CMSC 22100/32100: Programming Languages
Lecture Notes

M. Blume December 5, 2008

1 Introduction
What are programming languages?

Languages: formal languages, i.e., sets of strings

Programming: languages with semantics

1.1 Languages as sets

Example: difference terms: Three equivalent ways of defining the syntax of
the language:

Inductive definition: L is the smallest set such that:

e 0c L
e 1cL
eifec Lande €L, thene—¢ €L

Notice: juxtaposition of symbols (taken from the set {0,1,—}) is string
concatenation, which is a monoid operation, meaning that among other
things it is associative.

BNF: definition using BNF (Backus-Naur-Form), a.k.a. production rules, a.k.a.
“context-free grammar”:

Here: e is a “non-terminal” symbol; 0, 1, and — are “terminal” symbols.
One of the non-terminals is the designated “start” symbol (so in our case it
must be e since that’s all we’ve got). The language is generated by taking
the start symbols and repeatedly applying one of the production rules,
replacing its non-terminal on the left with the corresponding right-hand
side. The language is defined to be the set of strings of terminal symbols
(non non-terminals!) that can be generated in this fashion.

Frequently used alternative notation, which tends to be more compact:

e := 0|1]e—e (1)

Inference rules: We use a judgment (a term encoding a relation, in this case
a set) to characterize the expressions of the language. We want to be able
to derive the judgment if and only if s € L where e encodes the
string s. For the time being we will use strings directly, i.e., we make e
identical to s:

e exp ¢ exp
ZERO ONE 7 MINUS
0 exp 1 exp e—e exp

Each inference rule has a name, written to its right, so we can refer to it
later on. It comsists of a horizontal line, separating the premises above
from the conclusion below.

Each premise and each conclusion is a term template, i.e., a term possibly
containing meta-variables such as e and e’ above. A rule containing meta-
variables is a finite representation of the (usually infinite) family of ground
rules (rules without meta-variables) that can be obtained by substituting
actual (ground) terms for all meta-variables.

A (ground) judgment A can be derived if there exists a set of rules where
A is the conclusion of at least one rule, and where every premise in any of
the rules is also the conclusion of some (other) rule. We can arrange this
set of rules into a tree called the derivation tree or proof tree.

Example: We can derive the judgment 1 — 0 — 1 exp as follows:

ZERO
0 exp 1 exp
ONE MINUS

1 exp 0—1exp

ONE

MINUS

1-0—-1exp

Notice that, as we will see shortly, there is another possible derivation for
the same judgment.

1.2 Semantics

So far our language is just a bunch of strings with no meaning. Of course,
intuitively we want to think of the — symbol as denoting some sort of arithmetic
operation, namely subtraction.

We can try to characterize the meaning of a term by defining a binary relation
| in such a way that e || n can be read as “e evaluates to n.” Here e is a term
in our language of expressions and n is an integer (€ Z).

/ i
eln eln
EVONE ——— 5, EVMINUS

11 e—e In—n

EVZERO

00

Notice that in the conclusion of rule EVMINUS the — between n and n’ is the
semantic minus—subtraction of values in Z (meaning that if n and n’ are num-
bers, then so is n — n’), while the — between e and €’ is a syntactic symbol
(meaning that if e and e’ are terms, then e—e’ is a longer term consisting of the
concatenation of e, —, and ¢€’).

The definition of |} mirrors the definition of exp—and it suffers from the
same deficiency, namely that derivations for e |} n are not uniquely determined
by e. This can easily be seen by again considering 1 — 0 — 1:

EVZERO EVONE
040 101
EVONE EVMINUS
101 0—1 -1
EVMINUS
1-0—-102
vSs.
EVONE EVZERO
141 040
EVMINUS EVONE
1-0J1 141
EVMINUS
1-0-140

The problem is that the ambiguity in the choice of derivations leads to an
ambiguity in the answer. In other words, the relation |} that we defined is not
single-valued, i.e., it does not represent a function.

1.3 Abstract syntax

The root of the problem with ambiguity is that there exist multiple derivations
for e exp. Each derivation corresponds to a different parse tree for the string e.
Part of the trouble is that our underlying domain of expressions is a monoid—a
mathematical structure where the operation of combining elements into new
elements is associative. This operation—which here is string concatenation—
does not retain information about the order in which an expression was put
together. If we use parentheses informally to indicate that order, then a(bc) is
the same as (ab)c; string concatenation “forgets” the grouping.

But for our semantics the grouping is essentiall We want (1 —0)—1 be
treated differently than 1—(0 — 1). Ambiguous parse trees are an important
practical problem because programs in actual programming languages are in

fact strings. There exist a variety of methods for disambiguating grammars.
However, in this course we will ignore this problem altogether by not considering
the strings themselves. Instead, we will consider sets of terms, where terms have
a hierarchical structure that captures nesting. Roughly speaking, the terms
representing programs are the parse trees that we would get when parsing the
underlying string representation.

Representing programs as terms is called abstract syntaz.

1.4 Terms
A ground term c(tq,...,t,) consists of a constructor ¢ of some arity n > 0 and
n other ground terms tq,...,t,. The constructors are drawn from some finite

set. The outermost constructor (here: ¢) is called the head constructor of the
overall term. One can visualize ground terms as general trees whose nodes are
labeled by constructors.

The qualifier “ground” is used to distinguish ground terms form general
terms (a.k.a. “term templates”) which may also contain meta-variables (see
below).

Example: Ground terms representing difference expressions: We have two
nullary constructors zero and one as well as one binary constructor minus. The
expression (1 — 0)—1 corresponds to the ground term minus(minus(one, zero), one).
Notice that the other possible grouping, namely 1—(0 — 1) corresponds to a dif-
ferent term, namely minus(one, minus(zero, one)).

At the outset, ground terms are uninterpreted. Any meaning has to be
defined separately on a case-by-case basis.

Notational conventions: To improve readability, we will often deviate from
the strict “constructor first, arguments (in parentheses) next” notational scheme
for terms. Here are some typical examples:

constants: Terms that consist of nullary (O-argument) constructors and an
empty argument list are sometimes called constants. For constants we
will omit the parentheses and simply write ¢ instead of ¢().

infix: We often employ infix notation such as t; + to instead of the arguably
more cumbersome +(t1,%2). An example of this was the notation e | n,
which is perhaps easier to read than |} (e,n) or even evaluates(e,n).

post-fix: In case of unary constructors ¢ (constructors whose arity is 1) we
sometimes use post-fix notation ¢ ¢ instead of ¢(¢). An example for this
was e exp, which stands for exp(e).

mix-fix: For certain constructors that take many arguments it is convenient to
employ a “mix-fix” notation. In essence, the constructor name is split into
pieces which are then spread out and put between individual arguments.
For example, the constructor representing so-called “typing judgments”
for a language such as System F' is usually written as

ATke:T

even though this is just a single constructor (which might be called typing)
with four arguments (A, I', e, and 7) so that the above notation is syn-
tactic sugar for typing(A,T,e,7).! In effect, the constructor typing is
split up into three pieces: “”, “”, and “”.

juxtaposition: In the extreme case the constructor is not written at all. This
technique is often used for terms that represent function application. Here
we write e es to mean app(ey, es).

General terms: Instead of talking about one ground term at a time, we often
want to refer to a whole class of such ground terms that share a common pattern.
A term is either:

e a meta-variable x, or

e has the from c(t1, ..., t,) where cis an n-ary term constructor and t1, ..., t,
are other terms.

Notice that ground terms are a special case of terms. When we want to
emphasize that a term is not necessarily ground, we call it either a general term
or a term template.

1.5 Recursion and Induction on Terms

We can define functions on terms recursively (a.k.a. inductively) via sets of
equations. For example, a simple evaluation function for difference expressions
can be given as:

val(zero) = 0
val(one) = 1
val(minus(e,e’)) = val(e) — val(e)

Similarly, we can define functions for determining “size” and “depth” of a dif-
ference expression:

size(zero) = 1

size(one) = 1
size(minus(e,e’)) = 1+ size(e) + size(e’)

depth(zero) = 0

In some situations we get judgments that have even more arguments. For example,
judgments describing certain program transformations might look like this:

A;ThHe:T~e: 7

depth(one) 0
depth(minus(e,e’)) = 1+ max(depth(e),depth(e’))

Notice that these three functions are defined only for ground terms. Strictly
speaking we have to verify that each set of equations makes sense, i.e., that
it actually defines a function. In the case of val we have to show that if we
can derive equations val(t) = n and val(t) = n/, then it must be the case that
n=n'.

1.6 Meta-Substitutions

Substitution is an important topic that we will re-visit frequently. Usually it
arises in the context of talking about the variables within a particular program-
ming language that we are defining. Here, however, we are concerned with
our meta-language, the language of terms and term templates which we use to
talk about other languages. The substitution of terms for meta-variables is a
meta-substitution. Fortunately, since the language of terms does not have any
mechanisms for binding local (meta-)variables, the notion of meta-substitution
is quite simple.

A (meta-)substitution is a finite mapping from a set of meta-variables to
terms. The set of meta-variables where a substitution o is defined is called the
domain of o and denoted by dom(c). A ground substitution is a substitution
whose image consists entirely of ground terms.

Any (meta-)substitution o (which is defined on meta-variables) can be lifted
to a function ¢ that works on arbitrary term templates by postulating:

6(x) = o(x)
Gle(tr, .y tn)) = c(6(t1),...,0(tn))

That is, when applying & to a term that is not a variable, we leave the construc-
tor unchanged and “push” the substitution into every sub-term. In the case of
variables we simply apply the original o.

To avoid notational clutter we will from now identify ¢ with ¢ and write
o(t), implicitly referring to the above definition of &(t).

1.7 Rules

A rule is a pair (p, ¢), where p is a list of premises and c is a single conclusion.
The conclusion ¢ as well as each premise in p is a general term. We could repre-
sent the list p itself as a term using two constructors: a nullary nil representing
an empty list of premises and a binary cons, joining the first premise in a list
with the rest of that list. With this, we can represent the pair (p, c) as a general
term as well, e.g., by using a binary constructor rule. Thus, the rule

2

2We often add a third element to each rule: its name. But such names have no formal
meaning. We use them to refer to individual rules during our discussion.

b1 DPn

becomes
rule(cons(py, ...cons(p,,nil)...),c)

A rule 7' is an instance of rule r if there exists a substitution o such that
1" = o(r). (The advantage of viewing rules as terms is that instantiation, which
substitutes meta-variables within both premises and conclusions simultaneously,
becomes nothing more than a particular use of meta-substitution as discussed
above.)

1.8 Derivations

Given a set of rules R, a derivation of a term ¢t with respect to R is a finite set
D of instances of rules in R such that there exists a rule » € D such that

P1 coe Pk
o r= t for some premises p1, ..., pk, and

e D\ {r} is a derivation for each of these p;.

This definition easily lets us view derivations as trees whose nodes are rule
instances as follows: the root of the tree is the r from above. It has k sub-trees
where the i-th sub-tree is the derivation for the respective p;.

Derivations as terms: We can represent derivations trees as terms, too! To
see this, let us enhance the above definition of derivations so that it spells out
what the term representation of each derivation tree looks like:

Let R be a set of rules. A finite set D of instances of R is a derivation of ¢
and the term d is the term representation of the corresponding derivation tree
if and only if there exists a rule R in D such that:

e r = rule(cons(py,...cons(pg,nil)...),t) for some premises p1,...,Dk,
and

e d = derivation(cons(dy,...,cons(dg,nil)...),t) for some terms dy, . . ., di,
and

e for each i € {1,...,k} we have that D \ {r} is a derivation of p; where d;
is the corresponding derivation tree.

Example: Consider the set R of rules for difference expressions (as terms):

e1 exp eg exp
—— ZERO — ONE R MINUS
zZero exp one exp minus(eq, e2) exp

The following is a visual representation of the derivation for minus(one, zero) exp.
The labels show the name of the original rule together with the substitution (if
any) that was used to obtain the particular instance:

—— ONE ——— ZERO
one exp zero exp

- [e1 — one, ez — zero]MINUS
minus(one, zero) exp

This corresponds to the following finite set D of instances in R:

one exp zero exp

D = { one exp , zero exp , minus(one, zero) exp

or, as set of terms,

_ [rule(nil, one exp), rule(nil, zero exp),
~ | rule(cons(one exp, cons(zero exp, nil)), minus(one, zero) exp)

Finally, the term d representing the derivation tree is:

d = derivation(cons(derivation(nil, one exp), cons(derivation(nil, zero exp), nil)),
minus(one, zero) exp)

1.9 Ground terms vs. general terms

The language of terms and rules is the “meta-language” which we use to talk
about the object of our study, namely programming languages and their seman-
tics.

All semantic objects correspond to ground terms. In principle, every deriva-
tion we use to prove a particular judgment is a ground derivation. So why is it
then that we need meta-variables and general terms?

