
Lecture 4

Introduction to make
Debugging with gdb and ddd

Introduction to Systems Programming:
Processes and Signals

make

What is make?

• make is used to:
– save time by not recompiling files that

haven't changed
– make sure all files that have changed do

get recompiled

The Concept
• make is a program that will update targets on the

basis of changes in dependencies.
• Although it is mostly used to build software by

compiling and linking, it can be used to manage
any construction project that involves creating
something based on something else (e.g., using
nroff over a series of book chapters).

• A makefile is nothing more than dependencies and
rules. A rule describes HOW to create the target
from the dependencies.

Calling Convention and Options

• -n don't make, but print out what would be
done

• -k keep going, don't stop on errors, which
is the default

• -f run makefile specified by filename
• Default makefile naming convention

– makefile
– Makefile

Dependencies and Rules

• Dependencies and Syntax
– target: dep1 dep2 depn
– make will build the first target it finds
– this target is commonly called "all"

• all: bigapp
• Rules

– It is a rule that every rule must begin with a single TAB
character!

• [TAB] gcc -c 1.c
• make has several built-in rules

– make -p will show them to you
• Examples (~mark/pub/51081/makefile.demo): simple,

make1

Macros and Multiple Targets
• a MACRO is a substitutable syntax to give flexibility and

genericity to rules
• Forms:

– MACRONAME=value
– access with either:

• $(MACRONAME) or
• ${MACRONAME} or (sometimes)

$MACRONAME
– undefine a MACRO with:

• MACRONAME=
• A macro can be redefined at the command line:

– make CC=aCC #for HP Ansi compiler
• Examples: (make2, make3)

Suffix Rules
• a Suffix Rule is a directive that applies rules and macros to generic

suffixes
• tell make about a new suffix: SUFFIXES: .cpp
• tell make how to compile it: .cpp.o:
• then the rule: $(CC) -xc++ $(CFLAGS) -I$(INCLUDE) -c $<
• Built in suffix macros:

– $@ The full name of the current target
– $? A list of modified dependencies (a list of files newer than the

target on which the target depends)
– $< The single file that is newer than the target on which the target

is dependent
– $* The name of the target file, WITHOUT its suffix (i.e., without

the .c or .cpp, etc.)
• examples (make5)

Debugging with gdb and ddd

What is a bug?

• a bug exists when executable code returns or
causes results that are unintended or undesirable.
– You can only have a bug in code that's

compiled or a shell script that's executed by
the shell (ie. the compiler or shell do not give
errors about compilation).

• Don't confuse design errors with code bugs (don't
confuse design with implementation)

Finding bugs
• Problem statement: Code runs fast and furious--we must

find out "where" in the code the problem originates.
• Solution statement:

– attempt to make bug repeatable--this is empirical
analysis, pure and simple.

– printf's can help, displaying variables, but they're
limited.

• gcc -o cinfo -DDEBUG cinfo.c
• cinfo

– __DATE__, __TIME__, __LINE__
• Examples: (in ~mark/pub/51081/debug) cinfo.c

Interactive Debuggers
• But interactive debuggers are MUCH better, because they

offer:
– run time code stepping
– variable analysis and modification
– breakpoints (multiple forms)

• Compile for debugging: -g
– Try to void optimizing when debugging

• remaining problems:
– loop tracing (problem doesn't arise until loop has

executed 1M times)
– Optimization problems
– Intermittency

• Examples: debug3 (gdb); debug4 (ddd)

Introduction to Systems
Programming

Processes
Signals

Introduction to Processes
• Multiuser OS

– Ability of an OS to have multiple users using the
system at the same time

• Multitasking OS
– Ability of an OS to run multiple programs at the same

time
– “Pay No Attention To The Man Behind the Screen”

• Concurrency versus Parallelism
– timesharing quantums done by the system scheduler

(called swapper), which is a kernel thread and has
process ID of 0

An Analogy
• Assume a computer

scientist is sitting in his
office reading a book.
His eyes are busily
reading each word, his
brain is focused on
processing all this when
there’s a knock on the
door, and the computer
scientist is interrupted
by someone who looks
like this:

What is a Process?

