
CMSC 22610
Winter 2009

Implementation of
Computer Languages - I

Project 3
February 12, 2009

LangF Type Checker
Due: February 27, 2009

1 Introduction

The third project is to implement a type checker for LangF, which checks whether or not a parse tree is statically
correct and produces a typed abstract syntax tree (AST). The abstract syntax tree includes information about the
binding sites of identifiers and about the types of variables and expressions. The project seed code will provide
hand-written and ML-ULex based scanners (but you may also use your hand-written scanner from Projects 1 and 2),
ML-Antlr and ML-Yacc based parsers (but you may also use your parser specification from Project 2), and modules
for implementing the abstract-syntax-tree representation. The bulk of this document is a formal specification of the
typing rules for LangF.1 The type system for LangF is essentially an enrichment of the System F type system.

2 LangF Syntactic Restrictions

There are a number of syntactic restrictions that should be enforced by the type checker. Although these restrictions
could be specified as part of the typing rules below, it is easier to specify them separately.

• The type variable identifiers in the type parameters of a type declaration must be distinct.

• The type variable identifiers in the type parameters of each DataDecl of a datatype declaration must be
distinct.

• The type constructor identifiers in a datatype declaration must be distinct.

• The data constructor identifiers in a datatype declaration must be distinct. (On the other hand, a datatype
declaration may introduce the same constructor name for both a type constructor and a data constructor. For
example, datatype Unit = Unit.)

• The variable identifiers denoting function variable identifiers in a fun declaration must be distinct.

• The variable identifiers in a pattern must be distinct.

• Integer literals must be in the range −230 . . . 230 − 1 (i.e., representable as a 31-bit 2’s-complement integer).

• Extra credit: The patterns in a case expression must be irredundant and exhaustive. Consider the match
rules Pat1 => Exp1 | · · · | Pat1 => Expn. For the patterns to be irredundant, each Patj must match some
value (of the right type) that is not matched by Pati for any i < j. For the patterns to be exhaustive, every
value (of the right type) must be matched by some Pati.

1Remember, a specification is a description of a property (yes/no question; true/false statement). It does not define (though it may suggest)
an implementation for deciding whether or not the property holds. A significant component of this project is to develop the skills needed to
produce an impementation from a specification.

1

τ ∈ TYPE ::= ∀α→ τr type function, α ∈ TYVAR

| τa → τr function
| θ(k)(τ1, . . . , τk) type constructor, θ ∈ TYCON

| α type variable

Figure 1: LangF semantic types

3 LangF Types

In the LangF typing rules, we distinguish between syntactic types as they appear in the program text (or parse-tree
representation) and semantic types that are inferred for various syntactic forms. To understand why we make this
distinction, consider the following LangF program:

datatype T = A {Integer} | B
val x : T = A {1}
datatype T = C {Integer} | D
val y : T = B
; 0

There is a type error at line 4 in the declaration val y : T = B, because the type of the data constructor expres-
sion B is the type constructor corresponding to the datatype declaration at line 1, but the type constraint T is the
type constructor corresponding to the datatype declaration at line 3. The datatype declaration at line 3 shad-
ows the datatype declaration at line 1. However, in the parse-tree representation, all instances of T correspond
to the same type constructor name (that is, as values of the ParseTree.TyVarName.t type, they all carry the
same Atom.atom in the node field).

The abstract syntax of LangF semantic types is given in Figure 1 (and represented by the
AbsSynTree.Type.t datatype in the project seed code). A semantic type is formed from type variables, type
constructors (including nullary and abstract type constructors like bool(0) and integer(0)), function types, and
type-function types. (Note that a k-arity type constructor records its arity as a superscript.)

Although this syntax mirrors that of the syntactic types, there are some crucial differences. First, there will
be distinct type variables (α) and type constructors (θ) for each binding occurence of a type variable name and
type constructor name in the parse-tree representation. Hence, type checking the datatype declaration at line 1
will introduce one type constructor, say t(0)

1 , and type checking the datatype declaration at line 3 will introduce
a different type constructor, say t(0)

2 , which are not equal. Second, we will consider semantic types equal upto
renaming of type-function type variables. That is, we will consider the semantic types ∀α→ α→ α→ bool(0) and
∀β → β → β → bool(0) to be equal, whereas the parse trees corresponding to [’a] -> ’a -> ’a -> bool
and [’b] -> ’b -> ’b -> bool are not equal, because they use different type variable names.

