
Lecture 5

Systems Programming:
Unix Processes Creation

Pipes

Unix Process Creation

Creation
Management
Destruction

examples are in
~mark/pub/51081/processes

Process Attributes

• Process ID:
#include <sys/types.h>
#include <unistd.h>
pid_t getpid(void);

– Every unix process has an associated process id (pid)
– each new process is assigned a new unique unused pid
– The pid is a 32bit unsigned integer, which usually

ranges from 0 to 32767
– pids roll over after 32767 and assignment begins again

at 0, issuing unused pids

Process Ids and init
• Every process on the system has a parent, with the

exception of pid 1: init
– the init process “hangs around”, it is responsible for the

initialization and booting of the system, and for running
any new programs, like the login program, and your
shell

– Init executes /etc/rc* files during initialization, and is
the ultimate parent of every subsequent process in the
system

– If init is killed, the system shuts down
• Amy process’s parent id (ppid) can be obtained with the

pid_t getppid(void) call.

Death and Destruction
• All processes usually end at some time during runtime

(with the exception of init)
• Processes may end either by:

– executing a return from the main function
– calling the exit(int) function
– calling the _exit(int) function
– calling the abort(void) function

• generates SIGABRT signal, core dumps and then
exits

• When a process exits, the OS delivers a termination status
to the parent process of the recently deceased process

Environments

• All processes by default inherit the environment
of their parent process

• The environment can be obtained through the
char * environ[] variable.

• char * getenv(const char * name) will return the
associated value for the name passed in:
– char * path = getenv(“PATH”);

• int setenv(const char * name, const char * value,
int overwrite) will set an environment variable

• examples: environ.c

The Spawn

• exec()
• fork()
• system()
• clone()

The exec() Functions:
Out with the old, in with the new

• The exec() functions all replace the current program
running within the process with another program

• bring up an xterm:
– exec sleep 5 #what happens and why?

• There are two families of exec() functions, the “l” family
(list), and the “v” family (vector)

• Each exec() call can choose different ways of finding the
executable and whether the environment is delivered in the
form of a list or an array (vector)

• The environment, open file handles, etc. are passed into the
exec’d program

• What is the return value of an exec() call?

The execl... functions
• int execl(const char * path, const char * arg0, ...);

– executes the command at path, passing it the environment as a list:
arg0 ... argn

– thus, the execl family breaks down argv into its individual
constituents, and then passes them as a list to the execl? function
(the l stands for list)

• int execlp(const char * path, const char * arg0, ...);
– same as execl, but uses $PATH resolution for locating the program

in path, thus an absolute pathname is not necessary
• int execle(const char * path, const char * arg0, ... char * envp[]);

– allows you to specifically set the new program’s environment,
which replaces the default current program’s environment

• examples: params.c, execl.test.c, execle.test.c, environ2.c,
execlp.test.c, sash.c

The execv... functions
• int execv(const char * path, char *const argv[]);

– executes the command at path, passing it the
environment contained in a single argv[] vector

• int execvp(const char * path, char *const argv[]);
same as execv, but uses $PATH resolution for
locating the program in path

• int execve(const char * path, char *const argv[],
char * const envp[]);
– note that this is the only system call of the lot

• examples: execv.test & myecho.c

fork()
• fork() creates a new child process
• the OS copies the current program into the new

process, resets the program pointer to the start of
the new program (child fork location), and both
processes continue execution independently as two
separate processes

• The child gets its own copy of the parent’s:
– data segments
– heap segment
– stack segment
– file descriptors

fork() Return Values
• fork() is the one Unix function that is called once

but returns twice:
• If fork() returns 0:

– you’re in the new child process
• If fork() returns > 1 (i.e., the pid of the new child

process)
– you’re back in the parent process

• examples: fork1.c, forkio.c

Waiting on Our Children
• Unlike life, parents should always hang around for their

children’s lives (runtimes) to end, that is to say:
– Parent processes should always wait for their child

processes to end
• When a child process dies, a SIGCHLD signal is sent to

the parent as notification
• The SIGCHLD signal’s default disposition is to ignore the

signal
• A parent can find out the exit status of a child process by

calling one of the wait() functions

Waiting on Our Children
• Parent processes find out the exit status of their children by

executing a wait() call:
– pid_t wait(int * status);
– pid_t waitpid(pid_t pid, int * status, int options);

• Wait() blocks until it receives the exit status from a child
• Waitpid can wait on a specific child, and doesn’t

necessarily block (WNOHANG)
• Waiting allows the parent to obtain the return value from

the child’s process
• examples:

– childdeath echo hi
– forkandwait echo hello world
– forkandwait sleep 10

waitpid()
pid_t waitpid(pid_t pid, int * status,
int options);