The advantage of general terms is that they represent—in a compact fashion—
potentially infinite sets of ground terms. If we were to insist in ground terms
only, we would have to write down infinitely large sets of rules and infinitely
many derivations. Using meta-variables we can characterize these large sets in
finite space by replacing sub-terms by variables.

The key to understanding why this work is the following lemma:

Lemma 1.1

Let R be a set of rules and G be the (usually infinite) set of ground rules obtained
by instantiating rules in R. (That is, for each r’ € G there exits a substitution
o and a rule r € R such that ' = o(r).) Ift is a term derivable in R, then
every ground instance t' of t is derivable in G.

The proof for this lemma rests on two facts:
1. A derivation is a set of instances of the respective rules, and
2. the “is an instance of” relation is transitive.

The details of the proof are left as an exercise.

1.10 Derivable and admissible rules

Let R be a set of rules. An additional rule r of the form

b1 DPn
Cc

where the pi are the premises and ¢ is the conclusion is called derivable in R if
there is a derivation for ¢ with respect to RU {p1,...,p,}. (Notice that the py
as well as ¢ may contain meta-variables.)

Sometimes we can prove that every ground instance of a rule r is derivable
in R while r itself is not derivable. (That is, can be proved as a “lemma”
where the proof usually involves case analysis on the instances of r.) In this
case we call r admissible in R, meaning that the addition of r to R does not let
us derive any additional ground terms, so adding it to R does not change the
set of rules substantially.

A rule r that is derivable in R stays derivable in any extension R’ of R
(R’ D R). However, if r is only admissible, then it usually ceases to be admissible
in some extensions of R, i.e., adding certain other rules or axioms to R can
invalidate r.

For an example of a derivable and an admissible rule, consider the following
set of rules R:

n nat

zero nat succ(n) nat

With this, the rule
n nat

succ(succ(n)) nat

is derivable, while
succ(n) nat

n nat

is merely admissible. (The proof for this is left as an exercise.)

1.11 Well-founded relations and induction

The mathematical induction principle can be stated as follows:

Proposition 1.2 (mathematical induction)
Let P be a predicate defined over the natural numbers (€ N). If

e P(0), and also
e for any natural n, P(n) implies P(n + 1),
then P(k) holds for all k € N.

This principle is justified by the following indirect reasoning:

Let E = {x € N | =P(x)} be the set of “counterexamples” to the above
principle. To say that the principle is false is to say that E is non-empty. In
that case let eg = min(E). This ey cannot be 0, since we know that P(0) holds.
Thus, there must exist an e; such that eg = e; + 1. If we assume P(e;), then
we have a contradiction, since the second condition above would dictate that
P(ep) also be true. But if =P(e1), then ep was not minimal in E, which is also
a contradiction. H

Well-founded sets: Notice that for the above “proof” of the mathemat-
ical induction principle we made use of the successor relation between natural
numbers. The key insight was that any set of “counterexamples” would have to
contain a minimal element with respect to the successor relation. We actually
picked the minimal element under the natural ordering, but it would have been
sufficient to pick some e such that e — 1 is not in E. Thus, we made use of the
fact that every non-empty set X C N contains at least one element xg such that
/HyGXxozy—l-l

We can generalize this setup by abstracting from the set and its relation and
simply insist that whatever set-relation pair (S, R) we use, it be well-founded:

Let (S, R) be a pair of a set together with a binary relation over S. Given
X C S5, an R-minimal element m of X is defined to have the following property:
Vo € X.~zRm.

Definition 1.3 (well-founded set a.k.a. well-founded relation)
The pair (S, R) where S is a set and R C S x S is a binary relation over S is
well-founded, if

VX CS.X #0=3x9 € X. Ay € X.yRxo.

In English: Every non-empty subset of S has at least one R-minimal element.
Well-founded induction: Every well-founded set has an induction princi-
ple:

Proposition 1.4 (well-founded induction)
Let (S, R) be a well-founded set and let P be a predicate defined over S. If the
following condition is true, then P(x) holds for all z € S:

Vo € S.(Vy € S.yRx = P(y)) = P(x)

In English: If the fact that P holds for every element that is “smaller” than x
(in the sense of R) implies that P also holds for z, then P is true for all elements
of S.

Alternative definition of well-founded sets: In the literature we often
find the following alternative definition of well-founded sets. Assuming the
axiom of choice it is equivalent to the one given above:

Definition 1.5 (well-founded sets (alt. def.))
The set-relation pair (S, R) is well-founded if S does not contain infinitely de-
scending R-chains.

10

Here, an infinitely descending chain is an infinite sequence x1, T, . . . of elements
in S such that Vi.z; 1 Rx;.
Examples for well-founded sets:

e The pair (N,suc) where suc(x,y) iff z +1 = y is well-founded. The
resulting induction principle is that of mathematical induction.

e The pair (N, <) (natural numbers under their natural ordering) is well-
founded. The resulting induction principle is known as complete induction.

e Let (S1,R1) and (S2, Rs2) be two well-founded sets. Then the pair (S; X
Sa, R) where (z1, 22)R(y1, y2) iff 1 R1y;1 and xo Roys is well-founded. The
same is true for a variety of other possible ways of defining R in terms of
R; and R,. Examples include using just R; (or Rz) on the left (or right)
projection, and—if R is a strict total order on S;—the lezicographic order:
(z1,22)R(y1, y2) iff either z1 Ryy; or not x1Ryy; and also not y; Rz and
also zo Rays.

e Let S be a set and M be a function from S to N. If we define R as
{(z,y) | M(z) < M(y)}, then (S, R) is well-founded. The function M is
often called a metric.

e More generally, suppose we have a well-founded set (Sp, Rg). Let S be
a set and M be a function from S to Sy and let us define R as {(z,y) |
(M(x), M(y)) € Ro}. Then (S, R) is also well-founded.

2 Lexical scope and Binding structure

We now consider a small language with natural numbers, addition, multiplica-
tion, variables, and local bindings.

First, we need a way of denoting wvariables. Variables are atomic names,
drawn from some countable infinite set. We do not care what that set actually
is—as long as we can compare its elements for equality. For example, we can
make the set of variables isomorphic to that of the natural numbers:

n nat n nat

zero nat succ(n) nat id(n) var

Here id(n) is a var whenever n is a nat. Many other schemes for encoding
variables are possible, and this is the last time we will show a concrete one. In
the future we will simply say something like “x is drawn from some countably
infinite set of variables.” (In fact, often we will not say much at all.)

A simple language of expressions that contains constants (which in this case
are natural numbers), variables (as explained above), additions and multiplica-
tions as well as a local binding form [et is the following:

11

n nat T var e; exp es exp e; exp e exp

n exp T exp e1 + e2 exp e] * ea €Xp

T var €1 exp €2 exXp

let x = e in eg

Usually we will abbreviate such a definition using a mix of informal mathemat-
ical set notation and BNF":

n € N
€ variables

e := n|z|etelexe|letz=cine

2.1 Static semantics

Not all expressions that conform to the grammar are actually “good” expres-
sions. We want to reject expressions that have “dangling” references to variables
which are not in scope.

The judgment I' F e ok expresses that e is an acceptable expression if it
appears in a context described by I'. In this simple case, I" keeps track of which
variables are currently in scope, so we treat it as a set of variables.

An expression is acceptable as a program if it is an expression that makes
no demands on its context, i.e., @ - e ok.

The rules for deriving judgments of the form I" e ok follow the grammar
of the language closely:

rzel I'+e; ok ' ey ok
—————- NUM-OK ——— VAR-OK ADD-OK
I'n ok 'z ok I'Fep +ey 0k
I'te; ok ' ey 0k I'+e; ok FTu{z}k es ok
MUL-OK LET-OK
I'keqxeq 0k I'klet x =eq in eg ok

Notice that we are making some additional notational simplifications here:

e We omit the premise n nat from the first rule and rely on typographic
convention, namely the use of the meta-variable n, which—in accordance
with the earlier definition n € N—is implicitly understood to be drawn
from the naturals. This technique is widely used, especially if the grammar
is not given in form of derivation rules but employs the more common
BNF-style.

e The second rule has a precondition which is not a judgment but rather
a statement of set theory. While we could encode sets and operations

12

on sets as terms, we usually do not go to that much trouble.? In the
textbook, such non-judgment premises are notationally distinguished by
putting them into parentheses.

e In the last rule we use an operation from set theory (union) as part of a
judgment.

2.2 Values

When discussing the dynamic semantics of a language, i.e., the way its programs
“execute” at run-time, we need to have a grasp on the “result” or “outcome” of
a computation. For this purpose we define a subset of terms that we call values.
As we will see, the “execution” of an expression is a process that (if everything
goes well) terminates once it produces such a value.

In the case of our very simple language, values are simply natural numbers:

2.3 Substitution

To specify the role of variables in our semantics we rely on the notion of sub-
stitution. Informally, to evaluate a let-expression let x = e; in es we first
evaluate e to its values v; and then substitute vy for the variable z in es before
proceeding with the evaluation of the result of this substitution.

Since our language supports nested lexical scopes, the definition of substitu-
tion is slightly more complicated than that of meta-substitutions. To see this,
consider substituting the value 3 for = in let *+ = z 4+ = in z * z. Of the 5
occurrences of variable z, only 2 have to be replaced with 3. The third oc-
currence is a binding occurrence, which happens to bind the same variable x.
Uses of = within this nested scope are independent of uses that occur outside.
Thus, the result of the substitution must be let x = 3 + 3 in x % x instead of
let £ =343 in 3% 3 (or even let 3 =3 + 3 in 3 * 3—which would not even be
syntactically well-formed anymore).

For the time being we will only consider the substitution of values for vari-
ables in expressions. Since values are closed terms, this simplifies the definition
of substitution because we do not have to worry about capture avoidance, a
topic that we will re-visit later.

We write {v/x}e to denote the substitution of value v for variable x in
expression e. Here is the definition, by induction on the structure of e:

{v/z}n = n
{v/z}x = v
{v/aty =y s Fy

3For mechanization it is often necessary to do so after all.

13

({v/z}er) + ({v/a}e)
({v/ater) * ({v/x}es)
let z = {v/z}e; in eg
= let y ={v/z}es in {v/z}es ;T FEY

{v/z}(e1 +e2
{v/x}(e1 * eq

{v/z}(let = e; in ey

)
)
)
{v/z}(let y = e; in e3)

Notice how the last two lines guarantee that substitution for z does not proceed
into the scope of a new, nested binding of the same variable .

2.4 Structural operational semantics

n=mn;+ns n=mning
71 ADD 71 MUL N 1 LET
ny+ng—n ny+ng—n let x =viner—" {v/x}e
ep e} e1 e
1 7 PLUS-L 1 7 TIMES-L
er tex =" e+ e €1k eg > €7 % ey
ey el ey el
1 7 PLUS-R 1 7 TIMES-R
V1 + e = U1 + ey V1 *k € 7 U1 * €y
e; e

LET-L
let 2 =¢; in ey - let 2= ¢ in ey
Progress and preservation: The operational semantics does not tell us how
to evaluate every possible expression. For example, the expression = + 3 is
“stuck,” as no rule applies to it. The problem here is with the free reference
to variable x. Intuitively, expressions with free variables are not “complete”
and make no sense on their own. To evaluate an expression, we want it to be
well-formed—which in our case means we want it to be closed. This is precisely
the property expressed by our ok judgments, i.e., our very primitive notion of
a static semantics.
The following two lemmas connect static and dynamic semantics and to-
gether establish the property called safety:

Lemma 2.1 (preservation)
If)+ e ok and e —"' ¢/, then O - ¢’ ok.

Lemma 2.2 (progress)

If) e ok and e is not a value, then there exists an e’ such that e —1!

e.
Proof of preservation: The proof proceeds by induction on the structure of
e—or, equivalently, on the structure of the derivation for () - e ok. We perform
a big case analysis, considering each of the evaluation rules that could have
been used last when deriving e +—! ¢’. The reasoning for most of these rules
falls within two patterns:

14

1. If the rule in question describes a computation step, the result follows
immediately. Example: If rule ADD was used, then the result has the
form n so that rule NUM-OK applies, which yields the desired conclusion,
namely 0 - n ok.

2. If the rule in question is a structural rule, the result follows by a simple
application of the induction hypothesis (IH). Example: If rule PLUS-L was
used, then e must have the form e; + e; and we have e; —! el. By
inversion of ADD-OK we have () ~ e; ok, so the IH applies, giving us
() ¢} ok. Using rule ADD-OK in forward direction yields the desired
conclusion, namely that 0 - ¢} + e3 ok.