4 Identifiers and Environments

The typing rules for LangF use a number of different environments to track binding information. There is a separate
environment for each kind of identifier in the parse-tree repesentation:

TVE ∈ TYVARENV = TyVarId ⇀ TYVAR type-variable environment
TCE ∈ TYCONENV = TyConId ⇀ TYCON ∪ (TYVAR∗ × TYPE) type-constructor environment
DCE ∈ DACONENV = DaConId ⇀ TYVAR∗ × TYPE∗ × TYCON data-constructor environment

VE ∈ VARENV = VarId ⇀ TYPE variable environment

where TyVarId is the set of syntactic type-variable identifiers (’a in the LangF concrete syntax, tyvarid in
the LangF grammar, or ParseTree.TyVarName.t in the project seed code), TyConId is the set of syn-

2

E ` Type ⇒ τ type checking a type
E ` Param ⇒ E′; T type checking a parameter

E; τ ` SimplePat ⇒ E′ type checking a simple pattern
E; τ ` Pat ⇒ E′ type checking a pattern

E ` Exp ⇒ τ type checking an expression
E; τ ` MatchRule ⇒ τ ′ type checking a match rule

E ` Decl ⇒ E′ type checking a declaration
E; 〈α1, . . . , αn〉; θ(n) ` DaConDecl ⇒ E′ type checking a data constructor declaration

` Prog ⇒ X type checking a program

Figure 2: LangF judgement forms

tactic type-constructor identifiers (T, tyconid, or ParseTree.TyConName.t), DaConId is the set of syn-
tactic data-constructor identifiers (A, daconid, or ParseTree.DaConName.t), VarId is the set of syntac-
tic variable identifiers (x, varid, or ParseTree.VarName.t), TYPE is the set of semantic types (τ in Fig-
ure 1 or AbsSynTree.Type.t in the project seed code), TYVAR is the set of semantic type variables (α or
AbsSynTree.TyVar.t), and TYCON is the set of semantic type constructors (θ or AbsSynTree.TyCon.t).

We define the extension of an environment E by another environment E′ as follows:

(E⊕ E′)(x) =
{

E′(x) if x ∈ dom(E′)
E(x) if x /∈ dom(E′)

Since each of the environments has a different domain, it is convenient to consider a combined environment:

E ∈ ENV = TYVARENV × TYCONENV × DACONENV × VARENV combined environment

For combined environments E = 〈TVE,TCE,DCE,VE〉 and E′ = 〈TVE′,TCE′,DCE′,VE′〉, we define lookup
by lookup in the environment appropriate to the identifier:

E(x) =


TVE(x) if x ∈ TyVarId
TCE(x) if x ∈ TyConId
DCE(x) if x ∈ DaConId
VE(x) if x ∈ VarId

and define extension by extension of each environment:

E⊕ E′ = 〈TVE⊕ TVE′,TCE⊕ TCE′,DCE⊕DCE′,VE⊕VE′〉

5 LangF Typing Rules

The typing rules for LangF provide a specification for the static correctness of LangF programs. The general form
of a judgement, as used in the LangF typing rules, is

Context ` Term ⇒ Descr

which can be read as “in Context , Term has Descr .” The context is usually an environment, but may include other
information, while the description is usually a semantic type and/or an (extended) environment. The judgement
forms used in the typing rules for LangF are given in Figure 2.

The typing rules for LangF are syntax directed, which means that there is a typing rule for each (major) syntactic
form in the parse-tree representation of LangF programs. In the following, a typing rule is labelled by the SML data
constructor in the ParseTree module that corresponds to the syntactic form handled by the typing rule.

3

5.1 Types

The typing rules for types check for well-formedness and translate the syntactic types to semantic types. The typing
rules for types use a judgement of the form

E ` Type ⇒ τ

which can be read as “in the environment E, the syntactic type Type is well-formed and translates to the semantic
type τ .”

Type checking a type-function type requires introducing a new semantic type variable (α) for the syntactic type
variable identifier (tyvarid) when checking the result type.

E⊕ {tyvarid 7→ α | α fresh} ` Typer ⇒ τr

E ` [tyvarid] -> Typer ⇒ ∀α→ τr
T_TYFN

Type checking a function type requires checking the argument type and the result type.

E ` Typea ⇒ τa E ` Typer ⇒ τr

E ` Typea -> Typer ⇒ τa → τr
T_FN

There are two rules for type checking a type-constructor application, depending on whether the type constructor
identifier corresponds to a type definition or a datatype definition (or an abstract type). For type definitions,
we check the actual (syntactic) type arguments and then substitute the actual (semantic) type arguments for the
formal type parameters to produce a new (semantic) type.

tyconid ∈ dom(E) E(tyconid) = (〈α1, . . . , αn〉, τ)
E ` Type1 ⇒ τ1 · · · E ` Typen ⇒ τn

E ` tyconid [Type1 , . . . , Typen] ⇒ τ [τ1/α1, . . . , τn/αn]
T_TYCON(TYPE)

For datatype definitions (or abstract types), we check the type arguments and then construct a new (semantic)
type.

tyconid ∈ dom(E) E(tyconid) = θ(n)

E ` Type1 ⇒ τ1 · · · E ` Typen ⇒ τn

E ` tyconid [Type1 , . . . , Typen] ⇒ θ(n)(τ1, . . . , τn)
T_TYCON(DATATYPE)

Type checking a type variable identifier returns its semantic type variable, as recorded in the environment.

tyvarid ∈ dom(E) E(tyvarid) = α

E ` tyvarid ⇒ α
T_TYVAR

5.2 Parameters

Type checking a parameter returns a new environment, which includes a binding for the type variable identifier or
variable identifier in the parameter, and a meta-function that constructs a (semantic) type when given the (semantic)
type of the expression over which the parameter abstracts. Note that the output environment only includes bindings
for the identifiers appearing in the parameter; the output environment is not an extension of the input environment.

