CC Compilation Process
• Register Transfer Language generation

– close to 30 additional passes operate on RTL 
Expressions (RTXs), constructed from partial syntax 
trees

– gcc –c –dr filename.c
– RTL is Lisp-like

• cond(if_then_else cond then else)
• (eq: m x y)
• (set lval x)
• (call function numargs)
• (parallel [x0 x1 x2 xn])

• Final output is assembly language, obtained by mapping 
RTX to a machine dependency dictionary
– ~/mark/pub/51081/compiler/i386.md
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Assembler Tasks 

• converts assembly source code into machine 
instructions, producing an “object” file (called 
“.o”) 
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Loader (Linker) tasks 

• The Loader (linker) creates an executable process 
image within a file, and makes sure that any 
functions or subprocesses needed are available or 
known. Library functions that are used by the 
code are linked in, either statically or dynamically. 
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Preprocessor Options 
• -E preprocess only: send preprocessed output to standard 

out--no compile
– output file: file.c -> file.i file.cpp -> file.ii

• -M produce dependencies for make to stdout (voluble)
• -C keep comments in output (used with -E above):

– -E -C
• -H printer Header dependency tree
• -dM Tell preprocessor to output only a list of macro defs in 

effect at end of preprocessing. (used with -E above)
– gcc -E -dM funcs.c |grep MAX
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Compiler Options 
• -c compile only
• -S send assembler output source to *.s

– output file: file.c -> file.s 
• -w Suppress All Warnings

– gcc warnings.c
– gcc -w warnings.c

• -W Produce warnings about side-effects (falling 
out of a function)
– gcc -W warnings.c
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Compiler Options (cont)

• -I Specify additional include file paths
• -Wall Produce many warnings about questionable 

practices; implicit declarations, newlines in 
comments, questionable lack of parentheses, 
uninitialized variable usage, unused variables, etc.
– gcc -Wall warnings.c

• -pedantic Warn on violations from ANSI 
compatibility (only reports violations required by 
ANSI spec).
– gcc -pedantic warnings.c
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Compiler Options (cont)

• -O optimize (1,2,3,0)
– -O,-O1 base optimizations, no auto inlines, no loops
– -O2 performs additional optimizations except inline-

functions optimization and loop optimization
– -O3 also turns on inline-functions and loop optimization
– -O1 default

• -g include debug info (can tell it what debugger):
– -gcoff COFF format for sdb (System V < Release 4)
– -gstabs for dbx on BSD
– -gxcoff for dbx on IBM RS/6000 systems
– -gdwarf for sdb on System V Release 4
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Compiler Options (cont)

• -save-temps save temp files (foo.i, foo.s, foo.o)
• -print-search-dirs print the install, program, and 

libraries paths
• -gprof create profiling output for gprof
• -v verbose output (useful at times)
• -nostartfiles skip linking of standard start files, 

like /usr/lib/crt[0,1].o, /usr/lib/crti.o, etc.
• -static link only to static (.a=archive) libraries
• -shared if possible, prefer shared libraries over 

static
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Assembler Options (use gcc -Wa,-
options to pass options to assembler) 

• -ahl generate high level assembly language source 
– gcc -Wa,-ahl warnings.c

• -as generate a listing of the symbol table
– gcc -Wa,-as warnings.c
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Linker Options (use gcc -Wl,-options to 
pass options to the loader) 

• gcc passes any unknown options to the linker
• -l lib (default naming convention liblib.a)
• -L lib path (in addition to default /usr/lib and /lib)
• -s strip final executable code of symbol and 

relocation tables
– gcc -w –g warnings.c ; ls -l a.out ; gcc -w -Wl,-

s warnings.c ; ls -l a.out
• -M create load Map to stdout
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Review of C Programming Tools

Building Static and Dynamic Libraries
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Static Libraries and ar
 (cd /pub/51081/static.library) 

• Create a static library: the ar command: 
– ar [rcdusx] libname objectfiles ...

• Options
– rcs: add new files to the library and create an index 

(ranlib) (c == create the library if it doesn’t exist)
– rus: update the object files in the library
– ds: delete one or more object files from a library
– x: extract (copy) an object file from a library (remains 

in library)
– v: verbose output
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Steps in Creating a Static Library
(cd ~mark/pub/51081/static.library)

• First, compile (-c) the library source code:
– gcc -Wall -g -c libhello.c

• Next, create the static library (libhello.a)
– ar rcs libhello.a libhello.o

• Next, compile the file that will use the library
– gcc -Wall -g -c hello.c

• Finally, link the user of the library to the static 
library
– gcc  hello.o -lc -L. -lhello -o hello

• Execute:  ./hello
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Shared Libraries 
(cd /pub/51081/shared.library) 

• Benefits of using shared libraries over static 
libraries:
– saves disk space—library code is in library, not 

each executable
– fixing a bug in the library doesn't require 

recompile of dependent executables.
– saves RAM—only one copy of the library sits 

in memory, and all dependent executables 
running share that same code.
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Shared Library Naming Structure
• soname: libc.so.5

– minor version and release number:
• libc.so.5.v.r eg: libc.so.5.3.1

– a soft link libc.so.5 exists and points to the real 
library libc.so.5.3.1
• that way, a program can be linked to look for 

libc.so.5, and upgrading from release to 
libc.so.5.3.2 just involves resetting the 
symbolic link libc.so.5 from libc.so.5.3.1 to 
libc.so.5.3.2. 

• ldconfig does this automatically for system 
libraries (man ldconfig, /etc/ld.so.conf)

37Thursday, October 7, 2010



Building a shared library:
Stage 1:  Compile the library source

• Compile library sources with -fPIC (Position Independent 
Code):
– gcc -fPIC -Wall -g -c libhello.c
– This creates a new shared object file called libhello.o, 

the object file representation of the new library you just 
compiled

• Create the release shared library by linking the library code 
against the C library for best results on all systems:
– gcc -g -shared –Wl,-soname,libhello.so.1 -o libhello.so.

1.0.1 libhello.o –lc
– This creates a new release shared library called 

libhello.so.1.0.1
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Building a shared library:
Stage 2:  Create Links

• Create a soft link from the minor version to the 
release library:
– ln -sf libhello.so.1.0.1 libhello.so.1.0

• Create a soft link from the major version to the 
minor version of the library:
– ln -sf libhello.so.1.0 libhello.so.1

• Create a soft link for the linker to use when linking 
applications against the new release library:
– ln -sf libhello.so.1.0.1 libhello.so
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Building a shared library:
Stage 3:  Link Client Code and Run

• Compile (-c) the client code that will use the 
release library:
– gcc -Wall -g -c hello.c

• Create the dependent executable by using -L to tell 
the linker where to look for the library (i.e., in the 
current directory) and to link against the shared 
library (-lhello == libhello.so):
– gcc -Wall -g -o hello hello.c -L. -lhello

• Run the app:
– LD_LIBRARY_PATH=. ./hello
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How do Shared Libraries Work?

• When a program runs that depends on a shared 
library (discover with ldd progname), the dynamic 
linker will attempt to find the shared library 
referenced by the soname

• Once all libraries are found, the dependent code is 
dynamically linked to your program, which is 
then executed

• Reference:  The Linux Program-Library HOWTO
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