
Lecture 2

Awk
C Compiler: Tools and Compilation

C Libraries: Static and Dynamic

1Thursday, October 7, 2010

AWK

2Thursday, October 7, 2010

Introduction to AWK
• Written by Alfred Aho, Peter Weinberger, Brian
Kernighan in 1977.

• awk is primarily a filter that provides a rich
language in which to display and minipulate
incoming data

• Whereas grep & Co. allows you to search through
a text file and look for something, awk lets you
search through a text file and actually do
something once you’ve found what you’re looking
for

3Thursday, October 7, 2010

awk and C

• awk shares many syntactic similarities with the C
programming language (Kernighan was heavily
involved in both)

• Whereas a C program requires the program author
to open and close files, and move from one line to
the next in the input, find and isolate the tokens
within a given line, keep track of the total number
of lines and the current number of tokens, awk
does all this for you automatically

• Therefore, we say that awk is “input-driven”, it
must work on lines of input

4Thursday, October 7, 2010

awk Processing
• awk processes incoming text according to lines which are

called records and elements within those lines called
fields.

• awk processes commands called pattern-actions, or rules.
If a pattern matches, the associated action is performed

• Actions are enclosed in braces {}
• Patterns, if present, are stated before actions outside of

braces
• In an awk rule, either the pattern or the action may be

missing, but not both:
– if the pattern is missing, the action is performed on

every line of the input
– if the action is missing, the default action is to print the

line out to stdout

5Thursday, October 7, 2010

awk program structure

• Multiple BEGIN sections (optional)
• Multiple END sections (optional)
• Multiple recursive blocks which will operate on

each record (line) of the input file

6Thursday, October 7, 2010

awk Program Flow
• Process optional BEGIN block
• Open the file (either specified during invocation or from

STDIN)
• Read each line (record) of the input file and parse records

into fields referenced by $n
– $0 denotes the entire record
– each field is demarked by $1, $2, $3, $4, etc.

• Execute each block defined in the awk program on each
record (input line)

• Execute optional END block
• Close the file

7Thursday, October 7, 2010

awk Patterns

• Patterns may be composed of:
– /regular expressions/

• awk '/[2-3]/' five.lines
• awk '$2 ~ /[2-3]/' five.lines

– A single expression
• awk ‘$2 > 3’ five.lines

– A pair of patterns, separated by a comma
indicating a range of records:
• awk ‘$2 == “2”, $2 == “4”’ five.lines

8Thursday, October 7, 2010

awk Built-in Variables

• FS: Input field separator (default ‘ ’)
• OFS: Output field separator (default ‘ ’)
• RS: Record Separator (default ‘\n’)
• ARGC: C-style arg count
• ARGV: C-style arg vector (offset 0)
• NF: number of fields in current record
• NR: number of records processed so far
• NOTE: Do NOT put a $ in front of these

variables (i.e., don’t say “$NR” but just “NR”)

9Thursday, October 7, 2010

Example Blocks
What do the following do?

• awk ‘$4 > 0 {print $1,”from”,$6}’ some.data
• awk ‘{print}’ some.data
• awk ‘{print}’
• awk ‘NF > 0’ some.data
• awk '/n/; /e/' five.lines
• awk ‘/text/ {print}’
• awk ‘BEGIN {print “Hello World”}’
• awk '{ $1 = "THE LINE"; print}' five.lines
• ypcat passwd | awk -F: ‘$1 ~ /mark/ { print $1,"is a bozo"}‘
• awk ‘BEGIN {print $3-$4 }’ some.data
• awk '{print "Balance for",$1,"from",$6,"is:",$3-$4}'

some.data

10Thursday, October 7, 2010

A Sample Program
ypcat passwd |
awk 'BEGIN{FS=":"} #could use –F”:” on comand line
{print "Login id:", $1;
print "userid:", $3;
print "group id:", $4;
print "Full Name:", $5;
print "default shell:", $7;
print " " ;}'

11Thursday, October 7, 2010

String-Matching Patterns
• /regex/

– matches when the current record contains a substring matched by
regex

– /ksh/ { ... } # process lines that contain the letters ‘ksh’
• expression ~ /regex/

– matches if the string value of expression (can be a field like $3)
contains a substring matched by regex

– $7 ~ /ksh/ { ... } # process records whose 7th field contains the
letters ‘ksh’

• expression !~ /regex/
– matches if the string value of expression (can be a field like $3)

does NOT contain a substring matched by regex
– $3 !~ /[4-6]/ { ... } # process records whose 3rd field does not

contain a 4, 5, or a 6

12Thursday, October 7, 2010

awk Functions
 math functions: cos, int, log, sin, sqrt
 length(s) returns length of string
 index(s,t) returns pos of substr s in string t
 substr(s,p,m) returns substring of string s beginning

 at p, going length of m
 split(string, arrayname[, fieldsep])

 split splits string into tokens
separated
 by the optional fieldsep and stores the
 tokens in the array arrayname

 gawk C-like extensions:
 toupper()
 tolower()
 sprintf("fmt",expr)

 Example (what is my regex matching, revisited):
 echo '111111' | awk '{sub (/1/, "X"); print }'