Type checking a variable parameter requires type checking the declared type and returns an environment with a
single binding and a meta-function that creates a (semantic) function type.

E ` Type ⇒ τ E′ = {varid 7→ τ} T ′(x) = τ → x
E ` (varid : Type) ⇒ E′; T ′

P_VARNAME

Type checking a type variable parameter requires introducing a new semantic type variable (α) and returns an
environment with a single binding and a meta-function that creates a (semantic) type-function type.

E′ = {tyvarid 7→ α | α fresh} T ′(x) = ∀α→ x
E ` [tyvarid] ⇒ E′; T ′

P_TYVARNAME

4

5.2.1 Multiple Parameters

Type checking a list of parameters requires type checking each paramter in turn. Since type variable identifiers in
earlier parameters are bound in later parameters, each parameter is type checked in an environment extended with
output environments of each earlier parameter. The final output environment is the extension of all the individual
output environments, while the final meta-function is the composition of all the individual meta-functions.

n ≥ 0 E ` Param1 ⇒ E1; T1
· · · E⊕ E1 ⊕ · · · ⊕ En−1 ` Paramn ⇒ En; Tn

E′ = E1 ⊕ · · · ⊕ En−1 ⊕ En T ′ = T1 ◦ · · · ◦ Tn
E ` Param1 · · · Paramn ⇒ E′; T ′

Params

5.3 Simple Patterns and Patterns

Type checking a pattern is similar to type checking a parameter, in that it returns a new environment, which includes
a binding for any variable identifier in the pattern. Again, the output environment only includes bindings for the
identifiers appearing in the pattern; the output environment is not an extension of the input environment. The typing
rules for patterns use judgements of the form:

E; τ ` SimplePat ⇒ E′ E; τ ` Pat ⇒ E′

where τ is the (semantic) type of values matched by the pattern.

5.3.1 Simple Patterns

Type checking a variable identifier simple pattern returns an environment with a single binding (of the variable to
the input (semantic) type).

E′ = {varid 7→ τ}
E; τ ` varid ⇒ E′

P_VARNAME

Type checking a wildcard simple pattern returns an empty environment.

E′ = {}
E; τ ` _ ⇒ E′

P_WILD

5.3.2 Patterns

Type checking a data constructor pattern requires checking a number of things. First, the (semantic) type of values
being matched by the pattern must be a type-constructor type (θ(n)(τ ′1, . . . , τ

′
n)). Second, the data constructor iden-

tifier is looked up in the environment, returning its semantic type constructor (θ(n), which must match the type of
values being matched by the pattern), the formal types of its arguments (〈τ1, . . . , τm〉), and the formal type variables
(〈α1, . . . , αn〉) over which the type constructor and the formal types of its arguments is abstracted. Third, each of the
actual type arguments is type checked (E ` Typei ⇒ τ ′i). Fourth, each of the constituent simple patterns is type
checked with an input type equal to the substitution of the actual type arguments for the formal type variables in the
formal type of the corresponding data constructor argument (E; τi[α1/τ

′
1, . . . , αn/τ

′
n] ` SimplePati ⇒ Ei). The

final output environment is the extension of all the individual output environments of the constituent simple patterns.

τ = θ(n)(τ ′1, . . . , τ
′
n) daconid ∈ dom(E) E(daconid) = (〈α1, . . . , αn〉, 〈τ1, . . . , τm〉, θ(n))

E ` Type1 ⇒ τ ′1 · · · E ` Typen ⇒ τ ′n
E; τ1[α1/τ

′
1, . . . , αn/τ

′
n] ` SimplePat1 ⇒ E1

· · · E; τm[α1/τ
′
1, . . . , αn/τ

′
n] ` SimplePatm ⇒ Em

E′ = E1 ⊕ · · · ⊕ Em

E; τ ` daconid [Type1 , . . . , Typen] { SimplePat1 , . . . , SimplePatm } ⇒ E′
P_DACON

5

Note that in the typing rule for type checking a simple pattern, the premise judgement corresponds to the rules
given in Section 5.3.1, while the conclusion judgement corresponds to the rules given in this section.

E; τ ` SimplePat ⇒ E′

E; τ ` SimplePat ⇒ E′
P_SIMPLEPAT

5.4 Expressions

The typing rules for expressions use a judgement of the form

E ` Exp ⇒ τ

which can be read as “in the environment E, the expression Exp has the semantic type τ .”
Type checking an anonymous function requires type checking the parameters and then type checking the function

body in an environment extended with the bindings of the parameters. The anonymous function will have either a
type-function type or a function type, as constructed by the meta-function from the type checking of the parameters.

E ` Params ⇒ E′; T E⊕ E′ ` Exp ⇒ τ

E ` fn Params => Exp ⇒ T (τ)
E_FN

Type checking an if expression requires checking that the condition expression has the boolean type and that
the then expression and the else expression have the same type.

E ` Expc ⇒ bool(0) E ` Expt ⇒ τ E ` Expe ⇒ τ

E ` if Expi then Expt else Expe ⇒ τ
E_IF

Type checking an orelse or andalso expression requires that both operands have the boolean type and
expression itself has the boolean type.