The only tricky rule is LET. Here we need to argue somehow that given some n
and some e with {z} F e ok we have) - {n/z}e ok. We separate this statement
out as a so-called substitution lemma, which we discuss below. W

The substitution lemma: Roughly speaking, the substitution lemma states
that substituting a value into a well-formed term keeps it well-formed. Con-
cretely, we need that if e has only one free variable x, then substituting some
value n for x in e yields a well-formed, closed expression.

The proof for this lemma is by induction on the structure of e. However, a
naive attempt at this proof fails for the case of let y = e; in ey, because the
induction hypothesis does not hold for e; due to the fact that es is allowed to
make free references to y in addition to x, so it is not necessarily the case that
{z} F e2 ok as we only know that {x,y} F e2 ok. To make the proof work,
we need to strengthen the induction hypothesis, which effectively means we are
proving a stronger lemma:

Lemma 2.3 (substitution)
Let n be a natural. Further, let x ¢ I and TU{z} I e ok. ThenT' {n/z}e ok.

The proof of this stronger version of the substitution lemma is left as an
exercise. W
Proof of progress: The proof of progress also proceeds by induction on the
derivation of) I e ok. It performs a case analysis on e’s head constructor and
argues that in each case (except when e = n, at which point we have a value)
it can take at least one step. The details are left as an exercise. W
Safety: Preservation states that a well-formed, closed expression stays well-
formed and closed when it takes a step. Progress states that a well-formed,
closed expression that is not already a value can take (at least) one step. To-
gether the two imply that starting from a well-formed, closed expression, one
will either reach a value after a finite number of steps or otherwise be able to
take infinitely many steps without ever “getting stuck.” This property of a
language is often called safety.

To formalize the concept of taking finitely many steps we take the transitive
closure of —!. The result is a transition system, which describes the process
of taking a well-formed closed term e (i.e., § - e ok) through a sequence of

15

individual steps. The transitive closure is the smallest relation that is both
reflexive and closed under head expansion:

/ / 1"
ersle e —*e

REFL CUHE
e " o o * o

The restriction of —* to result terms that are values represents the small
step semantics of our language.

2.5 Evaluation semantics

An alternative form of semantics dispenses with individual “single” steps and
describes the entire evaluation process as one “big” step. We write e |} v to say
that e evaluates to v.

The rules for deriving judgments of this form are the following;:

er I mp ez no n =mni+ng
n{n e1t+edn
er I nq ez} no n=mninz e1 v {Ul/il?}ezilvz
erxex n let t =¢1 in ey | vg

As you can see, the evaluation semantics appears to be significantly more
compact than the small-step semantics. In particular, it does not need any of
the structural rules that in the small-step case are used to direct the focus of
the evaluation to the current redex. (A redex is a reducible expression, i.e.,
an expression to which a computation rule applies. If a program that is not
already a value contains multiple redexes, then one of them is the one that will
be reduced next. That redex is called the current redex, and the structural rules
of a small-step semantics specify how to find it.)

A big-step semantics is less explicit about how given an e a mechanical
process would actually find the corresponding v such that e | v. In particular,
the rules we gave do not say in which order the subterms of 4+ and * should be
evaluated.

For the given language, it turns out that this order does not matter. One
way of proving this is to establish that || and —* represent the same relation
between well-formed expressions and values.

Lemma 2.4 (Big- and small-step semantics are equivalent)
If) + e ok then e || v if and only if e —* v.

In general, whenever we use several different ways of giving a semantics to
what is intended to be the same language, it is our obligation to prove that
these semantics coincide.

16

2.6 Why so many styles?

Why are there so many styles of defining a semantics? The answer is that
certain properties of languages are easier to prove using one style than another.
Other semantics are easier to be turned into working implementations. (There
are also reasons of history and tradition, but those are secondary.)

Safety proofs—using small-step semantics

Proving (type-)safety via progress and preservation has become more or less
standard. But the very statement of both progress and preservation refers to a
small-step semantics. Why is that? Consider this attempt at a safety lemma:

If) F e ok, then Jv.c || v.

Why do we not state and prove this instead?

The reason that we do not do this is that for many practical languages, in
particular all languages that are Turing-complete, the statement is not true! If
programs do not necessarily terminate, they can be safe without actually pro-
ducing a result. Safety does not express that a program always completes is
execution; it merely states that execution will never get stuck unless the execu-
tion is completed and has produced a value. Progress- and preservation lemmas
do not have this problem, since they do not talk about complete executions but
only about one single step along the way.

Of course, it is not completely impossible to deal with this problem in a
big-step setting. The standard approach is to explicitly augment the big-step
semantics with an “error result,” often called wrong. Here are the rules:

er § nq ez | ny n =mn1 + ng
nin x |} wrong e1t+edn
ey | wrong es | wrong e m e) na n=ning
e1 + eg | wrong e1 + ez | wrong e1xex I n
e1 || wrong es || wrong e1 4 v {v1/z}es | vo
e1 * eg |} wrong e1 * eg |} wrong let z =e1 in ey | vy
e1 | wrong

let x = €1 in e || wrong

You notice that the semantics is suddenly littered with additional error rules
that essentially do nothing but only serve to deal with what would normally
amount to “stuck” executions. We now have to prove that the so defined relation
|} is complete, i.e., that for all expressions e (well-formed or otherwise) we have
that either there is a v such that e || v or e || wrong. We can then state and
prove the safety result, namely: if § - e ok, then —(e |} wrong).

17

In any case, the chief advantage of the big-step semantics, namely its con-
ciseness, has gone out the window.

3 The Simply-Typed A-Calculus

We will now gradually move on to more interesting languages that have more
than one kind of data. First, we might add boolean values true and false,
together with an if form for distinguishing between them. This leaves us with
two kinds of data and the situation where a program can become stuck not only
because of free variables but also because of operations being applied to data of
the wrong type. For now we just have two types (call them nat and bool), but
the situation gets worse once we also consider arbitrary function values, which
give rise to an infinite universe of types.

3.1 Abstracting over free variables—the \-notation

Our semantics does not directly assign a “meaning” to any expression with free
variables. However, by way of substitution, if e has a free variable z, we can see
it as mapping any value v to {v/z}e.

In the A-calculus (of any flavor), the corresponding “function” has a manifest
representation as a syntactic value called an abstraction. In the untyped M-
calculus, this value is written Az.e. For example Az.x + 1 is a function of one
argument. Informally, it maps this argument to its successor. The entire -
term is closed, the A-symbol binds variable x within the body e, much like
let = e in ¢’ binds z within ¢’.

If there is more than one free variable, we can iterate the process of forming
abstractions: Az.Ay.z 4+ y is a function taking one argument and producing
another function, which itself takes a second argument and finally produces the
sum of both arguments. Contrast this with Az.z 4+ y, which still has a free
variable y.

3.2 Abstract syntax

types: 7 ::= mnat | nat. numbers
bool | booleans
T—T functions

values: v ::= n| numbers (intro. nat)
false | true | booleans (intro. bool)
Az T.e A-abstraction (intro. 71 — 72)

expressions: e ::= x| variables

v | values
pred(e) | succ(e) | iszero(e) | arithmetic (elim. nat)
if e then ¢ else ¢ | conditional (elim. bool)
ee appliation (elim. 7 — 72)

18

3.3 Static semantics: typing rules

Typing judgment:

—————— L[-NAT ———— L-BooL(T) ———————— I-BooL(F)
' F n: nat I' - true : bool I' false : bool
Fx:mbe:m Iz)=r71 I' - e: nat
I ——— VAR E-NAT(P)
T'FXz:me:m — 7 'kFx:7 I+ pred(e) : nat
I'e:nat I'ke:nat
E-NAT(S) - E-NAT(Z)
I' F succ(e) : nat I' F iszero(e) : bool
I'e; : bool I'key: T I'kes:r
E-BOOL
I'if e; then e; else e3 : 7
F'kFeyp:mp—r Fkex:m
I'kFeley: T -
3.4 Small-step semantics
Single step relation: | e 1 ¢’
n=n-1 n=n+1
pred(n) —! n’ succ(n) —' n’ iszero(0) —' true
n#0
iszero(n) —! false if true then e; else ey —' ¢
if false then e; else e; —' ey (\z:T.e) vt {v/z}e
e'e erste et e
pred(e) —! pred(e) succ(e) —' succ(e) iszero(e) —! iszero(e’)
ep e ep e
if ¢; then e, else e3 —' if ¢} then e, else e3 e1 ex =t €] en
eg =t el

V1 €9 I—>1 V1 6/2

3.5 Big-step semantics
Evaluation relation:

19

eln n=n-1 eln n=n+1

vi{wv pred(e) | n’ succ(e) | n’
el 0 eln n#0 e1 | true e 1 vy
iszero(e) || true iszero(e) | false if e; then e; else e3 |} vy
ey || false es3 | v3 e1 y A\v:mee es | vo {va/z}e v
if e; then e; else e3 || v3 e1 ea v

3.6 Making control explicit

The small-step semantics and the big-step semantics each suffer from a cer-
tain “defect” related to the problem of finding the current rederz, i.e., the sub-
expression that where the next computation step will happen. This defect makes
them less suitable as models of how computation in a real computer progresses:

small-step: In the small-step semantics we have a subset of the rules (the
structural or search rules) dealing exclusively with the problem of focusing
on the current redex. The problem is that the search for the current
redex is done over and over again, each time starting at the top, with the
whole program. In reality, programs do not execute in such a convoluted
fashion. Instead, real programs execute as a sequence of computation
steps which are interspersed with certain small administrative steps (e.g.,
saving intermediate results, postponing a sub-computation until another
sub-computation is complete, etc.).

big-step: In the big-step formulation the management of the current redex is
left entirely implicit. In the big-step semantics given above, flow of control
is not specified. Indeed, unlike in the small-step version, there is not even
any indication of whether evaluation proceeds from left to right or from
right to left. The big-step semantics does not distinguish individual states
and does not give immediate rise to a notion of computation by repeated
state transition.

To fix these defects is to model the interplay of computation steps and ad-
ministrative steps explicitly. The result is an abstract machine. In this section
we describe an abstract machine that makes control explicit by representing it
as a stack of frames. Each frame corresponds to a piece of work that has been
postponed until a sub-computation is complete.

Our first machine, which we called the C machine?, consists of states (k,e)
(where k is a stack and e is the current expression) and a transition relation
between states. To express that k is a stack we use the judgment k stack.

4because it represents Control explicitly

20

Similarly, to express that f is a frame we say f frame. The empty stack is e,
a frame f on top of stack k is written f > k:

f frame k stack
f >k stack

e stack

Each frame corresponds to one of the search rules of the small-step semantics
(assuming e exp and v val judgments for expressions and values, respectively):

pred(0J) frame succ(Od) frame iszero(O) frame

€2 €Xp e3 exp €2 eXp vy val

if [then ey else e3 frame [es frame v1 O frame

Alternatively, we might set this up using BNF-style declarations for f and k:

f ::= pred(0) |succ(d) | iszero(Od) | if dthenecelsee|de|v O
kE = eo| fD>k

The machine semantics is now given as a set of single-step transition rules®

(k,e) —c (K',¢') between states:

(k,pred(e)) +—c (pred(0) > k,e)
(pred(0) > k,n) —c (k,n') in' =n—1
(k,succ(e)) +—c (succ(O) > k,e)
(succ(O) > k,n) —c (k,n) in' =n+1
(k,iszero(e)) ¢ (iszero(O) > k,e)
(iszero(O) > k,0) —¢ (k,true)
(iszero(O) > k,n) —c¢ (k,false) ;n#E0
(k,if e; then ey else e3) +—¢ (if O then e; else e3>k, e1)
(if O then e; else e3 > k,true) —¢ (k,e2)
(if O then e; else e3 > k,false) —c (k,e3)
(k,e1 e2) —c (Oex>kyer)
Oesr>k,v) —c¢ (vOD>k e)
(Az:71e) 0> k,v) —c (k{v/z}e)

5None of the rules have any premises that refer to other instances of the transition relation,
so we omit the horizontal bars write down only the conclusions of these rules. In the few cases

where a rule needs a simple side condition, the condition is given “on the side,”

a semicolon “;”.

21

separated by

As described in the textbook, we can organize these transition rules some-
what differently to make it easier to compare to the environment-based machine
(E machine) semantics that we will see shortly. For this, we distinguish between
two kinds of states:

expression states: A state of the form (k, e) represents the situation where the
current expression is e. In other words, the machine is about to inspect
e in order to determine how to go about processing it. Any previously
postponed work is described by the current stack k.

value states: A state of the form (v, k) represents the situation where a pre-
vious computation has yielded a value v and the machine is now going
to inspect the top of the stack k to see what suspended work has to be
resumed. In particular, if k£ is the empty stack, then our machine has
terminated and v is the final result.

