
Lecture 2

Regular Expression Parsing
Awk

Shell Quoting

• Shell Globing: file* and file?
• ls file* (the backslash key escapes

wildcards)

Shell Special Characters

~ Home directory
` backtick (command substitution)
Comment
$ Variable expression
& Background job
* String wildcard
() subshell
\ quote next character

[] character set wildcard
{ } don't start sub shell
; command separator echo "hi; echo ho"
' single (strong) quote

< > >> << redirection
? single character wildcard

Shell Quoting
• ‘ ‘ Single quotes disable all shell interpretation
• “ “ Double quotes disable all shell interpretation

except:
– \ tells shell to specifically ignore the next char
– $
– `

• echo “$HOME”
• echo ‘$HOME’

• ` ` backticks (command substitution)
– ls –la `which xclock`
– ls –l `which emacs`
– echo “today is `date`”

Regular Expressions are the ‘re’ in grep

• grep (g/re/p), fgrep, egrep
• ed, ex, vi, emacs
• sed, awk
• perl
• lex, flex
• perl
• python
• tcl

Chicken Parts
• literals: d, o, g
• Character Class: [abc0-9^&*$]

– negated CC’s: [^abc]
• Anchors: ^, $
• . metacharacter = “any single character [except \n]”
• Alternation: (this|or|that)
• Word boundaries: \< ... \>
• Quantifiers: ?, *, + (work on preceding characters)
• Backreferencing: ([abc])\1
• Escaping: \.
• Repeating quantifier: [0-9]{3}, [0-9]{5,6}

Regex fundamentals
• Regular Expressions match parts of lines, and perhaps whole lines
• In this context, a character is defined as ‘a byte represented by a single

character encoding, like ASCII, EBCDIC, JIS’
• THINK LITERALLY, forget English concepts of “words” and

“sentences”
– grep ‘put’ WILL match “Lilliputian” every time
– Read ‘put’ as “the character ‘p’, followed immediately by a ‘u’

character, followed immediately by a ‘t’ character.
– Don’t say ‘u’ matches ‘put’, but rather the regex matches the ‘u’

part of ‘p-u-t’
– egrep ‘i[^t]’ reads: “the character ‘i’, followed by a single

character that is not the character ‘t’
– as far as egrep is concerned, the ‘u’ is ‘p-u-t’ is the number 117, or

0x75.
– The entire regex is attempted at each position in the string before

the ‘pointer’ advances

Regex Engines
• Deterministic Finite Automation (DFA)

– fast
– blunt
– parallel analysis
– “text” directed, generally no backtracking logic
– Examples: ed, egrep, awk, lex, flex

• Nondeterministic Finite Automation (NFA)
– slower, possibly much slower
– intelligent
– backtracking logic built in
– “regex” directed
– Examples: emacs, vi, perl, sed, grep, python

Friedl’s Two Rules
• The earliest match wins:

– echo “The dragging belly indicates that your cat is
much too fat” | egrep ‘cat’

– echo “The dragging belly indicates that your dog is
much too fat” | egrep ‘cat’

– ‘fat|cat|belly|your’ matching process – which matches
first? ‘fat’ or ‘belly’?

• Quantifiers (?, *, +, {min,max}) are “greedy”
– echo “1999” | showmatch ‘[0-9]+’ (what matches: “1”

or “1999”
– echo "billions and billions and billions and billions" |

showmatch '(b.*d)'
– ‘.*’ will match any string every time.

echo "Live Danish Dancers" | egrep "Da(nsk | naides |
ncers)"

• DFA, being text-directed, examines three regex options in
parallel, dropping options as they are excluded. It tries
first the n in Dansk, the the n in Danaides, then the n in
Dancers. Then it tries the s in Dansk, fails, tries the a in
Danaides, fails, and then the c in Dancers, etc.

• NFA, being regex-directed, will first try Dansk until it
fails (on the s), then, will try Danaides (on the a), until it
fails, then will try Dancers until it succeeds. NFA picks
(internal logic) an option, marks its "state", attempts to
run with it, and on failure, returns to nearest saved "state",
picks another option (internal logic), and attempts to run
with it, etc.

Points to Remember

• Does ‘q[^u]’ match the string ‘Iraq’?
• Metacharacters lose their meaning inside

character classes: [*?+]
• What does “\<b.*[tk]\>” match?