E ` Expl ⇒ bool(0) E ` Expr ⇒ bool(0)

E ` Expl orelse Expr ⇒ bool(0)
E_ORELSE

E ` Expl ⇒ bool(0) E ` Expr ⇒ bool(0)

E ` Expl andalso Expr ⇒ bool(0)
E_ANDALSO

Type checking a constraint expression requires checking that the expression and the type constraint have the
same (sematic) type.

E ` Exp ⇒ τ E ` Type ⇒ τ

E ` Exp : Type ⇒ τ
E_CONSTRAINT

Type checking the binary and unary operations requires checking that the operands have the types appropriate
for the operation.

op ∈ {==,<>,<,<=,>,>=} E ` Expl ⇒ integer(0) E ` Expr ⇒ integer(0)

E ` Expl op Expr ⇒ bool(0)
E_BINOP(CMPOP)

op ∈ {^} E ` Expl ⇒ string(0) E ` Expr ⇒ string(0)

E ` Expl op Expr ⇒ string(0)
E_BINOP(CONCATOP)

op ∈ {+,-,*,/,%} E ` Expl ⇒ integer(0) E ` Expr ⇒ integer(0)

E ` Expl op Expr ⇒ integer(0)
E_BINOP(ARITHOP)

op ∈ {~} E ` Exp ⇒ integer(0)

E ` op Exp ⇒ integer(0)
E_UNOP(ARITHOP)

6

Type checking a data constructor expression requires checking a number of things. First, the data constructor
identifier is looked up in the environment, returning its semantic type constructor (θ(n), the formal types of its argu-
ments (〈τ1, . . . , τm〉), and the formal type variables (〈α1, . . . , αn〉) over which the type constructor and the formal
types of its arguments is abstracted. Second, each of the actual type arguments is type checked (E ` Typei ⇒ τ ′i).
Third, each of the actual expression arguments is type checked, and must return a type equal to the substitution
of the actual type arguments for the formal type variables in the formal type of the corresponding data constructor
argument (E; τi[α1/τ

′
1, . . . , αn/τ

′
n] ` SimplePati ⇒ Ei). The final output type is the type constructor applied to

the actual type arguments.

daconid ∈ dom(E) E(daconid) = (〈α1, . . . , αn〉, 〈τ1, . . . , τm〉, θ(n))
E ` Type1 ⇒ τ ′1 · · · E ` Typen ⇒ τ ′n

E ` Exp1 ⇒ τ1[α1/τ
′
1, . . . , αn/τ

′
n] · · · E ` Expm ⇒ τm[α1/τ

′
1, . . . , αn/τ

′
n]

E ` daconid [Type1 , . . . , Typen] { Exp1 , . . . , Expm } ⇒ θ(n)(τ ′1, . . . , τ
′
n)

E_DACON

There are two rules for type checking an application, depending on the kind of the apply argument. For an ex-
pression apply argument, we check that the function expression has a function type and that the argument expression
has the argument type.

E ` Expf ⇒ τa → τr E ` Expa ⇒ τa

E ` Expf Expa ⇒ τr
E_APPLY(A_EXP)

For a type apply argument, we check that the function expression has a type-function type and that the argument
type is well-formed. The type of the application expression is the subtitution of the (semantic) type argument for the
abstracted type variable in the result type.

E ` Expf ⇒ ∀α→ τr E ` Typea ⇒ τa

E ` Expf [Typea] ⇒ τr[τa/α]
E_APPLY(A_TYPE)

Type checking a variable identifier returns its semantic type, as recorded in the environment.

varid ∈ dom(E) E(varid) = τ

E ` varid ⇒ τ
E_VARNAME

Type checking an integer or string constant returns the obvious type.

E ` integer ⇒ integer(0)
E_INTEGER

E ` string ⇒ string(0)
E_STRING

Type checking a sequence expression requires type checking each expression, but only returns the type of the
final expression.

n ≥ 0 E ` Exp1 ⇒ τ1 · · · E ` Expn ⇒ τn

E ` (Exp1 ; · · · ; Expn) ⇒ τn
E_SEQ

Type checking a let expression requires checking the declarations and then type checking the body expression
in an environment extended with the bindings of the declarations.

E ` Decls ⇒ E′

n ≥ 0 E⊕ E′ ` Exp1 ⇒ τ1 · · · E⊕ E′ ` Expn ⇒ τn Θ(τn) ⊆ Θ(E)
E ` let Decls in Exp1 ; · · · ; Expn end ⇒ τ

E_LET

7

The Θ(τn) ⊆ Θ(E) premise checks that every (semantic) type constructor in τn is available in the environment E.
We define Θ(τ) and Θ(E) as follows:

Θ(∀α→ τa) = Θ(τa)
Θ(τa → τr) = Θ(τa) ∪Θ(τr)

Θ(θ(k)(τ1, . . . , τk) = {θ(k)} ∪Θ(τ1) ∪ · · · ∪Θ(τk)
Θ(α) = {}

Θ(〈TVE,TCE,DCE,VE〉) = {θ(k) | tyconid ∈ dom(TCE) and TCE(tyconid) = θ(k)}

This prevents type constructors introduced by datatype declarations in Decls from appearing in the type of Exp.
For example, the following LangF program does not type check:

(* Type constructor escapes the scope of its definition. *)
let

datatype T = A {Integer} | B {String}
fun f (x: Integer) : T = A {x}

in
f

end

On the other hand, the following LangF program does type check:

let
type T = Integer
fun f (x: Integer) : T = Integer

in
f

end

because the type declaration does not introduce a fresh (semantic) type constructor.
Type checking a case expression requires type checking the scruitinee and checking the match rules against the

type of the scruitinee.