The rules for this style of machine are essentially the same rules as above—
only the notation of some of the states has changed. There is one extra rule,
namely the one for state (k,e) where e happens to be a value:

(k,v) —c
(k, pred(e) pred(0) > k, e)
succ(O) > k, e)

iszero(J) > k, €)

)
(k,succ(e)) ¢
(k,iszero(e)) +—c
(k,if e; then e; else e3) ¢ (if O then e; else e3 > k, e1)

(k,e1 ea Oext>k,er)

(

(

(

(

(

) (
(n,pred(0) > k) —c (n',k) in' =n—1
(n,succ(0) > k) (n', k) in' =n+1

(0,iszero(0) > k) ¢ (

(n,iszero(0) > k) —c (

(true, if O then e, else e3 > k) (

(false, if OJ then ey else e3 > k) (

(v,Oea> k) ¢ (

(v,(Az:7e) > k) —c (

3.7 Environments

An alternative version of our big-step semantics does not use substitution di-
rectly. Instead, the substitution that is supposed to happen at the time of
function application is “remembered” in a data-structure called an environment
and applied later, when the value of a variable is actually needed. In effect,
substitutions happen lazily.

22

Since we are not performing substitutions directly, we will encounter open
expressions and open values (expressions and values that have free variables).
Dealing with variables is relatively easy, as we can simply look them up in the
current environment. Primitive values such as numbers n and boolean values
true and false are closed and need no special treatment. But values that result
from the evaluation of open \-expressions must remember the environment that
was in effect at the time the expression was evaluated.

This observation gives rise to the notion of machine values V (a.k.a., internal
values), which the semantics uses to represent the results of evaluations. In
particular, evaluating the (possibly open) A-term L of the form Az : 7.e in the
environment F results in the pair (L, E'). Such a pair is called a closure.

Environments are finite mappings from variables to machine values:

V ::= n|true|false| (\x: 7., E)
E € Varwfny

Evaluation relation: | (E,e) | V

(E,z) |V (E,n){n (E,true) |} true (E, false) | false

(E,e)dn n'= 1

n—
(B, x:1.e) | (Ax:7.e E) (E,pred(e)) || n’

(E;e)ln n'=n+1 (E,e) 40 (E,e)dn n#0
(E,succ(e)) | n’ (E,iszero(e)) | true (E,iszero(e)) | false

(E,e1) | true (E,e2) | Va (E,e1) | false (E,e3) I Vs
(E,if e; then e; else e3) || V5 (E,if e; then e; else e3) | V3

(E’el)ll <)‘x:7—2'6>El> (EaGQ)uVQ (El[x'_)‘/Q]ve)llV
(E,el 82) ‘U’ v

The F machine is an abstract machine that corresponds to the environment-
based semantics in the same way in which the C machine corresponds to the
substitution-based semantics. Of course, the E machine uses machine values
where the C machine uses ordinary values. We use capital letters F' to distin-
guish E machine frames from C machine frames f. Similarly, the E machine’s
stacks are written K. Value states have the form (V, K), and expression states
have the form (K, E,e) where E is the current environment.

When the evaluation of an expression is postponed by placing it on the stack,
the current environment has to be saved along with it. Therefore, the language
of frames is:

23

F pred(0) | succ(D) | iszero(O) | (if O then e else e, E) | (O e, E) |V O
K ::= eo|F>K

With this preparation, the set of transition rules for the E machine now follows
the example of the C machine quite closely:

(K,E,n) +—g

(K, E,true) g

(K, E,false) g

(K,E, x:7.€) g
(K, E,pred(e)) pred(0d) > K, E, e)
(K, E,succ(e)) —g (succ(O)> K, E,e)

(K, E,iszero(e)) iszero(0) > K, E, e)

(n, K)
(
(
(
(
(
(
(K, E,if e; then ey else e3) —pg ((if O then es else e3, E) > K, E, e1)
(
(
(
(
(
(
(
(

true, K)
false, K)
(M : 1.6, E), K)

(K E, e 62) =g O eq, >I>K,E,€1)

n',K) in' =n—1

(n,pred(0d) > K
n',K) in' =n+1
true, K)

false, K) in#£0
K, E, es)

K,E, e3)

V Ob K, E,)

—g (K,E[lz— V]e)

O) > K)
(n,succ(0) > K)
(0,iszero(]) > K)
(n,iszero(0d) > K) g
(true, (if O then ey else e3, E) > K)
(false, (if OJ then e; else e3, E) > K)
(V.(O ez, E) > K)
(Vi{(dz:1.e, E) O> K)
Observe how the machine carefully maintains the invariant that at the time of
any transition of the form (V, K) —g (K’, E, e) it finds the relevant information
for constructing F either within V' (namely in the case of function application)
or within the top frame of K.

Another interesting detail is in the transition from a state of the form
(K, E,v) to a corresponding state (V, K). Unlike in the C machine, where we
simply went from (k,v) to (v, k) we now have to transform the syntactic value
v to a machine value V. For values of base type this mapping is the identity,
but for A-expressions it involves constructing a closure by pairing the expression
with its environment FE.

4 Continuations—Controlling Control

In both the C and the E machines, the notion of “control,” i.e., the aspect
of the semantics that determines what part of the overall work is to be done

24

when, is made explicit in the control stack (k for the C machine, K for the E
machine). However, either machine treats this stack strictly as an ephemeral
data structure: after a frame has been popped off the stack, it is never accessed
again.

It is particularly revealing to compare the treatment of the environment E
with that of the stack K in the E machine. Whereas the environment is placed
into the stack and—more importantly—into machine values, the stack is kept
in only one place and no older version of it survives the moment at which its
topmost frame is removed.

This treatment of the control stack is useful if we are interested in an efficient
implementation on contemporary hardware, since hardware has been optimized
for the case of such an ephemeral stack data structure.®

However, in our abstract machine the stack is actually represented by a list,
i.e., a data structure that is naturally persistent, meaning that new versions can
co-exist with old versions in unrestricted ways. Thus, there is no technical prob-
lem in devising language features with semantics that amount to manipulating
the control stack. In particular, we can add two complementary expression
forms that let us

e capture the current control stack, and

e reinstate a previously captured stack, thereby throwing away the current
control stack.

In the C and E machines, the control stack in a state (k,e) or (K, E,e)
represents the “future of the computation,” i.e., all the pending work that has
to be accomplished after the evaluation of e is complete. We call this future
computation the continuation of e. In other words, the control stack is how the
machine represents the current continuation.

In keeping with the above plan, we add the following two expression forms:

letcc = : 7 cont in e: This form evaluates e in the scope of the variable x of
type 7 cont which will be bound to a value representing the current con-
tinuation. The type of the overall expression is 7.

throw e; to e : 7/: This form evaluates e; to v; and ey to vo. The type of e
must be 7 cont where 7 is the type of e;. Evaluating this form will not re-
turn a value to the current continuation. Instead, the current continuation
is discarded and the continuation represented by ws is reinstated as the
new current continuation and v; is returned to it. Since evaluation does
not return normally, the type of the expression can be arbitrarily chosen.
To keep our typing judgments single-valued, we require this (arbitrary)
type to be specified as 7.

61t is usually implemented as a contiguous region of memory with a dedicated register—the
stack pointer—marking location of the top frame. Frames are added and removed simply by
decrementing or incrementing the value of the stack pointer register. Memory occupied by an
old frame is overwritten once a new frame has been allocated in its place.

25

Formally, we augment our language as follows:

types: T =

values: v ::=

expressions: e 1=

nat |

bool |

T—T|

T cont

n |

false | true |

Ax:T.e

x|

vl

pred(e) | succ(e) | iszero(e) |
if e then e else e |
eel

letcc z : 7 cont in e |
throw etoe: 7

nat. numbers

booleans

functions

continuations

numbers (intro. nat)
booleans (intro. bool)
A-abstraction (intro. 7 — 72)
variables

values

arithmetic (elim. nat)
conditional (elim. bool)
appliation (elim. 7 — 72)
capture current continuation
reinstate captured continuation

Notice that we did not add any new value forms. In fact, we do not have any
syntactic representation of continuations. Such a setup is not compatible with
the approach taken by the C machine or any other substitution-based semantics
because those represent all runtime values as syntactic values. However, it is
easy to modify the E machine by adding another kind of machine value. Doing
so is somewhat more realistic since most languages with continuations indeed
do not have syntax for representing continuation values.

Here are the typing rules for the extra constructs:

I'z:7contke:7 ke :7

'+ (throw e; toeg : 7') : 7/

I'key: 7 cont

I'letcc z: 7 cont ine: 7/

The new definition of machine values V refers to stacks K—resulting in a
setup where V', E, F', and K have to be defined simultaneously:

::= n|true|false | (Az:7.e,E) | K

Var —1" v

::= pred(0) | succ(D) | iszero(O) |

(if O theneelsee, E) | (Oe, E) |V O
(throw O to e, E) | throw V to O

K ::= o|F>K

The rest of the machine consists of all the transitions of the original E
machine, plus those that deal with new expression forms, plus those that deal
with new frames:

(K,E,n) —g (nK)

26

(V, {throw O to es, E) > K
(K',throw V to 0> K

(K, E,true) —pg (true, K)
(K, E,false) +—pg (false, K)
(K,E, x:7.e) —gr ((Ax:7.e E)K)
(K,E,pred(e)) g (pred(0d)>K,FE,e)
(K,E,succ(e)) +—g (succ(O)> K, E,e)
(K, E,iszero(e)) +—pg (iszero(O)> K, E,e€)
(K, E,if e; then e; else e3) g ((if O then e; else e3, E) > K, F, e1)
(K,E,e1 e2) —g ((Oex, E)>K,E,e1)
(K,E,letcc x: 7 cont ine) —g (K, FElxz— Kl e)
(K,E,throw e; to ey : 7) —g ((throw Oto ez, E) > K, E, e1)
(n,pred(0) > K) —g (0, K) in'=n—1
(n,succ(0)>K) g (n,K) in'=n+1
(0,iszero(d) > K) —pg (true, K)
(n,iszero(0) > K) g (false, K) ;n#0
(true, (if O then ez else e3, E) > K) g (K, E, e3)
(false, (if O then e; else e3, E) > K) —pg (K, E, e3)
(V,{Oey, E)> K) g (VOD>K,E, e9)
(V,(Ax:71e, By D> K) w—g (K,E[lz— V]e)
) (
) (

The last rule is the rule of most interest here: it discards its current contin-
uation K and reinstates a continuation K’ that was computed as the value of
the second sub-term of a throw expression. The other interesting rule is that
for letcc: it binds the current continuation to x and proceeds with evaluating
the expression that is in the scope of z.

4.1 Evaluation order: left-to-right vs. right-to-left

As we have explained before, our big-step semantics do not specify whether
composite terms (application of binary operators e; @es and function application
e1 ez) evaluate their constituent sub-expressions (e; and es) from left to right
or from right to left. On the other hand, the small-step semantics is explicit
about this detail.

In STLC” and in MinML (as discussed so far), the difference between left-to-
right and right-to-left evaluation orders is not observable. STLC is completely
pure, and MinML has only a single effect, namely non-termination. Without
effects, order of evaluation is clearly unobservable. With non-termination as the
only effect, it is still unobservable, because a non-terminating sub-computation

“the Simply Typed A-calculus

27

causes overall non-termination regardless of when it occurs. If we add other ef-
fects, e.g., input/output or a mutable store, to the language, then the difference
immediately becomes relevant.

It is easy to change our small-step rules to use right-to-left instead of left-
to-right. All we need to do is change the search rules for primitive operations
and function application:

ey el e1 el
1 PRIM-R 1 7 PRIM-L
e1 Dexy—="e1Dey e1 vy =" e] Dy
e ' eh ep —tel
ﬁ APP-R ﬁ APP-L
€1 €2 > €1 €9 €1 V2 =" €1 U2

4.2 Evaluation order: call-by-value vs. call-by-name

A different choice to make—and one that has far more profound implications
than left-to-right vs. right-to-left—is that between what we call call-by-value
(CBV) and call-by-name (CBN).

So far, all our semantics were CBV, indicated by the fact that in a function
application e; es our rules insisted in fully evaluating the argument es to a value
v before substituting that into the body of the A-term that is the value of e;.
Under the call-by-name evaluation strategy, es is not evaluated and substituted
as-is into the body of the function.

This can lead to needless work being avoided, because some argument’s value
might not actually be needed by the function. In the extreme case where the
argument in question would not have terminated, this can lead to being able to
run a program to a successful conclusion when CBV would not be able to do so.