– boat
– book
– baby back ribs

• grep does NOT substitute, it matches and prints
the entire line or nothing:
– echo 123 | grep "^[1]" prints 123 (entire input line) or

nothing, it will NOT print just ‘1’

So you understand this?

• Will the following match or not? If it matches,
where does it match?
– echo "a string with a 0 in it" | grep "[0-9]*"

• Will the following match or not? If it matches,
where does it match?
– echo "a string with absolutely no numbers in it

at all" | grep "[0-9]*"

Backtracking Fun with NFA

• Backtracking allows your to refer later to a
previous match:
– echo “hi ho hi ho” |egrep ‘(h?).*\1’
– echo “hi ho hi ho” |egrep ‘(h. h.)\1’

• Will the following match? If so, what?
– echo “hi ho hi ho” |egrep ‘(h? h?)’

• Will the following match? If so, what?
– echo “hi ho hi ho” |egrep ‘(h? h?) \1’

Tie it all together

• Which of the following will match?
– echo "billions and billions and billions and

billions" | egrep '(b.*d) \1'
– echo "billions and billions and billions and

billions" | egrep '(b.*d b.*d) \1'

Common regexes (egrep syntax)
Postal Abbreviation for state [A-Z]{2}

City, ST ^.*,[A-Z][A-Z]

City, ST, Zip ^.*,[A-Z][A-Z] [0-9]{5}(-[0-9]{4})?

Month, Day, Year [A-Z][a-z]{3,9} [0-9]{1,2}, [0-9]{4}

Social Security Number [0-9]{3}-[0-9]{2}-[0-9]{4}

??? (\(...\))?.*[0-9]{3}-[0-9]{4}

??? \$[0-9]*\.[0-9]{2}

Introduction to AWK
• Written by Alfred Aho, Peter Weinberger, Brian

Kernighan in 1977.
• awk is primarily a filter that provides a rich

language in which to display and minipulate
incoming data

• Whereas grep & Co. allows you to search through
a text file and look for something, awk lets you
search through a text file and actually do
something once you’ve found what you’re looking
for

awk and C

• awk shares many syntactic similarities with the C
programming language (Kernighan was heavily
involved in both)

• Whereas a C program requires the program
author to open and close files, and move from
one line to the next in the input, find and isolate
the tokens within a given line, keep track of the
total number of lines and the current number of
tokens, awk does all this for you automatically

• Therefore, we say that awk is “input-driven”, it
must work on lines of input

awk Processing
• awk processes incoming text according to lines which are

called records and elements within those lines called
fields.

• awk processes commands called pattern-actions, or rules.
If a pattern matches, the associated action is performed

• Actions are enclosed in braces {}
• Patterns, if present, are stated before actions outside of

braces
• In an awk rule, either the pattern or the action may be

missing, but not both:
– if the pattern is missing, the action is performed on

every line of the input
– if the action is missing, the default action is to print

the line out to stdout

awk program structure

• Multiple BEGIN sections (optional)
• Multiple END sections (optional)
• Multiple recursive blocks which will operate on

each record (line) of the input file

awk Program Flow
• Process optional BEGIN block
• Open the file (either specified during invocation or from

STDIN)
• Read each line (record) of the input file and parse records

into fields referenced by $n
– $0 denotes the entire record
– each field is demarked by $1, $2, $3, $4, etc.

• Execute each block defined in the awk program on each
record (input line)

• Execute optional END block
• Close the file

awk Patterns

• Patterns may be composed of:
– /regular expressions/

• awk '/[2-3]/' five.lines
• awk '$2 ~ /[2-3]/' five.lines

– A single expression
• awk ‘$2 > 3’ five.lines

– A pair of patterns, separated by a comma
indicating a range of records:
• awk ‘$2 == “2”, $2 == “4”’ five.lines

awk Built-in Variables

• FS: Input field separator (default ‘ ’)
• OFS: Output field separator (default ‘ ’)
• RS: Record Separator (default ‘\n’)
• ARGC: C-style arg count
• ARGV: C-style arg vector (offset 0)
• NF: number of fields in current record
• NR: number of records processed so far
• NOTE: Do NOT put a $ in front of these

variables (i.e., don’t say “$NR” but just “NR”)

Example Blocks
What do the following do?

