
CMCS 22100 — Programming Languages
Midterm Solutions
November 5 , 2009

1. [10 points] Evaluate the Arith expression (we omit the num and var syntax constructors for
brevity):

let x = plus(3,2)
in let y = times(x,3)

in plus(y,times(x,2))

Use the rules for 7→, and give derivations of the transitions for the last three steps.

Solution: The expression is given in “concrete syntax” style, but for greater compactness of expres-
sion we will use the syntax constructor style.

(0) let(plus(3,2), x.let(times(x,3), y.plus(y, times(x,2)))) 7→
(1) let(5, x.let(times(x,3), y.plus(y, times(x,2)))) 7→
(2) let(times(5,3), y.plus(y, times(5,2))) 7→
(3) let(15, y.plus(y, times(5,2))) 7→
(4) plus(15, times(5,2)) 7→
(5) plus(15, 10) 7→
(6) 25

The derivation of (3) 7→ (4) is a single rule derivation using rule E3 (the Let instruction). The
derivation of (4) 7→ (5) is a two-step derivation using instruction E2 followed by search rule E5.
The derivation of (5) 7→ (6) is a single rule derivation using E1.

2. [10 points] State the formal induction principle as a logical formula for proving properties of lists
of natural numbers, defined by the abstract syntax:

list ::= nil | cons(n,list)

Solution:

P (nil) & (∀l.P (l) =⇒ ∀n.P (cons(n, l))) =⇒ ∀l.P (l).

3. [20 points] Let 7→ be the small-step transition relation for Arith, Prove that plus(e1, e2)
n7→

plus(e′1, e2) if, and only if, e1
n7→ e′1.

Proof: [=⇒] The proof is by induction on n.

Case n = 0: Assume plus(e1, e2)
07→ plus(e′1, e2). By the definition of n7→, for n = 0, we have

plus(e1, e2) = plus(e′1, e2), so e1 = e′1, and hence e1
07→ e′1.

Case n = k + 1: The by the definition of n7→, there exists an expression e such that

plus(e1, e2) 7→ e (1)

e
k7→ plus(e′1, e2) (2)

Claim: The first transition is by the left search rule for plus, e = plus(e′, e2) for some e′ such
that e1 7→ e′.



The transition could not be by the instruction for plus, since then e would be a number n, which is
a final state, an there is no transition sequence from n to plus(e′1, e2). If the transition was by the
left search rule, then e1 would have to be a value n and e = plus(n, e′2), where e2 7→ e′2. But then

we can prove by induction on k that all the transitions in the sequence for e k7→ plus(e′1, e2) must
also use the right search rule for plus, and the corresponding premises of these transition rules give
a transition sequence e′2

k7→ e2, which is impossible, since we can prove that in Arith, a nonempty
transition sequence cannot return to its starting point (this is a corollary of the proof of termination
of Arith expression evaluation).

Thus by this claim, e = plus(e′, e2)
k7→ plus(e′1, e2). The Induction Hypothesis then says that

e′
k7→ e′1. This together with the assumption that e1 7→ e′ yields e1

n7→ e′1 by the definition of n7→.

[⇐=]: We assume e1
n7→ e′1 and must show that plus(e1, e2)

n7→ plus(e′1, e2). Again the proof is
by induction on n.

Case n = 0. Then e1 = e′1 so and hence plus(e1, e2)
07→ plus(e′1, e2).

Case n = k+1. Then by the definition of n7→, there exists an e such that e1 7→ e and e k7→ e′1. The
induction hypothesis is:

(IH) plus(e′, e2)
k7→ plus(e′1, e2)

But plus(e1, e2) 7→ plus(e′, e2) by the left search rule for plus, and this together with the IH
gives plus(e1, e2)

n7→ plus(e′1, e2).

4. [10 points] The self-apply function could be expressed in MinML as fun(x : τ) is apply(x, x).
Find a type τ such that this is well typed according to the typing rules, or show that this is impossible.

Solution: Here we are using the simple, nonrecursive version of function expressions. By the typing
rule for a fun expression, we would have the premise [x : τ ] ` apply(x, x) : τ ′. In order to derive
this premise by the apply rule (the only applicable rule), we would have to have the two premises
[x : τ ] ` x : τ → τ ′ and also [x : τ ] ` x : τ . The second of these certainly holds for any τ by the
variable rule. The first would only hold if τ = τ− > τ ′. Since the size of type expression on the
left is clearly smaller than the type expression on the right, this is clearly impossible.

5. [10 points] The Small Step evaluation rules for MinML define Call-by-Value evaluation. The
Call-by-Name (CBN) version of MinML differs from the one discussed in class in one way: in
function applications the function arguments are “passed” before they are evaluated, rather than after
evaluation. The primitive operator expressions like plus(e1, e2) still need to have their arguments
evaluated before they can be reduced.

(a) [15 points] Give any new or changed rules for small-step evaluation (7→) for the CBN MinML.

Solution: Rule (9.21), the right search rule for apply is dropped, because we don’t want to evaluate
the argument of an application. Rule (9.20), the left search rule for apply is unchanged since
application still requires that the function be evaluated. Rule (9.16), the apply instruction, is replaced
by

(v = fun f(x : τ1) : τ2 is e)

apply(v, e2) 7→ {v, e2/f, x}e
(9.16′)

All the other rules are unchanged.

2



(b) [10 points]: Do the typing rules for CBN MinML differ from those of the normal CBV MinML?
If so, show the altered typing rules.

Solution: The typing rules for Call-By-Name are the same as those for Call-By-Value. Typing
judgements tell us about the kind of value computed by an expression, and this value and its type
will not change when we change the order of evaluation.

In a purely functional language like MinML, the only aspect of a computation that is affected by
the order of evaluation is whether a computation will terminate. Because CBN makes it possible to
avoid evaluating a function argument that is not used by the function (e.g. fun f(x : τ1) : τ2 is 3),
the evaluation of more expressions will terminate in CBN. But typing judgements don’t say anything
about termination of the expression being typed – they just say that if the evaluation of the expression
does terminate, the resulting value will have the specified type.

3