A simple example of this situation is that of the constant function. Let
Q = (fun f(z :int) : int is f) 0 be a term whose evaluation loops forever.
The following program would not terminate under CBV but returns 0 under
CBN:

(Az : int.0)Q

While this may be obvious here, given that the body of the function does
not even mention its argument, there are other situations that exhibit similar
behavior. Example:

(Az :int. Ay : int.if © =1 then 0 else y) 1 Q

On the flip side, while CBN can save some unnecessary work, it can also lead
to the duplication of necessary work. Let $$$ be some “very expensive” expres-
sion, i.e., an expression whose evaluation consumes a lot of resources (time- or
space-wise). Then the following expression is likely more efficiently evaluated
under CBV than it is under CBN, because CBN would have to evaluate $$$
twice while CBV does it only once:

28

(Az : int.z + z) $$$

CBN can evaluate strictly more expressions than CBV. Moreover, in a pure
setting (except for non-termination) such as MinML, whenever they both suc-
ceed, their respective outcomes are compatible. For results of base type this
means that the results will coincide:

Lemma 4.1
For pure MinML, if) e : int and e |cgv n, then e {cgn n. An analogous
statement holds for other base types such as bool.

The inverse of this lemma is false (as shown above). Moreover, for higher-
order types (i.e., functions) the lemma does not hold in this strong form. A
simple example is the following:

Az :int. Ay :int.x +y) (1+2)

Under CBYV this evaluates to Ay : int.3 + y while under CBN it reduces to
Ay @ int.(1 4 2) +y. These two terms are obviously not the same—although we
certainly think of them as being equivalent in a certain, at this point mostly
intuitive sense. However, a simple modification shows that the results do not
even have to be equivalent (in that same intuitive sense):

Az s int.((Ay @ int.x) Q)

Here both CBV and CBN evaluate the expression to syntactically the same
value (because the expression already is a value), but that value does not behave
the same way when used. Under CBN, whenever we apply it to some n we get
n back. Under CBV, however, any such application will fail to terminate.

Formal semantics: A substitution-based semantics can be modified very
easily to express CBN instead of CBV. The only requirement is that we extend
the notion of substitution to expressions, meaning that we can write {e’/z}e for
the substitution of the closed expression €’ for x into e. For this, the definition
of substitution does not actually change.

In the big-step semantics, the CBN rule for application is:

er d Ax:Te {ea/x}e v

erex b v

APP-CBN

In the small-step semantics, we eliminate the structural rule for the argu-
ment expression ey and modify the computation rule for application accordingly.
Thus, there are now two rules that deal with application:

1/
€1 —" €1

APP-SS-L

S S s
e1 ex =t el en Az : 7€) eg =t {ea/x}e AESeRN

29

These modifications of the small-step semantics carry over fairly directly to
a modified version of the C machine.

While substitution-based semantics for CBN actually look simpler than
those for CBV, the opposite is the case when we go to an environment-based
version. The problem is, of course, the substitution of an expression for a
variable. Previously, all such substitutions where done for values only. Since
environments represent substitutions, we must now be able to bind a variable to
an unevaluated expression. And since these expressions can have free variables
and themselves have to be interpreted relative to some environment, this natu-
rally leads to a need for some form of expression closure. An expression closure
represents a computation that is “suspended in mid-flight,” so to speak.

Thus, the setup is as follows:

machine values: V' ::= n|true| false | values of base type
(A : T.e, E) function closures
computations: C = (e, E) expression closures
environments: F ::= Var—f"C

Big-step evaluation rules now have to incorporate two changes:

1. When performing a function call, the formal parameter gets bound to the
closure of the argument expression.

2. When performing a variable lookup, the result will be an expression clo-
sure. At this point the computation expressed by the closure must be
resumed.

Here are the changed rules:

E(z) = (e, E) (E,e) 4 V
(EB,x) 4 V

(E,e1) |} (\x:79.e,E') (E'[z +— (e2, E)],e) 4 V
(E,61 62) U, V

If we want to accommodate recursive functions as in MinML, the application
rule becomes:

(E,e1) I V1 Vi={(fun f(z:7m):7ise E)
(El[f = V17$ — <62,E>],8) U v
(E,e1 e2) 4V

Notice that we take advantage of a fortuitous “coincidence” here (which, of
course, is not really a coincidence since we set it up that way!), namely that a
function closure can also be seen as an expression closure, meaning that we can

bind V4 to f.

30

4.3 Continuation-Passing Style (CPS)

As we have seen, in a C machine state (k,e) (or an E machine state (K, E,¢))
the stack k (or K) represents the “rest of the computation” after e has been
successfully evaluated. Suppose e has type 7. We can think of this “rest”
(a.k.a., the continuation) as a function from 7 to some abstract type ans of
“final answers.” (For this we add ans to our type language. Type ans is not
inhabited, i.e., there are no introduction or eliminations forms for it in the
language.)

In this section we will see that, in fact, we can rewrite any program in such
a way that not only do we think of the continuation as a function—we actually
implement it that way. This means that all of the functions of the original
program will acquire an additional continuation argument. Since this change
has to be reflected in the types of these functions, we start by defining the
following type translation.

First, we use the following type abbreviations:

Tcont = 7 — ans continuation expecting 7
T comp = 7 cont— ans computation producing T

Now we are ready to define CPS(7) by induction on 7:

CPS(nat) = nat
CPS(bool) = bool
CPS(ry — 2) = CPS(r;) — CPS(72) comp

The idea behind the CPS transformation is that any value v of type 7 turns
into a value ¥ of type CPS(7), and every expression e of type 7 turns into a
value é of type CPS(7) comp. Notice that both values and expressions alike
are turned into values. However, there is a difference:

value: Syntactic values represent themselves, they do not describe a computa-
tion, at least not immediately. (Function values do describe computations,
but these computations are still “frozen” and wait for an application to
“unfreeze” them.) Thus, their CPS representations are values that do not
need a continuation to “run.”

expression: Expressions are evaluated by “running” them. To “run” an ex-
pression, we need to know what is supposed to happen afterwards. There-
fore, the CPS representation of an expression e is a function that awaits—
as its argument—the continuation that receives the value of e.

We can specify the translation by two judgments, one for syntactic values
and one for expressions:

I'Hyv:iT~0:7
I'te:7~ é:7 comp

31

Notice that by the way the rules for these judgments are set up, it turns out
that 7 = CPS(7).

The left-hand sides (to the left of ~+) are identical to the typing judgements
that we have discussed earlier. Let us first give the rules for the Simply Typed
A-calculus (without recursion).

Here are the rules for value translation judgements |I'Fy v : 7 ~> 0 : 7 |:

I', n:nat ~ n: nat I' I, true : bool ~ true : bool

I' -, false : bool ~~ false : bool

Iz:mFe:rg~ €: 7T comp 71 = CPS(my)

'y Ax:me:T — o~ Ax: 71.€ : T4 — To comp

And the rules for expression translation judgments ’ I'kFe:7~» é:7 comp |are:

I'z)=r 7 = CPS(r)
I'tz:7~ Mk:7 cont.k x:7 comp

'bHyv:iT~0:7

I'tv:7~ Ak:7 cont.k ¥:7 comp

' e:nat ~ é: nat comp

I'+ pred(e) : nat ~» Ak : nat cont.é¢ Az : nat.k (pred(z)) : nat comp

I'+ ey : bool ~ é; : bool comp
'Fey:7~ éy: 7 comp 'Fes:7~ é3:7 comp

I' + if e; then ey else ez : 7 ~~
Ak : 7 cont.é; A\x : bool.if x then é; k else é3 k : 7 comp

I'kep:m— 7~ é1: (72 — 7 comp) comp 'k ey :Tp ~ é3: 79 comp

' b ere:7~
Ak : 7 cont.é; A\xy : To — T comp.éy A\xo : To.x1 To k : 7 comp

The rules for succ and iszero are analogous to that for pred.

The CPS language: It is relatively easy to check that the translation
relation is single-valued: in ' e : 7 ~ €’ : 7/, the “inputs” T" and e uniquely
determine the “outputs” 7, €', and 7. Moreover, e’ always lies in a certain
sub-language of the whole language, because translation terms maintain some
syntactic invariants. In particular, in any application form e; ey, the argument
eq is either a value or a variable or a simple computation of the form pred(v),
succ(v), or iszero(v). If we add binary primitive operators as in MinML, we
would also see v1 @ vy as arguments.

32

We can strengthen the invariant by replacing simple computation expressions
with corresponding binding forms. For example, pred(v) becomes let © =
pred(v) in e. In addition, we will also classify variables as syntactic values.
With such a target language it is then possible to arrange for all arguments in
application forms to be syntactic values.

We will now re-formulate the translation judgments and their rules in such a
way that translation terms ¢ and é are drawn from the following target language
(as opposed to also be programs of the source language):

types: T ::= mnat | nat. numbers

bool | booleans
ans | answers
T—T functions

syntactic values: o ::= x| variables
n | numbers (intro. nat)
false | true | booleans (intro. bool)
AT :T.€ A-abstraction (intro. 71 — 72)

simple computations: § ::= pred(d) |succ(d) | iszero(d)
expressions: € ::= 0| values

let x =3 in é | simple computation with binding
if ¥ then ¢ else ¢ | conditional (elim. bool)
e appliation (elim. 71 — 72)

Here are the rules for the new translation judgments. This time, for improved
readability we omit the types of translation terms. Also, we will elide most of
the type annotations on A-bound variables, as these types can be inferred from
context.

We start with the translation values® |T'F, v : 7~ (: 7) ‘:

'y n:nat~n I' b, true : bool ~ true
D(z)=r71
I' k, false : bool ~~ false 'tyz:7~2
Iz:mFe:ry~ é: 7T comp 71 = CPS(m)

'y dx:me:m — 1o~ Ar:7.€

The rules for expressions judgments |I'Fe: 7~ é (: 7 comp) ‘ are then:

8We also include the translation of variables here, since this avoids those two nearly
identical-looking rules for variables and values in the expression translation.

33

I'kFyv:iT~0 I'ke:nat~é
ThHv:T~ Ak D 'k pred(e) : nat ~ A\k.é A\x. let y = pred(z) in k y

I'e; : bool ~ é; Ikeg:7~éy I'kes:7m~é3

I' + if e; then e; else e3 : 7~
Ak.e1 Ax.if x then é; k else é3 k

I'kel:mm—7~6 T'keg:m~éo

'+ €1 €2 1 T ~)\kél)\$1.é2)\3?2.3?1 To k

The rules for succ and iszero are analogous to that for pred.

Recursive functions: Adding recursion in the style of MinML is easy: we
simply replace Ad-terms Az : 7.e with their recursive cousins fun f(z : 7) : mise
in both the source and the target language.”

The translation rule for functions is then:

I,f:mm—>m,z:mibe:my~é 71 = CPS(m) 75 = CPS(72)
Pk fun f(z:m):mise: 1 — 170~
fun f(xz:71): 72 comp is é

Evaluation order: Recall that the difference between left-to-right CBV,
right-to-left CBV, and CBN are explained by looking at when the argument e
in an application e; e gets evaluated. In left-to-right CBV it is evaluated just
after eq, in right-to-left CBV it is evaluated just before ey, and in CBN it is not
evaluated at all until the body of the function demands its value.

But notice that this difference completely vanishes in our CPS sub-language!
After all, es is already required to be a value, so the timing of its evaluation
does not matter. We say that CPS is evaluation-order-independent. Programs
written in CPS have made the original evaluation order explicit.

So, when converting from direct style to continuation passing style, what
happened to the difference between evaluation orders? The answer is that the
process of converting the program from one style to the other chooses which
order is being used. The rules for CPS conversion that we have seen implement
left-to-right CBV. A right-to-left CBV version can be constructed quite trivially
by letting és run before é; in the conclusion of the rule for application.

CBN version of CPS conversion: To implement CBN via CPS conver-
sion, we have to change the type translation as well. The reason for this is that
under CBN the argument of a function is not yet evaluated, so it represents a
computation and not a value. Thus, we have:

CPSn(nat) = nat

9We will still write Ax : T.e as a shorthand for fun f(z : 7) : 7/ is e where f does not occur
free in e where 7/ is chosen appropriately for the expression to type-check as 7 — 7/.

34

CPSn(bool) = bool
CPSx(r1 — 72) = CPSn(71) comp — CPSy(72) comp

The next change concerns the treatment of variables. Unlike in CBV where
variables denote values, in CBN they denote computations. Thus, they are not
translated using a F, judgment. Instead, we use the following rule:

INz)=r
'kz:7~ 2z:CPSx(r) comp

Given this we now have to make sure that in the rule for converting function
applications és does not “run” but simply gets passed directly as an argument:

I'bel:mm—7~6 I'keg:m~éo

'k €1 €2 1T ~)\kél)\.’171.%1 ég k

Finally, there is a problem concerning recursive functions. Recall the small-
step evaluation rule for recursive function application, which states:

vp=fun f(z:7): 1z ise
vy Vg ! {v1/fHva/zte

In the CBN setting, v denotes a computation, but v; does not! Therefore,
in order to maintain the invariant that all variables are bound to computations,
we have to manipulate the binding of f within the body of the function a bit.
The trick is to rebind f to Ak.k f, which can be done as follows:

If:mm—m,z:11Fe:m~ é: 7 comp
7A'1 = CPSN(Tl) 7A'2 = CPSN(TQ)
'y fun f(z:m):mis.e:m — 1o~
fun f'(z : 71 comp) : > comp.(\f.¢) (M\k.k f)

Here, in the translation, f’ has type 71 comp — 75 comp, while the type
of f is the required (77 comp — 7» comp) comp (which is the same as
CPSx(m1 — 72) comp). The continuation variable k has type (71 comp —
72 comp) cont.