• A process is an executable “cradle” in which a program
may run

• This “cradle” provides an environment in which the
program can run, offering memory resources, terminal
IO, via access to kernel services.

• When a new process is created, a copy of the parent
process’ environment variables is provided as a default to
the new process

• A process is an address space married to a single default
thread of control that executes on code within that address
space

• ps -yal

Introduction to Processes
• Other kernel threads are created to run the following

services (various Unix kernels vary, YMMV):
– initd (1): parent initializer of all processes
– keventd (2): kernel event handler
– kswapd (3): kernel memory manager
– kreclaimd (4): reclaims pages in vm when unused
– bdflush (5): cleans memory by flushing dirty buffers

from disk cache
– kupdated (6): maintains sanity of filesystem buffers

User and Kernel Space
• System memory is divided into two parts:

– user space
• a process executing in user space is executing in

user mode
• each user process is protected (isolated) from

another (except for shared memory segments and
mmapings in IPC)

– kernel space
• a process executing in kernel space is executing in

kernel mode
• Kernel space is the area wherein the kernel executes
• User space is the area where a user program normally

executes, except when it performs a system call.

Anatomy of a System Call
• A System Call is an explicit request to the kernel made via

a software interrupt
• The standard C Library (libc) provides wrapper routines,

which basically provide a user space API for all system
calls, thus facilitating the context switch from user to
kernel mode

• The wrapper routine (in Linux) makes an interrupt call
0x80 (vector 128 in the Interrupt Descriptor Table)

• The wrapper routine makes a call to a system call handler
(sometimes called the “call gate), which executes in kernel
mode

• The system call handler in turns calls the system call
interrupt service routine (ISR), which also executes in
kernel mode.

ELF (Executable and Linking
Format)

• Heap is for dynamic memory
demand (malloc())

• Stack is for function call storage
and automatic variables

• BSS (Block Started by Symbol)
stores uninitialized static data
int array[100];

• Data Segment stores initialized
static data
char name[] = “bob”;

• Multiple processes can share the
same code segment

dynamic
libraries

unitialized
data area

(BSS)
NULLed out

initialized data
segment

(loaded from object
file on disk)

D
AT

A
SE

G
M

EN
T

Heap

Stackgrows

grows

Text Segment
(YCGH)

C Language Allocation

dynamic
libraries

unitialized
data area

(BSS)
NULLed out

initialized data
segment

(loaded from object
file on disk)

D
A

TA
S

E
G

M
E

N
T

Heap

Stackgrows

grows

Text Segment
(YCGH)

char * p = malloc(1024);

int iarray[20];

int iarray2[] = { 1,2,3 };

int main() { ... }

int myfunc(int x, float y) { int z; }

The Linux Process Descriptor
• Each Linux process is described by a task_struct structure

defined in include/linux/sched.h
• This structure holds information on most aspects of a

process in memory, including, among other items:
– process state
– next and previous task pointers
– next and previous runnable task pointers
– Parent, Child, and Sibling pointers
– tty information
– current directory information
– open file descriptors table
– memory pointers
– signals received

Task State
• TASK_RUNNING: running or waiting to be executed
• TASK_INTERRUPTIBLE: a sleeping or suspended

process, can be awakened by signal
• TASK_STOPPED: process is stopped (as by a debugger

or SIGTSTP, Ctrl-Z)
• TASK_ZOMBIE: process is in “walking dead” state

waiting for parent process to issue wait() call
• TASK_UNINTERRUPTIBLE: task is performing critical

operation and should not be interrupted by a signal
(usually used with device drivers)

Signal Processing

“Introduction to Interprocess
Communication”

What is a Signal?
• A signal is a software interrupt delivered to a

process by the OS because:
– it did something (oops)
– the user did something (pressed ^C)
– another process wants to tell it something (SIGUSR?)