E ` Exp ⇒ τ E; τ ` MatchRules ⇒ τ ′

E ` case Exp of MatchRules end ⇒ τ ′
E_CASE

5.5 MatchRules

Type checking a match rule requires checking the right-hand-side expression in the environment extended with the
bindings from the left-hand-side pattern.

E; τ ` Pat ⇒ E′ E⊕ E′ ` Exp ⇒ τ ′

E; τ ` Pat => Exp ⇒ τ ′
MATCHRULE

5.5.1 Multiple Match Rules

Type checking a list of match rules requires that every match rule has the same result type.

n ≥ 0 E; τ ` MatchRule1 ⇒ τ · · · E; τ ` MatchRulen ⇒ τ

E; τ ` MatchRule1 | · · · | MatchRulen ⇒ τ ′
MatchRules

8

5.6 Declarations

The typing rules for declarations use a judgement of the form

E ` Decl ⇒ E′

which can be read as “in the environment E, the declaration Decl returns the environment E′.” The output environ-
ment only includes bindings for the identifiers defined in the declaration; the output environment is not an extension
of the input environment.

5.6.1 Type Declarations

Type checking a type declaration requires introducing new semantic type variables for the syntactic type variable
identifiers when checking the right-hand-side type. The final environment is an environment with a binding for the
(syntactic) type constructor identifier that maps to the (semantic) type variables (acting as formal type parameters)
and the (semantic) type.

Etv = {tyvaridi 7→ αi | 1 ≤ i ≤ n and αi fresh}
E⊕ Etv ` Type ⇒ τ E′ = {tyconid 7→ (〈α1, . . . , αn〉, τ)}
E ` type tyconid [tyvarid1 , . . . , tyvaridn] = Type ⇒ E′

D_TYPE

The typing rule for a datatype declaration is somewhat complicated. A new semantic type constructor (θi) is
introduced for each syntactic type constructor identifier (tyconidi). Furthermore, a new semantic type variable (αi,j)
is introduced for each syntactic type variable identifier (tyvaridi,j). Each of the data constructor declarations is type
checked in an environment that includes all of the type constructors (Etc) and only the appropriate type variables
(Etvi). Note that type checking a data constructor declaration takes the type variables and the type constructor as part
of the context; it returns an environment of bindings for the data constructor identifiers defined by the data constructor
declaration. The final output environment includes all of the type constructors and all of the data constructors (but
none of the type variables).

n ≥ 0 Etc = {tyconidi 7→ θ(mi) | 1 ≤ i ≤ n and θi fresh}
Etv1 = {tyvaridi,1 7→ αi,1 | 1 ≤ i ≤ m1 and αi,1 fresh}

E⊕ Etc ⊕ Etv1 ; (〈α1,1, . . . , α1,m1〉, θ(m1)) ` DaConDecls1 ⇒ EDC1

· · · Etvn = {tyvaridi,n 7→ αi,n | 1 ≤ i ≤ mn and αi,n fresh}
E⊕ Etc ⊕ Etvn ; (〈αn,1, . . . , αn,mn〉, θ(mn)) ` DaConDeclsn ⇒ EDCn

E′ = Etc ⊕ EDC1 ⊕ · · · ⊕ EDCn

E `
datatype tyconid1 [tyvarid1,1 , . . . , tyvarid1,m1

] = DaConDecls1

· · ·
and tyconidn [tyvaridn,1 , . . . , tyvaridn,mn

] = DaConDeclsn

⇒ E′

D_DATATYPE

5.6.2 Data Constructor Declarations

Type checking a single data constructor declaration requires type checking each of its declared argument types. The
result environment binds the data constructor identifier to its type constructor (θ(n)), the formal types of its arguments
(〈τ1, . . . , τm〉), and the formal type variables (〈α1, . . . , αn〉) over which the type constructor and the formal types of
its arguments is abstracted. The type constructor and the formal type variables are provided by the context.

E ` Type1 ⇒ τ1 · · · E ` Typem ⇒ τm
E′ = {daconid 7→ (〈α1, . . . , αn〉, 〈τ1, . . . , τm〉, θ(n))}

E; 〈α1, . . . , αn〉; θ(n) ` daconid { Type1 , . . . , Typem } ⇒ E′
DaConDecl

9

Type checking a list of data constructor declarations requires type checking each data constructor declaration.
The final output environment is the extension of all the individual output environments.

m ≥ 0 E; 〈α1, . . . , αn〉; θ(n) ` DaConDecl1 ⇒ EDC1

· · · E; 〈α1, . . . , αn〉; θ(n) ` DaConDeclm ⇒ EDCm

E′ = EDC1 ⊕ · · · ⊕ EDCm

E; 〈α1, . . . , αn〉; θ(n) ` DaConDecl1 | · · · | DaConDeclsm ⇒ E′
DaConDecls

5.6.3 Value Declarations

Type checking a val declaration requires type checking the expression and type checking the pattern, which returns
the bindings to be returned by the declaration. If there is a type assertion, then it must return the same (semantic)
type as the expression.