5 Mutable Store

So far our language did not have state—it was pure (up to non-termination).
State can be added in form of a global mutable store, a.k.a. “memory” M, which
is a finite mapping from locations ! to closed values. New (“fresh”) locations

35

are generated by extending the current store so that it maps some location that
previously had not been mapped.

One of the simplest way of modelling this kind of language is to use a
substitution-based semantics and add locations to the syntax of values.

v o= |l

However, the idea is that “source” programs do not actually contain any
locations. Locations get generated during evaluation. They become part of
the current expression by some sub-expression (in particular, a sub-expression
that performs memory allocation) getting evaluated to a new location. Like
other values, locations can then make their way into other parts of the current
expression via subsequent substitutions etc..

On the expression side, there are three additions. First, ref e allocates a
fresh location ! and initializes M (I) to the value of e. Second, !e evaluates e to
a location [and returns M (I). And third, e; := e2 evaluates e; to a location [,
€2 to a value v, and then sets M(I) to be equal to v:

types: T ::= nat| nat. numbers
bool | booleans
T—T| functions
T ref reference

values: v ::= n| numbers (intro. nat)
false | true | booleans (intro. bool)
Az T.e | A-abstraction (intro. 71 — 72)
l locations

expressions: e 1= x| variables

v | values
pred(e) | succ(e) | iszero(e) | arithmetic (elim. nat)
if e then e else ¢ | conditional (elim. bool)
ee \ appliation (elim. 71 — 72)
ref e | reference alloc+init
le | dereference
e =e assignment to reference

5.1 Typing

Since we added locations to the syntax of the language, our static semantics
now needs an additional typing environment, i.e., a mapping A from locations
to types. However, recall that we said that “source” expressions do not contain
locations, so A can be taken to be empty for those. However, for the proof of
safety, we need A because the statements of the progress and preservation lem-
mas consider arbitrary intermediate states and not only “source” expressions.

The new typing judgment has the form A;T" F e : 7. Most rules leave A
completely alone. The only rule to mention it in a non-trivial way is the one for
locations:

36

Al =71
ANTHIL:T

Since we added three new expression forms, we need three additional rules:

ANTFRe:T AT FRe:7ref AT Fey:7ref ANTFERey: 7
AT Fref e:7ref AT Hle:r AThe i=ey: 7

The third rule (arbitrarily) assumes that e; := e returns the value of ey.!°
A simple fact that comes in handy during the proof of safety (see below)
and which is trivial to prove by induction is expressed by the following lemma:

Lemma 5.1
IfFA;TFe:Tand N DA, then N;T'Fe:T.

That is, adding more bindings to an existing store typing does not invalidate
any typing judgments.

5.2 Dynamic semantics

A substitution-based small-step semantics for the augmented language consists

of rules for deriving judgments of the form (M, e) —* (M’ e’), which should be

read: “Expression e in memory M steps to ¢’ and the memory changes to M'.”
First, here are all the original rules, augmented with memory M. Also shown

are the structural (“search”) rules for ref, !, and :=. All of these rules simply

carry M through without looking at its contents and without changing it.
First, the computation rules:

n=n-1 n=n+1
(M, pred(n)) —' (M,n") (M, succ(n)) —* (M,n’)
n#0
(M, iszero(0)) —"' (M, true) (M, iszero(n)) —"' (M, false)

(M, if true then e; else e) —' (M, e;)

(M, if false then e; else e;) —' (M, es)

(M, (Az : 7.e) v) = (M, {v/x}e)

10This is analogous to how the assignment operator = in the C programming language works.
In Standard ML, assignment to references returns the unit value () and has type unit.

37

Here are the original structural rules, augmented with memory:

(M, e) =" (M',¢) (M, e) =" (M',¢)
(M, pred(e)) —' (M’ pred(e’)) (M, succ(e)) —"' (M’ succ(e’))

(M,e) . (M',e')
(M, iszero(e)) —' (M’,iszero(e))

(Mv 61) Hl (M/a ell)
(M, if e; then e, else e3) —' (M',if ¢ then e, else e;3)

(M, e1) =" (M, €) (M, ez) =" (M, €))
(M,e; e3) —"' (M’ €} es) (M, vy ep) =" (M, vy eh)

The structural rules for the new expression forms are:

(M,e) ="' (M',¢) (M, e) ="' (M',¢)
(M, ref e) —' (M’ ref ¢) (M, le) " (M, 1e))
(M7€1) ' (M/vell) (Ma 62) ! (Ml76/2)
(M,e; == e3) = (M', ¢ := e5) (M, vy = eg) =1 (M’ vy = €by)

Finally, these are the rules that actually refer to the contents of M or modify
M itself:

I ¢ dom(M) I € dom(M) v=M()
(M, ref v) —' (M][l — v],1) (M, 1) "' (M, v)

[€ dom(M)
(M,1:=v) =" (M[l — v],v)

From this semantics, it is not difficult to change and extend our C machine to
accommodate the language extension. The main modification is to add memory
M to each machine state, leaving us with expression states of the form (k, M, e)
(meaning “expression e is about the be evaluated in memory M and pending
computations waiting for e’s result are remembered in stack k), and value states
of the form (v, k, M) (meaning “a value v has been computed and is about to
be passed to the pending work remembered in k; the current memory is M).
To work out the (straightforward) details is left as an exercise.

5.3 Safety
Safety for a step-relation such as —! means that from some start state sy we
can iterate —! as in sg —=! 57 —! .- =1 s; =1 ... either indefinitely or until

38

we reach a “desirable” final state s,. So far, our start state was the original
source expression and the final state was its value.
To prove safety, we identify a property P(s) that

1. holds for s¢ (i.e., P(so)),
2. is preserved by ! (i.e., if P(s) and s +—! s’, then P(s’)), and

3. guarantees that the state in question is either one of the desirable final
states or a step can be taken (i.e., if P(s) then either s is final or 3s’.s —!

s').

For our simple arithmetic language with let, the states were expressions
e, the final states were the values (i.e., numbers) n, and the property P was
written e ok. Similarly, in STLC and MinML, the states were expressions, final
states were values, and the property in question was I7.0 e : 7.

Due to the addition of mutable state, the new step relation —" is now
between pairs (M, e) of memory M and expressions e. Notice that intermediate
states (any state except the start state) may contain locations [that lie within
the domain of M. To prove safety, we have to identify the property P that holds
for pairs (M, e) and that is preserved by the step relation.

For this, we first define what it means for a memory M to have type A,
written - M : A. The definition for this relation is the following:

1

Definition 5.2

A memory M conforms to a store typing A (written = M : A) if and only if the
domains of M and A coincide (dom(M) = dom(A)) and A correctly describes
the type of every value stored in M (VI € dom(A).A; 0 = M(1) : A(1)).

Notice that the typing judgment for M (l) is with respect to the entire A. This
means that [can contain a value that—directly or indirectly—mentions [itself,
thus giving rise to the possibility of cyclic structures. Indeed, assignment to
memory locations is capable of creating these.

With this preparation, the property that is preserved by !, which we will
tentatively write - (M, e) ok, is the following:

Definition 5.3
The configuration (M, e) is well-formed, written & (M, e) ok, if both = M : A
and A;Q F e : 7 for some A and T.

With this in place, we can write down the statement of the safety lemma:

Lemma 5.4
If - (M,e) ok, then either e is a value or there exist M' and e’ such that
(M,e) —t (M’',e") and - (M',¢") ok.

However, it turns out that this statement is not strong enough for use in its
own inductive proof. The problem is that while 7 stays the same throughout
the entire evaluation sequence, A changes. And since A changes, we have to be

39

able to relate the A that witnesses the well-formedness of one configuration to
the A for the next. A good start is to be more concrete than just saying “ok.”
Instead, our revised statement of well-formedness mentions the particular A and
T that are its witnesses:

Definition 5.5
The configuration (M, e) is well-formed, written - (M,e) : A, 7, if both M : A
and A;QFe:T.

The strengthened form of the safety lemma is then:

Lemma 5.6
Ift (M,e) : A, 7, then either e is a value or there exist M', €', and A" such that
AN DA and (M,e) —! (M’ e') and = (M’,e') : N, 7.

This formulation (and the proof) of the safety property inherently relies on
the fact that our language has only weak update: an assignment to a location
never changes its type. Therefore, the store typing A is extended only conser-
vatively, by extension.

The proof for this lemma follows the standard pattern for proving progress
and preservation.

6 The polymorphic A-calculus (System F)

6.1 Syntax

types: T := « type variables
T—T| function types
Yo | polymorphic types
b some base type(s)

values: v ::= x| variables
Az T.e | (ordinary) abstractions
Aae | type abstractions
Cr constants (of type 7)

expressions: e ::= 0| values
ee (ordinary) applications
elr] type applications
type variable environments: A C TyVar sets of type variables
(term) variable environments: I' € Var—fin 7 finite mappings from variables to types

(The types 7 of constants ¢, are assumed not to contain any type variables.
This implies that they are well-formed, i.e., - 7 ok in the sense defined below.)

40

6.2 Static semantics

Well-formedness of types

Judgments of the form :

a€e A AF 1 ok A F 1 ok AU{a}F 1ok adg A
A+ «a ok AtF 1 — 1 ok A+ Va.r ok
A b ok

Typing of values
Judgments of the form :

Ix)=r A, 11 ok ATz—7mlFe:n
AT,z 71 ATH, Ax:me: 11 — T

AU{a};Tke:T ad A
AT H, Aae - Va.r ATk e T

Typing of expressions
Judgments of the form :

ATF,v:T ATFey:imo— T A;TFes:m
ATHo: T A;THepeg: T

AT Fe: Vo1 AF 1ok
AT Felr]: {r/a}r

6.3 Small-step semantics

Structural (search) rules

ep e} ey =t el er'e

e1 ex =t el en vy ey =1 vy € elr] —' €[7]

Computation rules

We omit the rules involving constants c;.

Az : Te)v =t {v/x}e (Aa.e)[r] =" {r/a}e

41

6.4 Church-encoding types

Boolean
bool = Va.a—a—«a
true = Aa. Az:a. Ay:a.x
false = Aa. Xz:a. Ay:a.y
if e; then es else e3 = e[7] ez €3 ; where eg 3 : 7
—e = e[bool] false true
e; andalso es = e1][bool] e, false
Sum types
m+7m = Va (n—a)—(n—a —a
inlle) = Aa.Mep:m —>a Moo —a ke
inr(e) = Aa. Mep:7m > Mo T —a. kye
case ¢y of inl(z1) = e | inr(za) = e2 = eo[r] (A\x1 :71. 1) (Axa: T2. €2)
Product types
TIXTy = Vo (r—m—a)—a
(61,62) = Aa.)\kZT1—>’7'2—>Oé.k€1 €9
case e of (z1,22) = ¢ = e[r] (A1 : 1. w21 7o)
#1(e) = e[n] Axy: 7. Axg: T2. 21)
#2(6) = 6[7’2} ()\(El i T1. /\:L‘Q L To. [L‘Q)

Naturals (an inductive type)

nat = Va. (a—a)—a—a«
zero = Aa. ds:a—a Az:a.z
succ = An:nat. Aa. As:a — a. Az:a. s (nla] s 2)
iszero = An:nat. n[bool] (Az : bool.false) true
add(m,n)=m+n = Aa. As:a— a. Az:a. m[a] s (n[a] s z)

mul(m,n) =m-n Aa. ds:a— a. Az a. mla] (n[a] s) 2z

pow(n,m)=n" = Aa. As:a— a. Az:a. mla— a] (n[a]) s z
psucc = AN :bool x nat. (true,if #1(N) then succ(#2(N)) else zero)
pred = Mn:nat. #2(n[bool x nat| psucc (false, zero))
sub(m,n) =m—n = n[nat] pred m (“natural” subtraction)

42

=m>n = iszero(n—m)
=m>n = -(n>m)
(m=n) = m>nandalson>m

Another inductive type: lists

(Shown here are lists of one concrete element type 7. To get a list type con-
structor like in ML, we would have to additionally parameterize everything over
the element type.)