• pid can be any of 4 values:
< -1: wait for any child whose gpid is the

same as pid
== -1: waits for any child to terminate
== 0: waits for a child in the same process

group as the current process
> 0: waits for process pid to exit

• The following macros work on status:
– WIFEXITED(status): true if process exited normally
– WIFSIGNALED(status): true if process was killed by a signal
– examples: forkandwait2 sleep 15

Problem Children:
Orphans and Zombies

• If a child process exits before it’s parent has called wait(),
it would be inefficient to keep the entire child process
around, since all the parent is going to want to know about
is the exit status:
– A zombie is a child process that that has exited before

it’s parent’s has called wait() for the child’s exit status
– A zombie holds nothing but the child’s exit status (held

in the program control block)
– Modern Unix systems have init (pid == 1) adopt

zombies after their parents die, so that zombies do not
hang around forever as they used to, in case the parent
never did get around to calling wait

Problem Children:
Orphans and Zombies

• If a parent process dies before it’s child, the child
process becomes an orphan
– An orphan is a child process whose parent is no longer

living

– An orphan is immediately “adopted” by the init
process (pid == 1), who will call wait() on
behalf of the deceased parent when the child
dies

• examples: myzombie.c, myorphan.c

vfork() and Copy On Write
• When a process forks, the entire current process

(plus segments, environment, etc.) is copied over
to the new process

• When that new process called exec(), the entire
address space is replaced (overlaid) with the new
environment of the exec’ing program

• Efficiency question: If you know you’re going to
call exec immediately after fork, why have fork
spend time copying the entire address space over
when we know it’s just going to get overwritten
immediately on the exec() call?

• Answer: vfork() doesn’t copy entire address space

system()
• int system(const char * cmd)
• system() forks a child process that exec’s /bin/sh,

which in turn runs the command cmd
• As such, it has the following qualities:

– it’s easy and familiar to use
– it’s inefficient
– because it uses system variables and executes from a

shell, it can be a security risk if the command is setuid
or setgid

• example: system(“ls –la /usr/bin”);

Sessions and Process Groups
• A process group is a group of related processes,

that share some common interest, as all the
processes in a pipeline do:
– ls –l | sort | wc –l

• A session is a further abstracted group of related
process groups or individual processes, such as all
the jobs in a given terminal shell session

• Sessions are generally created during login, and
process groups are managed by the job processing
capabilities of a given shell

Priorities and Being Nice
• The scheduler recognizes processes of three different

scheduling policies:
– SCHED_FIFO (unalterable real-time processes)
– SCHED_RR (alterable real-time processes)
– SCHED_OTHER (conventional, time-shared)

• Processes with SCHED_OTHER policy are assigned a
default dynamic priority of 0, and can voluntarily lower
their priority by incrementally raising their “niceness”
value, up to 10 (range is
-20 to +19, effectively 1 – 40 in terms of process priority)

• example: mynice.c
• gcc –O0 –g –o mynice mynice.c
• mynice [nice]

Beginner’s Guide to Writing a Shell
• Define a buffer to hold a command entered from

the command line
• Create a forever loop that forever prompts for a

new command
• Block on a read (fgets, etc.) and allow the user to

enter a command
• Parse the command into parameters for exec
• fork() a child process
• have the child process exec() the parsed

command
• have the parent wait on the child process to finish

Debugging Multiple Processes
• Debugging processes that fork can be a little tricky,

because whereas once you had one process, now you have
two.

• Which process will gdb debug? Answer: the parent
• How do you debug the child process?

– With another gdb (ddd) session:
– Add a sleep() call at the start of the child code
– run gdb (ddd) on the program, and set a breakpoint

right after the sleep() call in the child section
– run the first gdb session on the parent
– after the fork(), attach to the child process and then

issue the “continue” call in the child gdb session
• example: forkdebug.c

Pipes

Interprocess Communication using
pipes

Motivation:
Batch Sequential Data Processing

• In the beginning, there was a void...

DASD
BSAM/QSAM

JOB A

JOB B

MVS
Process X

/tmp/somefile

Process Y

UNIX

Px >/tmp/somefile
Py < /tmp/somefile

Batch Sequential Data Processing
• Stand-alone programs would operate on data,

producing a file as output
• This file would stand as input to another stand-

alone program, which would read the file in,
process it, and write another file out

• Each program was dependent on its version of
input before it could begin processing

• Therefore processing took place sequentially,
where each process in a fixed sequence would
run to completion, producing an output file in
some new format, and then the next step would
begin

Pipes and Filters Features
• Incremental delivery: data is output as work is conducted
• Concurrent (non-sequential) processing, data flows

through the pipeline in a stream, so multiple filters can be
working on different parts of the data stream
simultaneously (in different processes or threads)

• Filters work independently and ignorantly of one another,
and therefore are plug-and-play