E ` Exp ⇒ τ (E ` Type ⇒ τ)? E; τ ` SimplePat ⇒ E′

E ` val SimplePat (: Type)? = Exp ⇒ E′
D_VAL

Type checking a fun declaration requires constructing an environment that assigns a type to each of the function
variable identifiers in the declaration. First, each of the parameter lists is type checked (E ` Paramsi ⇒
EPi), returning an environment and a meta-function. The environment is used to type check the return type (E ⊕
EPi ` Typei ⇒ τi) and the meta-function is used to construct the type of the function (T (τi)). Each of the
function bodies is type checked in an environment extended with the appropriate parameters and the function variable
identifiers (E⊕ E′ ⊕ EPi ` Expi ⇒ τi); note that each function body must have its declared return type.

n ≥ 0 E ` Params1 ⇒ EP1 ; T1 E⊕ EP1 ` Type1 ⇒ τ1
· · · E ` Paramsn ⇒ EPn ; Tn E⊕ EPn ` Typen ⇒ τn

E′ = {varidi 7→ Ti(τi) | 1 ≤ i ≤ n}
E⊕ E′ ⊕ EP1 ` Exp1 ⇒ τ1 · · · E⊕ E′ ⊕ EPn ` Expn ⇒ τn

E `
fun varid1 Params1 : Type1 = Exp1

· · ·
and varidn Paramsn : Typen = Expn

⇒ E′

D_FUN

5.6.4 Multiple Declarations

Type checking a list of declarations requires type checking each declaration in turn. Since identifiers in earlier
declarations are bound in later declarations, each declaration is type checked in an environment extended with
output environments of each earlier declaration. The final output environment is the extension of all the individual
output environments.

E ` Decl1 ⇒ E1 · · · E⊕ E1 ⊕ · · · ⊕ En−1 ` Decln ⇒ En

E′ = E1 ⊕ · · · ⊕ En−1 ⊕ En

E ` Decl1 · · · Decln ⇒ E′
Decls

5.7 Programs and the Initial Environment

The typing rule for programs use a judgement of the form

` Prog ⇒ X

which can be read as “the program Prog is statically correct.”

10

Type checking a program is similar to type checking a let expression; it requires type checking the declarations
and then checking the expression in an environment extended with the bindings of the declarations.

E0 ` Decls ⇒ E′ E0 ⊕ E′ ` Exp ⇒ τ

` Decls ; Exp ⇒ X
PROG

The declarations and expression are type checked in the context of an initial environment E0 that provides predefined
type constructors, data constructors, and variables. This initial environment is defined as follows:

E0 = 〈TVE0,TCE0,DCE0,VE0〉

TVE0 = {}

TCE0 =


Bool 7→ bool(0)

Integer 7→ integer(0)

String 7→ string(0)

Unit 7→ unit(0)


DCE0 =


False 7→ (〈〉, 〈〉,bool(0))
True 7→ (〈〉, 〈〉,bool(0))
Unit 7→ (〈〉, 〈〉,unit(0))



VE0 =



argc 7→ unit(0) → integer(0)

arg 7→ integer(0) → string(0)

fail 7→ ∀α→ string(0) → α

print 7→ string(0) → unit(0)

size 7→ string(0) → integer(0)

sub 7→ string(0) → integer(0) → integer(0)


6 Conversion to Abstract Syntax Tree

In addition to checking that a program is statically correct, a type checker must produce a program representation
that can be used by the rest of the compiler for optimization and code generation. In the LangF compiler, the type
checker will produce a typed abstract syntax tree (the structure AbsSynTree : ABS_SYN_TREE module
in the project seed code). The typed abstract syntax tree (AST) representation is very close to the parse tree (PT)
representation, but with some crucial differences:

• The AST forms include no source location information.

• Type variables, type constructors, data constructors, and variables in the AST representation are implemented
by structures with the ID signature (langfc-src/common/id.sig). As discussed in Section 3, semantic
type variables, type constructors, data constructors, and variables are used to distinguish different binding
occurrences, which otherwise have the same syntactic type variable names, type constructor names, data
constructor names, or variable names. There are operations in the ID signature that can be used to create fresh
identifiers, not equal to any other identifier previously created.

• Variables bound (and wildcards) in simple patterns include their type.

• There is no type constraint expression form; instead, every expression form is annotated with its type.

11

• There is no type declaration form; all type abbreviations will have been expanded during type checking and
conversion to the abstract syntax tree.

• The val declaration form has no type constraint; the simple pattern includes the type.