T list

nil
cons
foldr

foldl

append

reverse

Va.(r—a—a) > a—a

Aa. de:T—a—a. In:a.n

Az 7. M7 list. Aa. Ade: T —a— a. na.cx (l[o] en)
Aade:T—a— a. In:a. l is its own right-fold
A7 list. o] ¢n

Aa. de:7T—a—a. In:a.
Al 7 list.
llao—=alAx:7. Afra—a Xy:a. fcxy) MAy:a.y)n
Al s 7 list. Mg : 7 list. foldr|r list] cons I3 [

foldl[r list] cons nil

7 Type inference

Let us go back to the simply typed A-calculus where we no longer require that
bound variables in A-terms be annotated with their types:

types: T i= T —T | function types
b some base type(s)

values: v 1= x| variables
Az.e | abstractions
Cr constants (of type 1)

expressions: e ::= v | values
ee applications
(term) variable environments: T’ € Varwefin 7 finite mappings from variables to types

The typing rules for this language are essentially the same as those for the
STLC with type annotations. The only difference is that the rules no longer
define a single-valued relation:

43

INz)=r1 Fz—m)be:m Pkyov:T
LAM —————————— CON ——————————— VAL

————— VAR
I'kyx:7 'k, Adee:m — 7 I'kyer:m I'Fo:r

I'Fel:m—r1 I'key:m

APP
I'Feley: T

The reason for the emerging ambiguity is the fact that the rule for A-
abstractions (LAM), if read from bottom to top, is making a “guess” as to
what the type 71 of the bound variable shall be. Indeed, a term such as A\z.z
has many possible types.

The typing rules, as stated, still make sense. They constitute what is called
a declarative type system: They do specify the typing relation I' - e : 7, but
they are no-deterministic as they do not produce a unique typing, and they also
do not directly give rise to an algorithm for type checking.

7.1 Principal types

We can modify the above type system by adding type variables to the language
of types. For the time being, type variables represent types whose identity the
typing rules do not care about.

T o= |« (2)

With this minor change, the type system not only can give A\z.x types such
asb—bor (b—b)— (b —b), elc., it now can also assign the type @ — « for
some choice of type variable a.

With this, it turns out that this small language fragment enjoys a property
called principal types. This property states that if I' e : 79 (i.e., if a term e
can be typed at all), then there exists a type 7 such that

1. 'Fe:7,and

2. for any 7, if I' - e : 7 then there exists a type substitution o such that
7 =0(7). (In particular, 79 = 0o (7) for some oy.)

Here, a type substitution o is a finite map from type variables to types.

7.2 Computing the principal type

An algorithm for computing the principal type can be constructed using the
following idea:

Whenever the typing rules have to “guess” a type, we make up a placeholder
for that type by introducing a new, fresh type variable «. Later, when it is
discovered that the type in question actually needs to be some specific 7, we
record on the side that a = 7. Such an equation is called a constraint.

44

We can capture this idea using rules for deriving a constraint typing relation
I'-e: 7|y C. Here C is a set of constraints of the form 7 = 7, and x (which
is used for bookkeeping) is a set of type variables that were introduced when
guessing types.

T(x)=r1 agl, x IMz—alke:7|,C
————————5 VAR-C LAM-C
Thyz:7|g0 Lhy Ave:a— 7 |yuga) C

'byv:it | C
———————— = CON-C = VAL-C
Thyer:7lp0 'Fov:7], C

F|—61:7‘1|X101 F|—621T2|X202
x1MNx2=x1NFTV(r2) =FTV(r) Nx2 =0
Q¢X1,X2,T1,T2,01,CQ,F 0/201U02U{T1=T2—>Oé}

LEeres:aly,umufar ¢

APP-C

These rules are single-valued again (up to the choice of type variables during
“guessing”). In fact, these rules never faill They produce a constraint typing for
an arbitrary I and an arbitrary e—as long as all free variables of e are accounted-
for in I'. However, this does not mean that all expressions suddenly type-check.
What happened is that type errors now become manifest as contradictory sets
of constraints.

Constraint solving

Solving a set C of constraints of the form 7 = 7o either fails or produces a
unifier, i.e., a type substitution ¢ which, when applied to all equations in C
makes, each of the equations in C' manifestly true: for all (11 = 72) € C, o(m1)
is syntactically equal to o (7).

The procedure for calculating the unifier (in fact: the most general unifier—
the one that makes the least commitments) is called wunification and goes back
to Robinson (1971). The following version is from Pierce’s textbook:

unify(C) = if C = then []
else let {7y =»}wWwC" =Cin
ifr =m
then unify(C")
elseif 1 =aAa g FTV(r)
then unify({m2/a}C") o [a — 73]
elseif r—2=anagFTV(n)
then unify({m1/a}C") o [a +— 7]
else if 7| =71 = TI2 AT = To1 — Tag
then unify(C’ U {111 = 721, T12 = T22})
else fail

45

7.3 MlL-style “let”-polymorphism

Now consider adding the familiar let-construct to our language:

e = ...|letz=cine
We would like to be able to type-check the following program:

let f = Az.z in if f true then 1+ f(2) else 0

For this, the two uses of f within the body of the let-form have to be assigned
different types. The perhaps easiest way of doing this is to use the fact that
evaluation of any let x = e; in ey substitutes (the result of) e; into es. Thus,
the trick is to do the same within the typing rule. Using the declarative version
of the rules (without type variables), we get:

Lke:71 'k {ei/z}tes: 7

I'Flet x=e;iney: 7

The heart of this rule is its second premise; the first premise is added just
to guarantee that e; has at least some type, even if x does not occur in es.

One problem with this rule is that it is unsound if we use it in a setting where
ey can have side effects. Recall that substituting e; into es is not what the true
underlying dynamic semantics does (assuming we are in a CBV setting)! An
effect in e; could be duplicated by the substitution, and this duplication might
be safe while the original non-duplicated code is not. As a result, the above
typing rule might be applicable in a situation where the dynamic semantics
would get stuck. This situation is best illustrated by the following fragment of
ML code:

let val r = ref (fn x => x)
in r := (fn x => x+1);

if !r true then "this" else "crashes"
end

While substituting ref (fn x => x) for the occurrences of r is indeed safe
and will type-check (even though it might not be considered a very useful pro-
gram), the original ML program is not sound because it would invoke the suc-
cessor function on type int with a boolean argument.

One solution (and perhaps the simplest one) to this problem is to make sure
that e; is substituted into e only when it is a syntactic value. We can express
this so-called value restriction using two separate typing rules:

Ly o7 ' A{v/z}es: T F'ke :n Flz—m]kFe:m

T'kFlet z=e;iney: 7 T'kFlet x = e in €9

46

7.4 Inferring polymorphic types

Another problem with the above rule for typing let is its potential inefficiency
if used in a type-checking algorithm. After all, substituting e; into es can
duplicate ey, and if this happens repeatedly, the size of the code that the type
checker has to deal with explodes.

The idea for addressing this efficiency problem is to rely on the principal
type of e;: If the various copies of e; that are substituted into ey get different
types, then all these types are still instances of e;’s principal type. Thus, it
is more efficient to first calculate the principal type 71 of ey, record a binding
for x to 71 in the typing environment, and then use that to type-check es. At
use-sites of x in e; the type checker will encounter 71 and can now “simply”
instantiate it as needed.

Working this idea into a set of rules that amount to an algorithm starts
with the constraint-based semantics that we have seen before. However, unlike
before, we now use unify to solve portions of the constraints locally, as part of
the rule for let. Unfortunately, the details get rather messy at this point since
constraint-solving is now interleaved with the process of finding the derivation of
the constraint-typing relation. For a complete account, see the literature (e.g.,
starting with Pierce’s textbook).

7.5 A declarative type system for let-polymorphism

A somewhat simpler way of specifying let-polymorphism without relying on sub-
stitution within the typing rules is to again use a declarative, non-deterministic
set of typing rules. The idea is to “guess” at the time when e; is about to be
type-checked what the free variables in the principal type of e; will be. These
variables are added to a kinding environment A which is carried through the
typing derivation just like it had been done in the type system for System F.
Formally, A restricts the set of type variables that can be used when “guessing”
other types at any given point.

Another change is that the typing environment I' now has to bind variables
to those principal types. Since we have to distinguish between type variables
that are truly free and those that are actually introduced and bound “higher
up” for a let that is in the surrounding context, we explicitly quantify over the
free variables using the familiar V binder. This gives rise to polymorphic types
schemata o:

47

types: T :i= a type variables

T—T]| function types
b some base type(s)
schemata: o ::= 7| trivial schema
Va. o polymorphic type
values: v ::= x| variables
Az.e | abstractions
cr constants (of type 7)
expressions: e ::= 0 | values

ee| applications

let x=cine let-binding
kinding environment: A C TyVar sets of type variables
typing environments: ' € Var —in o finite mappings from variables to types

The type system consists of several sets of rules.

Well-formedness of types: These rules work basically the same
way as they did in case of System F. However, since the only place where

V-binders occur is ', the rules never have to “guess” a type that is poly-
morphic. In this sense polymorphic types are not considered well-formed.

a €A A+ 7 ok A+ 19 ok
TYVAR ——————— BASETY FUNTY

A F ook A bok AF 71 — m ok

Typing of variables: The idea here is that the type of a vari-
able starts out as a polymorphic type schema o, namely the one recorded
in I'. This polymorphic type schema then gets “boiled down” to an ordi-
nary monomorphic type by successive instantiation of the quantified type

variables:
I'z)=0 ‘ ATz Va. o AFTok
ATk z:0 roorteE AT x: {r/a}o e

Typing of values: | A;T'F, v : 7| The most important new part here is the

typing of variables: the rule relies on the variable typing judgment from
above, but at the same time insists that the type of the variable be an or-
dinary type (7) and not some truly polymorphic type schema (Va. o). The
second change concerns the choice of 77 in the rule for A-terms: whatever
is chosen must be well-formed in the current kinding context:

ANS N S AF 71 ok ATz —7m]ke:m
- VAR-P LAM-P
ATk z:7 AT, Axe:m — 7o

AT kyer T o

48

Typing of expressions: The rules for values and applications
are standard. Our focus is on the two rules that concern let-expressions—
one for situations where the value restriction is satisfied and polymorphic
generalization can be applied (LETV-P) and one for other let-forms where
the type of e; cannot be made polymorphic (LET-P):

AT H v ATkFe i — T AT Fes:m
VAL-P APP-P

ATFo:T A;THeyeg: T

Ay, ..o €A Au{al,...,ak};f‘l—vvl:ﬁ
o1 =Vai. ... Ya,. 7y ATz — o1]Fex:m

- LETV-P
A;THlet x =vy ines : 7

ATke :m ATz — 1) ex:m

A;THlet z =€y in ey : 1

LET-P

7.6 Elaboration into System F

The declarative typing rules given in the previous section more than just su-
perficially resemble those for System F. Of course, in the case of System F we
have a deterministic type system because the underlying language is explicit
in where polymorphism is introduced (namely at type abstractions Aa. e) and
where it is eliminated (namely at type applications e[7]). On the other hand,
in the implicitly typed language with let-polymorphism, the typing derivation
determines where polymorphism is to be introduced and where it is to be elim-
inated.

However, the beauty of the correspondence is that we can extend the rules
for type inference and turn them into rules for elaboration. Elaboration trans-
lates implicitly typed expressions of our “source” language into explicitly typed
System F terms. Since System F already comes with a dynamic semantics, this
approach can be used to give a dynamic semantics for the source language by
way of elaboration.'!

An elaboration judgment has the form A;T'F e : 7 ~~ é. The part up to ~
is identical to the original typing judgment. The term é is the translation term.
Its syntax is governed by the rules of the target language, i.e., System F. (There
is an analogous translation judgment for values and also one for variables.)

We start by looking at the translation of variables. Since the typing of
variables involves polymorphic instantiation, the translation must make these
instantiations explicit by producing the corresponding type applications:

111t should be noted that it can be quite non-trivial to prove that the elaboration semantics is
equivalent to the original semantics. Indeed, since the typing rules—and, thus, the elaboration
rules—are non-deterministic in nature, there can be more than one valid elaboration term. To
show that any two elaboration terms of the same source term are (observationally) equivalent
to each other is the problem of coherence.

49

INz)=0 A;Thy 2 Va. o~ é AF 7ok
LOOKUP-E INST-E

AT a0~z AT x: {r/a}to ~ é[T]

Next, we consider the translation of values, which is straightforward:

AT z:T~ € AF 1 ok ATz —7m]Fe:m~é
VAR-E LAM-E
ATk, x:7~¢€ A;TH, dxe:m — T~ Ar 7. €
CON-E

JANS R SR S o

The translation of expressions is also straightforward—of course with the
exception of let. If a let-bound variable is assigned a polymorphic type, the
System F translation must introduce a corresponding type abstraction. No-
tice that the let-form within the translation is merely syntactic sugar for an
application where the operator is a A-term:

A;TH,v:iT~ € ATFe i —> 7~ 6 AT Feg: g~ ég
— VAL-E — APP-P
A;ThRov:T~ 8 A;TFepeg:T~ €61 69

ay, ..., a €A AU{aq,...,a ;T Ey v i~ 6
o1 =Vai. ... Yap. 7 ATz — o1]Feg i~ ég

LETV-P

ATHlet z =vi iney: 19~ let x = Aaq.... Aayg. é1 in é

AT Fer i1~ é1 ATz — 1) eg: 1o~ é

LET-P
A;THlet x =e; iney : 79~ let x = &1 in é

Lemma 7.1

The translation is type-correct in the sense that if A;T" - e : 7, then there
exists some é such that A;T' F e : 7 ~» é. Moreover, in this case we also have
A;T F é: 7 (using the typing rules for System F).