• Filters are ignorant of other filters in the pipeline
--there are no filter-filter interdependencies

• Maintenance is again isolated to individual filters, which
are loosely coupled

• Very good at supporting producer-consumer mechanisms
• Multiple readers and writers are possible

What is a pipe?
• A pipe is an interface between two processes that allows

those two processes to communicate (i.e., pass data back
and forth)

• A pipe connects the STDOUT of one process (writer) and
the STDIN of another (reader)

• A pipe is represented by an array of two file descriptors,
each of which, instead of referencing a normal disk file,
represent input and output paths for interprocess
communication

• Examples:
– ls | sort
– ypcat passwd | awk –F: ‘{print $1}’ | sort
– echo "2 + 3" | bc

How to create a pipe (lowlevel)
• #include <unistd.h>
• int pipe(int pipefd[2]);
• pipefd represents the pipe, and data written to

pipefd[1] (think STDOUT) can be read from
pipefd[0] (think STDIN)

• pipe() returns 0 if successful
• pipe() returns –1 if unsuccessful, and sets the

reason for failure in errno (accessible through
perror())

• examples: pipe2.c

Pipe One-Niner, Come in
• Pipes are half duplex by default, meaning that

one pipe is opened specifically for unidirectional
writing, and the other is opened for unidirectional
reading (i.e., there is a specific “read” end and
“write” end of the pipe)

• The net effect of this is that across a given pipe,
only one process does the writing (the “writer”),
and the other does the reading (the “reader”)

• If two way communication is necessary, two
separate pipe() calls must be made, or, use
SVR5’s full duplex capability (stream pipes)

• examples: fullduplex.c (compile and run on linux
and solaris (SVR5))

Traditional Pipes

• How would you mimic the following command
in a program:
– $ ls /usr/bin | sort

• Create the pipe
• associate stdin and stdout with the proper

read/write pipes via dup2() call
• close unneeded ends of the pipe
• call exec()
• example: ls_sort.c

Pipes the easy way: popen()
• The simplest way (and like system() vs. fork(),

the most expensive way) to create a pipe is to use
popen():
– #include <stdio.h>
– FILE * popen(const char * cmd, const char *

type);
– ptr = popen(“/usr/bin/ls”, “r”);

• popen() is similar to fopen(), except popen()
returns a pipe via a FILE *

• you close the pipe via pclose(FILE *);

popen()
• When called, popen() does the following:

– creates a new process
– creates a pipe to the new process, and assigns

it to either stdin or stdout (depending on char *
type)
• “r”: you will be reading from the executing

command
• “w”: you will be writing to the executing

command
– executes the command cmd via a bourne shell

• example: pipe_echo.c

Meanwhile, back at the ranch...

• One thing is in common between all the
examples we’ve seen so far:
– All our examples have had shared file

descriptors, shared from a parent processes
forking a child process, which inherits the
open file descriptors as part of the parent’s
environment for the pipe

• Question: How do two entirely unrelated
processes communicate via a pipe?

FIFOs: Named Pipes

• FIFOs are “named” in the sense that they have a
name in the filesystem

• This common name is used by two separate
processes to communicate over a pipe

• The command mknod can be used to create a
FIFO:
– mkfifo MYFIFO (or “mknod MYFIFO p”)
– ls –l
– echo “hello world” >MYFIFO &
– ls –l
– cat <MYFIFO

Creating FIFOs in code

• #include <sys/types.h>
• #include <sys/stat.h>
• int mkfifo(const char * path, mode_t mode);

– path is the pathname to the FIFO to be created on the
filesystem

– mode is a bitmask of permissions for the file, modified
by the default umask

• mkfifo returns 0 on success, -1 on failure and sets
errno (perror())

• mkfifo(“MYFIFO”, 0666);
• examples: reader.c, writer.c

	Lecture 5
	Unix Process Creation
	Process Attributes
	Process Ids and init
	Death and Destruction
	Environments
	The Spawn
	The exec() Functions:Out with the old, in with the new
	The execl... functions
	The execv... functions
	fork()
	fork() Return Values
	Waiting on Our Children
	Waiting on Our Children
	waitpid()
	Problem Children:Orphans and Zombies
	Problem Children:Orphans and Zombies
	vfork() and Copy On Write
	system()
	Sessions and Process Groups
	Priorities and Being Nice
	Beginner¡¯s Guide to Writing a Shell
	Debugging Multiple Processes
	Pipes
	Motivation:Batch Sequential Data Processing
	Batch Sequential Data Processing
	Pipes and Filters Features
	What is a pipe?
	How to create a pipe (lowlevel)
	Pipe One-Niner, Come in
	Traditional Pipes
	Pipes the easy way: popen()
	popen()
	Meanwhile, back at the ranch...
	FIFOs: Named Pipes
	Creating FIFOs in code