We have already introduced one form in the abstract syntax tree representation: the semantic types from Sec-
tion 3. Similarly, we have already introduced one judgement for translating a parse tree representation form into an
abstract syntax tree representation form: the judgement for type checking types from Section 5.1:

E ` Type ⇒ τ in the environment E, the parse tree type Type is well-
formed and translates to the abstract syntax tree type τ .

We can imagine other judgements that combine type checking with translation to the abstract syntax tree:

E ` Exp ⇒ τ ; e in the environment E, the parse tree expression Exp has
the abstract syntax tree type τ and translates to the abstract
syntax tree expression e.

E ` Decl ⇒ E′; d in the environment E, the parse tree declaration Decl re-
turns the environment E′ and translates to the abstract syn-
tax tree declaration d.

` Prog ⇒ p the parse tree program Prog is statically correct and trans-
lates to the abstract syntax tree program p.

The inference rules for these judgements will be very similar to those given in Section 5, except they will construct
an appropriate output abstract syntax tree form.

7 Requirements

You should implement a type checker for LangF that enforces the type system from Section 5 and produces a typed
abstract syntax tree. Your implementation should include (at least) the following modules:

structure Environment : ENVIRONMENT
structure TypeChecker : TYPE_CHECKER

The ENVIRONMENT signature in the project seed code is as follows:

12

signature ENVIRONMENT =
sig

(* The combined environment is composed of a type variable

* environment, a type constructor environment, a data constructor

* environment, and a variable environment. Each individual

* environment has its own domain and co-domain.

*
* For a simple binding analysis, we can take the co-domain to be

* ’unit’, since we only need to know whether or not the identifier

* is in the environment.

*
* For type checking (without producing an abstract syntax tree),

* you will require co-domains similar to those in the project

* description.

*
* For type checking and producing an abstract syntax tree,

* you will require additional components in the co-domains.

*)
structure TyVarEnv :

sig
type dom = ParseTree.TyVarName.t
type cod = unit

end
structure TyConEnv :

sig
type dom = ParseTree.TyConName.t
type cod = unit

end
structure DaConEnv :

sig
type dom = ParseTree.DaConName.t
type cod = unit

end
structure VarEnv :

sig
type dom = ParseTree.VarName.t
type cod = unit

end

type t

13

(* The empty environment {}. *)
val empty : t

(* Create an environment with a single TyVar entry. *)
val singletonTyVar : TyVarEnv.dom * TyVarEnv.cod -> t
(* Lookup a TyVar in the environment. *)
val lookupTyVar : t * TyVarEnv.dom -> TyVarEnv.cod option

(* Create an environment with a single TyCon entry. *)
val singletonTyCon : TyConEnv.dom * TyConEnv.cod -> t
(* Lookup a TyCon in the environment. *)
val lookupTyCon : t * TyConEnv.dom -> TyConEnv.cod option

(* Create an environment with a single DaCon entry. *)
val singletonDaCon : DaConEnv.dom * DaConEnv.cod -> t
(* Lookup a DaCon in the environment. *)
val lookupDaCon : t * DaConEnv.dom -> DaConEnv.cod option

(* Create an environment with a single Var entry. *)
val singletonVar : VarEnv.dom * VarEnv.cod -> t
(* Lookup a Var in the environment. *)
val lookupVar : t * VarEnv.dom -> VarEnv.cod option

(* Implements E1 (+) E2. *)
val extend : t * t -> t

(* Implements \Theta(E). *)
val tycons : t -> AbsSynTree.TyCon.Set.set

(* The initial environment E_0. *)
val initial: t

end

You will need to extend the ENVIRONMENT signature (and the Environment structure) with new co-domain
types as required by your type-checker implementation.

The TYPE_CHECKER signature is as follows:

signature TYPE_CHECKER =
sig

val typeCheck : ErrorStream.t *
ParseTree.Prog.t ->
AbsSynTree.Prog.t option

end

The structure ParseTree : PARSE_TREE and structure AbsSynTree : ABS_SYN_TREE
modules are provided in the seed code; the PARSE_TREE signature implementation is at
langfc-src/parse-tree/parse-tree.sig; the ParseTree structure implementation is at
langfc-src/parse-tree/parse-tree.sml; the ABS_SYN_TREE signature implementation is at
langfc-src/abs-syn-tree/abs-syn-tree.sig; and the AbsSynTree structure implementation is at
langfc-src/abs-syn-tree/abs-syn-tree.sml.

14

7.1 Errors

To support error reporting, the TypeChecker.typeCheck function takes an argument of the type
ErrorStream.t. The ErrorStream: ERROR_STREAM module is provided in the seed code and provides
a common error reporting utility in the LangF compiler. (The module was used implicitly in Projects 1 and
2.) The ERROR_STREAM signature implementation is at langfc-src/common/error-stream.sig; the
ErrorStream structure implementation is at langfc-src/common/error-stream.sml.

Your type checker should report reasonable error messages. You should report violations of the syntactic restric-
tions of Section 2, unbound identifiers, and type errors. There is a lot of room for creativity and style in reporting
errors. For a program with multiple type errors, you are required to report at least one error message, but need not
report more than one error message.