• awk ‘$4 > 0 {print $1,”from”,$6}’ some.data
• awk ‘{print}’ some.data
• awk ‘{print}’
• awk ‘NF > 0’ some.data
• awk '/n/; /e/' five.lines
• awk ‘/text/ {print}’
• awk ‘BEGIN {print “Hello World”}’
• awk '{ $1 = "THE LINE"; print}' five.lines
• ypcat passwd | awk -F: ‘$1 ~ /mark/ { print $1,"is a

bozo"}‘
• awk ‘BEGIN {print $3-$4 }’ some.data
• awk '{print "Balance for",$1,"from",$6,"is:",$3-$4}'

some.data

A Sample Program

ypcat passwd |
awk 'BEGIN{FS=":"} #could use –F”:” on comand line
{print "Login id:", $1;
print "userid:", $3;
print "group id:", $4;
print "Full Name:", $5;
print "default shell:", $7;
print " " ;}'

String-Matching Patterns
• /regex/

– matches when the current record contains a substring matched by
regex

– /ksh/ { ... } # process lines that contain the letters ‘ksh’
• expression ~ /regex/

– matches if the string value of expression (can be a field like $3)
contains a substring matched by regex

– $7 ~ /ksh/ { ... } # process records whose 7th field contains the
letters ‘ksh’

• expression !~ /regex/
– matches if the string value of expression (can be a field like $3)

does NOT contain a substring matched by regex
– $3 !~ /[4-6]/ { ... } # process records whose 3rd field does not

contain a 4, 5, or a 6

awk Functions
math functions: cos, int, log, sin, sqrt
length(s) returns length of string
index(s,t) returns pos of substr s in string t
substr(s,p,m) returns substring of string s beginning

at p, going length of m
split(string, arrayname[, fieldsep])

split splits string into tokens separated
by the optional fieldsep and stores the
tokens in the array arrayname

gawk C-like extensions:
toupper()
tolower()
sprintf("fmt",expr)

Example (what is my regex matching, revisited):
echo '111111' | awk '{sub (/1/, "X"); print }'

awk Arrays
• awk provides functionality for one-dimensional

arrays (and by extension, multidimensional arrays)
• Arrays are associative in awk, meaning that a

value is associated with an index (as opposed to a
memory-based non-associated array scheme in C
for example)

• By default, array indices begin at 0 as in C

awk Arrays continued
• This means that indexes (which are always

converted to strings) may either be integral or
textual (i.e., a string)
– array[1] may return “un”
– array[three] may return “trois”
awk ‘BEGIN{
for (i in ARGV)
print “Item”,i,“is:”,ARGV[i]
}’ one two three

Array Syntax
• To reference an array element:

– array[index]
• To discover if an index exists in an array:

– if (three in array)
• print “three in French is”,array[three]

• To walk through an array:
– for(x in array) print array[x]

• To delete an individual element at an index:
– delete array[index]

Creating an Array using split()

split1.sh:
echo 'un deux trois quatre' |awk

'{split($0,array)}END{
for (x in array) print "index:",x":",array[x];}‘
split2.sh:
echo 'un deux trois quatre' |
awk '{split($0,array)}
END{if (3 in array)
print "three in French is",array[3]}'

Real World Example

• from Aho, Kernighan, Weinberger, The
AWK Programming Lanugage, chap. 4:

• cat countries
• cat prep.3
• cat form.3
• awk -f prep.3 countries countries | awk -f

form.3

	Lecture 2
	Shell Quoting
	Shell Special Characters
	Shell Quoting
	Regular Expressions are the ¡®re¡¯ in grep
	Chicken Parts
	Regex fundamentals
	Regex Engines
	Friedl¡¯s Two Rules
	echo "Live Danish Dancers" | egrep "Da(nsk | naides | ncers)"
	Points to Remember
	So you understand this?
	Backtracking Fun with NFA
	Tie it all together
	Common regexes (egrep syntax)
	Introduction to AWK
	awk and C
	awk Processing
	awk program structure
	awk Program Flow
	awk Patterns
	awk Built-in Variables
	Example BlocksWhat do the following do?
	A Sample Program
	String-Matching Patterns
	awk Functions
	awk Arrays
	awk Arrays continued
	Array Syntax
	Creating an Array using split()
	Real World Example