• A signal is asynchronous, it may be raised at any
time (almost)

• Some signals are directly related to hardware
(illegal instruction, arithmetic exception, such as
attempt to divide by 0)

• Others are purely software signals (interrupt, bad
system call, segmentation fault)

Common Signals

• SIGHUP (1): sent to a process when its
controlling terminal has disconnected

• SIGINT (2): Ctrl-C (or DELETE key)
• SIGQUIT (3): Ctrl-\ (default produces core)
• SIGSEGV (11): Segmentation fault
• SIGILL (4): Illegal instruction (default core)
• SIGUSR[1,2]: User-defined signals (10,12)
• kill –l will list all signals
• SIGFPE (8): Floating Point Exception (divide

by 0; integer overflow; floating-point underflow)

Chris Brown’s Top 6 List of Things to
Do with a Signal Once You Trap It

1. Ignore a signal
2. Clean up and terminate
3. Handle Dynamic Configuration (SIGHUP)
4. Report status, dump internal tables
5. Toggle debugging on/off
6. Implement a timeout condition

(cf. Chris Brown, Unix Distributed
Programming, Prentice Hall, 1994)

Reliable and Unreliable Signal APIs

• Signal model provided by AT&T Version 7 was
“not reliable”, meaning that signals could get
“lost” on the one hand, and programs could not
turn signal delivery “off” during critical sections,
on the other hand.

• BSD 4.3 and System V Release 3 delivered
reliable signals, which solved many of the
problems with signals present in Version 7.

• And if that weren’t enough, SVR4 introduced
POSIX signals.

Signal Disposition

• Ignore the signal (most signals can simply be
ignored, except SIGKILL and SIGSTOP)

• Handle the signal disposition via a signal handler
routine. This allows us to gracefully shutdown a
program when the user presses Ctrl-C (SIGINT).

• Block the signal. In this case, the OS queues
signals for possible later delivery

• Let the default apply (usually process
termination)

Original Signal Handling (Version 7)

• Two includes: <sys/types.h> and <signal.h>
• void (*signal(int sig, void (*handler)(int)))(int)

– Translation?
• handler can either be:

– a function (that takes a single int which is the signal)
– the constant SIG_IGN
– the constant SIG_DFL

• signal will return SIG_ERR in case of error
• Examples: (in ~mark/pub/51081/signals): nosignal.c and

ouch.c

Original Signal Handling (Version 7)

• Stopping processing until a signal is received:
– int pause(void); // must include <unistd.h>

• Sending signals (2 forms)
– int kill (pid_t, int sig);
– int raise(int sig); // notice can’t specify which process

• Printing out signal information (#include <siginfo.h>)
– void psignal(int sig, const char *s);

• Examples: ouch.c, sigusr.c, fpe.c

Alarming Signals

• SIGALRM can be used as a kind of “alarm
clock” for a process

• By setting a disposition for SIGALRM, a process
can set an alarm to go off in x seconds with the
call:
– unsigned int alarm(unsigned int numseconds)

• Alarms can be interrupted by other signals
• Examples: mysleep.c, impatient.c

BSD and SysV Handle Unreliability
Issue—In Incompatible Ways

• Berkeley Unix 4.2BSD responded with inventing
a new signal API, but it also rewrote the original
signal() function to be reliable

• Thus, old code that used signal() could now work
unchanged with reliable signals, optionally
calling the new API (sigvec(), etc.)

• Luckily, few programmers used the new
(incompatible) API, most stuck with signal()
usage

BSD and SysV Handle Unreliability
Issue—In Incompatible Ways

• AT&T SVR3 provided reliable signals through a new API,
and kept the older signal() code unreliable (for backward
compatibility reasons)

• Introduced a new primary function:
– void (*sigset(int sig, void (*handler)(int)))(int)
– Since sigset accepted the same parameters as before:

• #define signal sigset /* would port older or BSD4.2
code */

• Introduced a new default for disposition: SIG_HOLD (in
addition to SIG_DFL, SIG_IGN)

BSD and SysV Handle Unreliability
Issue—In Incompatible Ways

• SVR3 added its own set of new functions for reliable
signals:
– int sighold(int sig); /*adds sig to the signal mask

disposition */
– int sigrelse(int sig); /* removes sig from the signal

mask disposition, and waits
for signal to arrive (suspends)*/

– int sigignore(int sig); /* sets disposition of sig to
SIG_IGN */

– int sigpause(int sig); /* combination of sigrelse and
pause(), but safe */

• examples (sigset.c)