8 GForge and Submission

Sources for Project 3 have been (or will shortly be) committed to your repository in the project3 sub-directory.
You will need to update your local copy, by running the command:

svn update

from the cnetid-proj directory.
We will collect projects from the SVN repositories at 10pm on Friday, February 27; make sure that you have

committed your final version before then. To do so, run the command:

svn commit

from the cnetid-proj directory.

9 Hints

• Start early!

• Study the interfaces. You will need to be familiar with the types and operations in the PARSE_TREE,
ABS_SYN_TREE, and ID signatures.

• Think about how to represent the environment(s). In the parse tree representation, each structure imple-
menting a kind of identifier provides structure Set: ORD_SET, structure Map: ORD_MAP, and
structure Tbl: MONO_HASH_TABLE modules for finite maps, sets, and hash tables over that kind of
identifier; you can view the ORD_SET, ORD_MAP, and MONO_HASH_TABLE signatures via links in the
HTML version of this document.

• Think about the structure of the type-checker implementation. Each judgement can be implemented as a
function; just as the parse tree datatypes for expressions, match rules, and declarations are mutually recursive,
the functions for judgements that type check expressions, match rules, and declarations will be mutually
recursive. Each function for a judgement will have a case for each typing rule with that judgement as the
conclusion.

• Work in stages. First implement a simple binding checker that only checks that the program has no unbound
variables (but does not check types and does not produce an abstract syntax tree). This binding checker will
establish the basic structure of the implementation. Next, implement a type checker that checks for unbound
variables and checks types (but does not produce an abstract syntax tree). This type checker will require
extending the simple binding checker, but will very closely match the typing rules from Section 5. Next,
implement a full type checker that checks for unbound variables, checks types, and produces an abstract

15

syntax tree. This full type checker will require additional information to be carried in the environment and
to be returned by each type checking function. Finally, extend the full type checker to additionally check the
syntactic restrictions of Section 2.

• Work on error reporting last. Detecting errors and producing good error messages can be difficult; it is more
important for your type checker to work on good programs than for it to “work” on bad programs. Again,
work in stages. First implement a type checker that stops after detecting the first error. Then implement a type
checker that continues after detecting an error.

• To complete the assignment, you should only need to make changes to the
cnetid-proj/project3/langfc-src/type-checker/environment.sig,
cnetid-proj/project3/langfc-src/type-checker/environment.sml, and
cnetid-proj/project3/langfc-src/type-checker/type-checker.sml files.

• Executing the compiler (from the cnetid-proj/project3 directory) with the command

./bin/langfc -Ckeep-type-check=true file.lgf

will produce a file.type-check.ast file that contains the abstract syntax tree returned by the
type checker. Use this control and its output to check that your type checker is working as expected.
The tests/type-checker directory includes a number of tests (of increasing complexity); for each
testNN.lgf file, if the test has type errors, there is a testNN.err file containing sample error mes-
sages to be reported by the type checker. If the test has no type errors, then there is no output file; rather,
the abstract parse tree returned by the type checker should convert to the core intermediate representation and
type check in the core intermediate representation without errors.

• As in past projects, you are not required to match the sample error messages exactly. In particular, you need
not have particularly “pretty” error messages. The sample error messages (and sample solution) have gone
to some length to produce good error messages, with types written using the identifiers in the parse tree
representation. You will probably find it much easier to print types using the identifiers in the abstract syntax
tree representation (using the functions Layout.toString and AST.Type.layout), which will print
indentifiers with a uniqueifying suffix. For example, in test64.lgf, the sample error message is:

test46.lgf:5.0-test46.lgf:6.0 Error:
Constraint and expression of ’val’ disagree.

constraint: T
expression: ?T?
in: val y : T = B

where the constraint type is printed using the tycon identifier T from the parse tree representation, and the
expression type is also printed using the tycon identifier T from the parse tree representation, but printed as
?T? to indicate that this tycon is shadowed. It will be much easier to produce an error message like:

test46.lgf:5.0-test46.lgf:6.0 Error:
Constraint and expression of ’val’ disagree.

constraint: T__019
expression: T__015
in: val y : T = B

where the constraint type and the expression type are printed using the tycon identifiers from the abstract
syntax tree representation (with their uniqueifying suffixes). The fact that one tycon is shadowed by the other
(in the parse tree representation) is indicated by the different type constructor indentifiers in the abstract syntax
tree representation.

16

Document history

February 24, 2009
Section 5.4: Θ(〈TVE,TCE,DCE,VE〉) = cod(TCE)⇒
Θ(〈TVE,TCE,DCE,VE〉) = {θ(k) | tyconid ∈ dom(TCE) and TCE(tyconid) = θ(k)}

February 23, 2009
Section 9: Added discussion of unit tests and error messages.

February 16, 2009
Section 3: the datatype declaration at line 1 will introduce a different type constructor⇒
the datatype declaration at line 3 will introduce a different type constructor

February 13, 2009

• Made redundancy and exhaustiveness checking extra credit.

• Fixed typing rule for let to handle sequenced expressions in body.

• For a program with multiple type errors, require at least one error message, but not necessarily more than
one.

February 12, 2009 Original version

17