13Thursday, October 7, 2010

awk Arrays
• awk provides functionality for one-dimensional

arrays (and by extension, multidimensional arrays)
• Arrays are associative in awk, meaning that a value

is associated with an index (as opposed to a
memory-based non-associated array scheme in C
for example)

• By default, array indices begin at 0 as in C

14Thursday, October 7, 2010

awk Arrays continued
• This means that indexes (which are always

converted to strings) may either be integral or
textual (i.e., a string)
– array[1] may return “un”
– array[three] may return “trois”
awk ‘BEGIN{
for (i in ARGV)
print “Item”,i,“is:”,ARGV[i]
}’ one two three

15Thursday, October 7, 2010

Array Syntax
• To reference an array element:

– array[index]
• To discover if an index exists in an array:

– if (three in array)
• print “three in French is”,array[three]

• To walk through an array:
– for(x in array) print array[x]

• To delete an individual element at an index:
– delete array[index]

16Thursday, October 7, 2010

Creating an Array using split()

split1.sh:
echo 'un deux trois quatre' |awk '{split($0,array)}

END{
for (x in array) print "index:",x":",array[x];}‘
split2.sh:
echo 'un deux trois quatre' |
awk '{split($0,array)}
END{if (3 in array)
print "three in French is",array[3]}'

17Thursday, October 7, 2010

Real World Example

• from Aho, Kernighan, Weinberger, The
AWK Programming Lanugage, chap. 4:

• cat countries
• cat prep.3
• cat form.3
• awk -f prep.3 countries countries | awk -f

form.3

18Thursday, October 7, 2010

Review of C Programming Tools

Compilation
Linkage

19Thursday, October 7, 2010

The Four Stages of Compilation

• preprocessing
• compilation
• assembly
• linking

20Thursday, October 7, 2010

gcc driver program (toplev.c)

• cpp: C PreProcessor
• cc1: RTL (Register Transfer Language) processor
• as: assembler
• ld: loader (linker)

21Thursday, October 7, 2010

The GNU CC Compilation Process
• GCC is portable:

– multiplatform (intel, MIPS, RISC, Sparc,
Motorola, etc.)

– multiOS (BSD,AIX, Linux, HPUX, mach, IRIX,
minix, msdos, Solaris, Windoze, etc.)

– Multilingual (C, Objective C, C++, Fortran, etc.)
• Single first parsing pass that generates a parsing

tree

22Thursday, October 7, 2010

The GNU CC Compilation Process
• Register Transfer Language generation

– close to 30 additional passes operate on RTL
Expressions (RTXs), constructed from partial syntax
trees

– gcc –c –dr filename.c
– RTL is Lisp-like

• cond(if_then_else cond then else)
• (eq: m x y)
• (set lval x)
• (call function numargs)
• (parallel [x0 x1 x2 xn])

• Final output is assembly language, obtained by mapping
RTX to a machine dependency dictionary
– ~/mark/pub/51081/compiler/i386.md

23Thursday, October 7, 2010

Assembler Tasks

• converts assembly source code into machine
instructions, producing an “object” file (called
“.o”)

24Thursday, October 7, 2010

Loader (Linker) tasks

• The Loader (linker) creates an executable process
image within a file, and makes sure that any
functions or subprocesses needed are available or
known. Library functions that are used by the
code are linked in, either statically or dynamically.

25Thursday, October 7, 2010

Preprocessor Options
• -E preprocess only: send preprocessed output to standard

out--no compile
– output file: file.c -> file.i file.cpp -> file.ii

• -M produce dependencies for make to stdout (voluble)
• -C keep comments in output (used with -E above):

– -E -C
• -H printer Header dependency tree
• -dM Tell preprocessor to output only a list of macro defs in

effect at end of preprocessing. (used with -E above)
– gcc -E -dM funcs.c |grep MAX

26Thursday, October 7, 2010

Compiler Options
• -c compile only
• -S send assembler output source to *.s

– output file: file.c -> file.s
• -w Suppress All Warnings

– gcc warnings.c
– gcc -w warnings.c

• -W Produce warnings about side-effects (falling
out of a function)
– gcc -W warnings.c

27Thursday, October 7, 2010

Compiler Options (cont)

• -I Specify additional include file paths
• -Wall Produce many warnings about questionable

practices; implicit declarations, newlines in
comments, questionable lack of parentheses,
uninitialized variable usage, unused variables, etc.
– gcc -Wall warnings.c

• -pedantic Warn on violations from ANSI
compatibility (only reports violations required by
ANSI spec).
– gcc -pedantic warnings.c

28Thursday, October 7, 2010

Compiler Options (cont)

• -O optimize (1,2,3,0)
– -O,-O1 base optimizations, no auto inlines, no loops
– -O2 performs additional optimizations except inline-

functions optimization and loop optimization
– -O3 also turns on inline-functions and loop optimization
– -O1 default

• -g include debug info (can tell it what debugger):
– -gcoff COFF format for sdb (System V < Release 4)
– -gstabs for dbx on BSD
– -gxcoff for dbx on IBM RS/6000 systems
– -gdwarf for sdb on System V Release 4