The proof for this lemma proceeds by straightforward induction on the
derivation of A;T" F e : 7. A corollary of this result is the following: If we
take the dynamic semantics of the source language as being defined via elabora-
tion, then the source language is safe—simply because well-typed source terms
translate to well-typed System F terms, and System F itself is already known
to be safe.

Notice that the above lemma together with the associated safety result would
be true even if we did not insist on the value restriction in the rules for let! How
can this be? Did we not say that the value restriction is needed for soundness?
The explanation for this mystery is that inference of a polymorphic type goes
hand-in-hand with the introduction of corresponding A-binders in the transla-
tion. Thus, any computation expressed by e; in let x = e; in ey gets suspended,

50

and every use of x within ey re-plays this computation. Thus, the target term
behaves as if the let-expression had been translated by actually substituting ey
for x in es.

Problems with soundness as shown in the example above stem from the fact
that the typing rules behave as if e; gets suspended until needed by es (at which
time it gets re-evaluated every time es touches x), while the dynamic semantics
that is actually used by an implementation does not behave that way. Now,
as we have seen, our elaboration-based semantics does behave that way, so the
typing rule without the value restriction is sound here. However, such behavior
is not the intended and expected one: we do want e; fully evaluated once and
for all before ey starts executing, and the introduction of polymorphism should
not change that. Thus, we need a way of preventing polymorphic generalization
when e; is not pure. The value restriction does the job.

7.7 Imperative type inference

An elegant method for implementing type inference is to solve constraints im-
mediately as they arise. This, combined with the use of the mutable store of
an imperative programming language leads to a very compact version of the
algorithm. The idea here is to implement type variables as references to type
options, where ref NONE stands for an unconstrained type variable and ref
(SOME t) stands for a type variable that is constrained to be equal to type t.
Concretely, let us use the following ML datatype to represent types:

datatype typ =
INTt
| BOOLt
| FUNt of typ * typ
| VARt of tyvar

withtype tyvar = typ option ref

The following unification procedure unify either enforces that two types be
equal or otherwise fails:

fun unify (INTt, INTt) =
| unify (BOOLt, BOOLt) O
| unify (FUNt (t1, t2), FUNt (t1’, t2’)) =
(unify (t1, t1’); unify (t2, t2’))
| unify (VARt (ref (SOME t1)), t2) = unify (t1, t2)
| unify (t1, VARt (ref (SOME t2))) = unify (t1, t2)
| unify (t1 as VARt (rl as ref NONE),
t2 as VARt (r2 as ref NONE)) =
if r1 = r2 then () else (r1 := SOME t2)
| unify (t1 as VARt (rl as ref NONE), t2) =
if occurs (rl, t2) then raise Fail "circular type"
else rl := SOME t2

O

o1

| unify (t1, t2 as VARt (r2 as ref NONE)) =
if occurs (r2, tl1) then raise Fail "circular type"
else r2 := SOME t1

| unify _ = raise Fail "type mismatch"

Notice the use of the helper function occurs in this code. This function
implements the so-called occur check, which makes sure that we do not create
cyclic structures which would correspond to “infinite” types. Generating cyclic
type structures does not correspond to anything in the type system that we
have seen so far, but even more seriously, it would also lead to potential non-
termination in the type checker itself. For example, if ¢ equals ref (SOME t),
then unify(¢,¢) would loop forever.

The occur check itself is implemented as follows:

fun occurs (r, INTt) = false

| occurs (r, BOOLt) = false
| occurs (r, FUNt (t1, t2)) = occurs (r, tl) orelse occurs (r, t2)
| occurs (r, VARt r’) =

r = r’ orelse

(case !r’ of

NONE => false
| SOME t => occurs (r, t))

With this preparation in place, the type inference algorithm itself follows
almost directly the pattern given by the declarative type system. The idea is to
have functions etyp and vtyp which “implement” the judgments I' - e : 7 and
I' by v : 7, respectively, by taking an argument G (for I'), an argument e or v
(for e or v), and an argument t (for 7). Instead of calculating the type of an
expression or a value, the functions enforce that t be the type of e or v under
the typing environment G. Of course, t can be a fresh type variable (i.e., VARt
(ref NONE)), in which case the above enforcement will effectively calculate the
type in question and store it into the ref-cell in t.

fun newtyp () = VARt (ref NONE)

To illustrate the idea, here are the cases for A-terms and application:

fun vtyp ... = ... (* other cases *)
| vtyp (G, FUN { £, %, body }, t) =
let val t1 = newtyp O (* argument type *)
val t2 = newtyp () (* result type *)

in etyp (bind (t, £, bind (t1, x, G)), body, t2);
(*x G,f:t,x:tl |- body : t2 *)
unify (t, FUNt (t1, t2)) (x t = t1 -> t2 *)
end
and etyp ... = ... (% other cases %)
| etyp (G, APPLY (el, e2), t) =

92

let val t2 = newtyp O

in etyp (G, el, FUNt (t2, t)); (*x G |- el : t2 => t *)
etyp (G, e2, t2) (* G |- e2 : t2 %)

end

Imperative type inference for ML

The approach shown above makes it easy to implement type inference for the
Simply Typed A-calculus. It can, however, also be strengthened to deal with ML-
style polymorphism, which in the case of expressions of the form let © = v; in ey
infers universally quantified types for v; to be used within e,.

For this, ML-style polymorphic type inference must partially solve the con-
straints that involve vy before proceeding to type-check es. The good news is
that the imperative algorithm already solves all constraints eagerly, so no addi-
tional solving needs to be performed by the let-rule. The idea is to simply pick
out the unconstrained type variables in the type of v; and put a V quantifier
on them. Some care is necessary, though: not every type of the form VARt (ref
NONE) is conceptually unconstrained. If such a variable occurs in the typing
environment G (a.k.a., I'), then it must be considered constrained after all.

Since checking for the presence of a type variable in G can be expensive,
the trick is to keep a numeric level with each not-yet-instantiated type variable.
The level indicates the earliest position within G where this variable occurs.
When new type variables are generated, the level is initialized to the current
level (which can be though of as the size of the domain of G but which is usually
carried explicitly through the type checker as an additional argument). But
when a type variable of level [is instantiated to type ¢, the levels of variables
within ¢ must be adjusted to be no later than [. The traversal of ¢ on behalf
of the occur check can do double-duty to implement this adjustment. Any type
variable in the type of v; that has not been instantiated and whose level is
greater or equal that the current level can be universally quantified.

8 Recursive types

With some algorithmic changes to prevent unify from chasing down infinite
(type-)loops, it can make sense to leave out the occur check from the type infer-
ence algorithm. The result, however, is the possibility of cyclic data structures
that supposedly represent certain types. If we allow that, we have to formally
account for these types.

A cyclic type structure can be thought of as a compact representation of an
infinite type. If we have a type t that is equal to FUNt (VARt (ref t), INTt),
then ¢ represents the type

((((... — int) — int) — int) — int
which is a solution to the type equation

o = o — int.

93

However, to handle such types as part of our type system, we need a way
of representing them as finite terms! Thus, we add a new construct, called a
recursive type. Recursive types are written pua.7 where p is a binder (much like
v, 3, or A), where « is a type variable, and where 7 is a type that may or may
not mention a. If the type language did not already have type variables, then
we would have to add those as well. (If we start with System F, we can simply
use the type variables that are already present in the language.) Of course, we
have to account for p by adding a new kinding rule:

A a7 ok adé A
A F pa.t ok

The idea is that the binder for o “marks” the current type, and any use of
« within 7 serves as a back-reference to the marked type.

8.1 Equi-recursive types

There are (at least) two ways of thinking about recursive types. The first is to
postulate that pa.7 is the solution to the type equation aw = 7. That is, within
its scope, a can be replaced with pa.7 without changing the meaning of the
type. And, since « is not longer free in {(ua.7)/a}7, the outer p-binder can be
removed, giving rise to the equation:

pe.T = {(paet)/a}T

Having such an equation means that types can be considered equivalent
even if they are not syntactically identical. We can account for such additional
equivalences by either having an explicit equational theory for types (i.e., rules
for saying when types are equivalent), or we can add typing rules that let us
switch between the left- and right-hand sides of the above equation:

A;TFe: pat AT Fe: {(pat)/a}r
IMPLICIT-UNROLL IMPLICIT-ROLL

AT Ee: {(pat)/a}T AT Fe: pot

Since this approach treats pa.7 and {(pua.7)/a}7 equivalently, it is referred
to as equi-recursive types. Since in either rule, A, ', and e are the same in both
the premise and the conclusion, their addition means that the typing rules are
no longer structural, i.e., they no longer strictly follow the syntactic composition
of the underlying expression.

8.2 Iso-recursive types

The other approach, called iso-recursive types, treats pa.7 as an “abstract”
type with explicit operations roll and unroll'? for converting from and to

123ome authors call these operations fold and unfold.

o4

{(na.7)/a}r. The name comes from the fact that these two operations establish
an isomorphism between the two types.

e ::= ...|rolljua.7] e | unroll e
The typing rules mirror the two rules from the equi-recursive account above,

the difference being the fact that they are still structural rules:

AT Fe: par
A;T Funroll e : {(pa.7)/a}r

EXPLICIT-UNROLL

AT Fe: {(par)/a}T
A;T F rolljpa.le : po.t

EXPLICIT-ROLL

Notice that roll is annotated with the recursive type to make the typing rule
deterministic as otherwise there can be more than one way of picking a 7 and
an « in such a way that the type of e is {(ua.7)/a}r.

The operational semantics of roll and unroll is, simply speaking, that
unroll cancels roll in the following sense: first we add fold[ua.7]v to the lan-
guage of values. Then we add these small-step rules:

e—le e—te

1

roll[pa.7]e —' roll[ua.7]e’ unroll e —' unroll ¢’

unroll (roll[ua.7]v) —! v

An alternative (and ultimately equally expressive) design is to make roll a
“suspending” construct by letting roll[ua.7]e be a value. Then the first struc-
tural rule of the small-step semantics would be eliminated, and unroll would
have the effect of un-suspending a computation previously suspended via roll.

8.3 General recursion from recursive types

As we have seen, pure System F is a fairly powerful language. However, it is
not Turing-complete, as all its programs strictly terminate. The addition of
recursive types pushes the language over the top: it adds the ability to perform
arbitrary recursion and makes the language Turing-complete. This also means
that it is no longer true that all programs terminate.

In the untyped CBV A-calculus, we can use the Y combinator to define
arbitrary recursive functions:

Y=M Oz f Ay zzy) Az f (Ay. zzy))

99

In System F there was no way of assigning a type to this term, because of
the self-application of x. With recursive types, however, it is now possible to
assign a type:

Y =AaAB. Af : (o« = B) — (a— B). (B (roll[uy. (v = a — 3)]B))
where B is the following term:
B=Xx:puy.(y—a—p0). f (Ay:a (unroll z) z y).

It is easy to check that this term is well-typed under the iso-recursive account.
Its type is

Y :vavp. ((a = f) = (a = f)) = (@ = f)
To get the equi-recursive version, it suffices to delete the roll[- - -] and unroll
parts from the expression.
9 Existential types

Augment System F as follows:

T =] Jar
::= ... |pack [r,v] as Ja.T

e ::= ...|pack[r,e| as Ja.7 | unpack [a,z] =eine

9.1 Well-formedness of types

adg A A,a bk 7ok
A F Ja.t ok

9.2 Typing rules

A F Ja.T ok A;Tke:{o/a}r
A;T + pack [o,¢] as Ja.7: Ja.T

AT ke 367 Ak 75 ok ad A Ayo; Tz — {a/B}r]Fea:m

A;T F unpack [a,z] = €1 in eg : 7

96

9.3 Structural operational semantics (small-step)

et e

pack [0, €] as Ja.7 —' pack [o,¢/] as Ja.T

1/
€1 —" ey

1

1

unpack [a,z] = ey in e3 —' unpack [a,z] = €] in ey —

unpack [, 2] = (pack [o,v] as 38.7) in ey ! {o/a}({v/z}es)
9.4 Church-encoding existential types

Br = Ya. VB.T—a) -«
Aa. Mk :VB. 7 — a. klo] e

unpack [, 2] =e; ines = ej[m] (Aa. Az : 7. e2)

pack [o,¢| as 0.7

o7