Enter POSIX Signals
• Uses the concept of signal sets from 4.2BSD
• A signal set is a bitmask of signals that you want

to block, i.e., signals that you specifically don’t
want to handle

• Each bit in the bitmask (an array of 2 unsigned
longs) corresponds to a given signal (i.e., bit 10
== SIGUSR1)

• All signals not masked (not blocked) will be
delivered to your process

• In POSIX signals, a blocked signal is not thrown
away, but buffered as pending, should it become
unmasked by the process at some later time

Central POSIX Functions

• int sigaddset(sigset_t * set, int signo);
– adds a particular signal to the set

• int sigemptyset(sigset_t * set);
– Zeros out the bitmask (program wants all signals)

• int sigfillset(sigset_t * set);
– Masks all signals (blocks all signals)

• int sigdelset(sigset_t * set, int signo);
– unmasks signo from the set (program wants the signal)

• int sigsend(idtype_t idtype, id_t id, int sig);
• int sigsuspend(const sigset_t * set);

POSIX sigaction
int sigaction (int sig, const struct sigaction *iact, struct

sigaction *oact);

• sa_flags
– * SA_RESTART flag to automatically restart interrupted system

calls
– * SA_NOCLDSTOP flag to turn off SIGCHLD signaling when

children die.
– * SA_RESETHAND clears the handler (ie. resets the default)

when the signal is delivered (recidivist).
– * SA_NOCLDWAIT flag on SIGCHLD to inhibit zombies.
– * SA_SIGINFO flag indicates use value in sa_sigaction over

sa_handler

struct sigaction {
__sighandler_t sa_handler;
void (*sa_sigaction)(int, siginfo_t *, void *);
unsigned long sa_flags
…
sigset_t sa_mask; //set of signals to be BLOCKED

};

POSIX Reentrant Functions
• Reentrant functions are those functions which are

safe for reentrance:
– Scenario: a signal SIGUSR1 is received in the

middle of myfunc().
– The handler for SIGUSR1 is called, which

makes a call to myfunc()
– myfunc() has just been “reentered”

• A function “safe” for reentrance is one that:
– defines no static data
– calls only reentrant functions or functions that

do not raise signals

POSIX Reentrant-Safe Functions

• alarm, sleep, pause
• fork, execle, execve
• stat, fstat
• open, close, creat, lseek, read, write, fcntl, fstat
• sigaction, sigaddset, sigdelset, sig* etc.
• chdir, shmod, chown, umask, uname

	Lecture 4
	make
	What is make?
	The Concept
	Calling Convention and Options
	Dependencies and Rules
	Macros and Multiple Targets
	Suffix Rules
	Debugging with gdb and ddd
	What is a bug?
	Finding bugs
	Interactive Debuggers
	Introduction to Systems Programming
	Introduction to Processes
	An Analogy
	What is a Process?
	Introduction to Processes
	User and Kernel Space
	Anatomy of a System Call
	ELF (Executable and Linking Format)
	C Language Allocation
	The Linux Process Descriptor
	Task State
	Signal Processing
	What is a Signal?
	Common Signals
	Chris Brown¡¯s Top 6 List of Things to Do with a Signal Once You Trap It
	Reliable and Unreliable Signal APIs
	Signal Disposition
	Original Signal Handling (Version 7)
	Original Signal Handling (Version 7)
	Alarming Signals
	BSD and SysV Handle Unreliability Issue¡ªIn Incompatible Ways
	BSD and SysV Handle Unreliability Issue¡ªIn Incompatible Ways
	BSD and SysV Handle Unreliability Issue¡ªIn Incompatible Ways
	Enter POSIX Signals
	Central POSIX Functions
	POSIX sigaction int sigaction (int sig, const struct sigaction *iact, struct sigaction *oact);
	POSIX Reentrant Functions
	POSIX Reentrant-Safe Functions