29Thursday, October 7, 2010

Compiler Options (cont)

• -save-temps save temp files (foo.i, foo.s, foo.o)
• -print-search-dirs print the install, program, and

libraries paths
• -gprof create profiling output for gprof
• -v verbose output (useful at times)
• -nostartfiles skip linking of standard start files,

like /usr/lib/crt[0,1].o, /usr/lib/crti.o, etc.
• -static link only to static (.a=archive) libraries
• -shared if possible, prefer shared libraries over

static

30Thursday, October 7, 2010

Assembler Options (use gcc -Wa,-
options to pass options to assembler)

• -ahl generate high level assembly language source
– gcc -Wa,-ahl warnings.c

• -as generate a listing of the symbol table
– gcc -Wa,-as warnings.c

31Thursday, October 7, 2010

Linker Options (use gcc -Wl,-options to
pass options to the loader)

• gcc passes any unknown options to the linker
• -l lib (default naming convention liblib.a)
• -L lib path (in addition to default /usr/lib and /lib)
• -s strip final executable code of symbol and

relocation tables
– gcc -w –g warnings.c ; ls -l a.out ; gcc -w -Wl,-

s warnings.c ; ls -l a.out
• -M create load Map to stdout

32Thursday, October 7, 2010

Review of C Programming Tools

Building Static and Dynamic Libraries

33Thursday, October 7, 2010

Static Libraries and ar
 (cd /pub/51081/static.library)

• Create a static library: the ar command:
– ar [rcdusx] libname objectfiles ...

• Options
– rcs: add new files to the library and create an index

(ranlib) (c == create the library if it doesn’t exist)
– rus: update the object files in the library
– ds: delete one or more object files from a library
– x: extract (copy) an object file from a library (remains

in library)
– v: verbose output

34Thursday, October 7, 2010

Steps in Creating a Static Library
(cd ~mark/pub/51081/static.library)

• First, compile (-c) the library source code:
– gcc -Wall -g -c libhello.c

• Next, create the static library (libhello.a)
– ar rcs libhello.a libhello.o

• Next, compile the file that will use the library
– gcc -Wall -g -c hello.c

• Finally, link the user of the library to the static
library
– gcc hello.o -lc -L. -lhello -o hello

• Execute: ./hello

35Thursday, October 7, 2010

Shared Libraries
(cd /pub/51081/shared.library)

• Benefits of using shared libraries over static
libraries:
– saves disk space—library code is in library, not

each executable
– fixing a bug in the library doesn't require

recompile of dependent executables.
– saves RAM—only one copy of the library sits

in memory, and all dependent executables
running share that same code.

36Thursday, October 7, 2010

Shared Library Naming Structure
• soname: libc.so.5

– minor version and release number:
• libc.so.5.v.r eg: libc.so.5.3.1

– a soft link libc.so.5 exists and points to the real
library libc.so.5.3.1
• that way, a program can be linked to look for

libc.so.5, and upgrading from release to
libc.so.5.3.2 just involves resetting the
symbolic link libc.so.5 from libc.so.5.3.1 to
libc.so.5.3.2.

• ldconfig does this automatically for system
libraries (man ldconfig, /etc/ld.so.conf)

37Thursday, October 7, 2010

Building a shared library:
Stage 1: Compile the library source

• Compile library sources with -fPIC (Position Independent
Code):
– gcc -fPIC -Wall -g -c libhello.c
– This creates a new shared object file called libhello.o,

the object file representation of the new library you just
compiled

• Create the release shared library by linking the library code
against the C library for best results on all systems:
– gcc -g -shared –Wl,-soname,libhello.so.1 -o libhello.so.

1.0.1 libhello.o –lc
– This creates a new release shared library called

libhello.so.1.0.1

38Thursday, October 7, 2010

Building a shared library:
Stage 2: Create Links

• Create a soft link from the minor version to the
release library:
– ln -sf libhello.so.1.0.1 libhello.so.1.0

• Create a soft link from the major version to the
minor version of the library:
– ln -sf libhello.so.1.0 libhello.so.1

• Create a soft link for the linker to use when linking
applications against the new release library:
– ln -sf libhello.so.1.0.1 libhello.so

39Thursday, October 7, 2010

Building a shared library:
Stage 3: Link Client Code and Run

• Compile (-c) the client code that will use the
release library:
– gcc -Wall -g -c hello.c

• Create the dependent executable by using -L to tell
the linker where to look for the library (i.e., in the
current directory) and to link against the shared
library (-lhello == libhello.so):
– gcc -Wall -g -o hello hello.c -L. -lhello

• Run the app:
– LD_LIBRARY_PATH=. ./hello

40Thursday, October 7, 2010

How do Shared Libraries Work?

• When a program runs that depends on a shared
library (discover with ldd progname), the dynamic
linker will attempt to find the shared library
referenced by the soname

• Once all libraries are found, the dependent code is
dynamically linked to your program, which is
then executed

• Reference: The Linux Program-Library HOWTO

41Thursday, October 7, 2010

http://www.tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://www.tldp.org/HOWTO/Program-Library-HOWTO/index.html

