
CS 221/321 Programming Languages Homework Solution 4
Fall 2009 Due Nov 12, 2009

1. [75 points] We can augment the MinML language by adding pairs (binary Cartesian products).
Concretely, this amounts to adding three new expression forms to the abstract syntax, as shown
here:

e ::= . . . | (e, e) | fst(e) | snd(e)

The basic pair expression has the form (e1, e2), where e1 and e2 are arbitrary expressions. Its value
is a pair made up of the values of e1 and e2. The expression fst(e) projects out the first component
of the pair denoted by e, while snd(e) yields the second component. Thus if v = (2, true),
then fst(v) = 2 and snd(v) = true. Note that the first and second components of a pair can have
different types, and also that those types can be arbitrary; a pair can have primitive values, functions,
or pairs as components.

The definition of a value is also extended to include pair values:

v ::= . . . | (v, v)

i.e., a pair of values is a value.

The type expressions are correspondingly extended with a product form:

τ ::= . . . | τ ∗ τ

As with the function arror operator, the product operator for types is writen using infix notation.

(a) [10 points]. Add new typing rules for the three new expression forms (note that intuitively, a
value like (2, true) has the product type int ∗ bool).

Solution:

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` (e1, e2) : τ1 ∗ τ2

(P1)

Γ ` e : τ1 ∗ τ2
Γ ` fst(e) : τ1

(P2)
Γ ` e : τ1 ∗ τ2
Γ ` snd(e) : τ2

(P3)

(b) [15 points]. Add new small-step evaluation rules for the transition relation 7→ to cover the new
expression forms. Evaluation of a pair expression should be left-to-right, as it is for the arguments
of plus and apply. [Hint: there will be only 6 new rules, two of which will be instructions.]

Solution: Note that in rules (PE1) and (PE2) the pair must be fully evaluated before the projections
can be evaluated. One can imaging “call-by-name” versions of these rules that did not evaluate
the discarded pair element, but this would conflict with the search rules, which specify left-to-right
evaluation of pair expressions. Note also that there is no instruction rule for pair expressions since
(v1, v2) is a value, and hence a final state in the transition system.

fst((v1, v2)) 7→ v1
(PE1)

snd((v1, v2)) 7→ v2
(PE2)

e 7→ e′

fst(e) 7→ fst(e′)
(PE3)

e 7→ e′

snd(e) 7→ snd(e′)
(PE4)

e1 7→ e′1
(e1, e2) 7→ (e′1, e2)

(PE5)
e1 7→ e′1

(e1, e2) 7→ (e′1, e2)
(PE6)

(c) [10 points]. State the new clauses in the Inversion Theorem (Theorem 9.1, p. 53) and the
Canonical Forms Lemma (Lemma 10.2, p. 61) needed to deal with pairs.

Solution:
Inversion Theorem:
(1) Γ ` (e1, e2) : τ1 ∗ τ2 =⇒ Γ ` e1 : τ1 and Γ ` e2 : τ2
(2) Γ ` fst(e) : τ =⇒ ∃τ2.Γ ` e : τ ∗ τ2
(3) Γ ` snd(e) : τ =⇒ ∃τ1.Γ ` e : τ1 ∗ τ
(d) [20 points]. Give the new case of the proof of the Progress Theorem relating to pair expressions
of the form (e1, e2).

Solution: The assumption of the theorem is that ` e : τ , where e = (e1, e2), and the proof is by
induction on the derivation of the typing judgment. By the Inversion Theorem, we have τ = τ1 ∗ τ2
and

(1) ` e1 : τ1

(2) ` e2 : τ2

The induction hypotheses are
(IH1) e1 avalueor e1 7→ e′1

(IH2) e2 avalueor e2 7→ e′2

If e1 and e2 are both values, then e = (e1, e2) is also a value, and we are done. If e1 7→ e′1 then
stepe(e′1, e2) by (PE5). Finally, if e1 is a value and e2 7→ e′2 then stepe(e1, e′2) by (PE6).

2

(e) [20 points]. Give the new cases of the Preservation Theorem relating to expressions of the form
fst(e).

Solution: The proof assumptions are that ` e : τ and e 7→ e′, and the proof is by induction on the
derivation of the transition judgement.

Case e = fst((v1, v2)) and e 7→ v1, with e′ = v1 (rule (Pe1)). Then e = (e1, e2) and by inversion
we have ` v1 : τ , hence ` e′ : τ , as required.

Case e = fst(e1) and e′ = fst(e′1) where e1 7→ e′1 (rule (PE3)). By inversion, there exists a type
τ2 such that ` e1 : τ ∗ τ2. The induction hypothesis is ` e′1 : τ ∗ τ2. Thus by the rule (P2) from
part (a) we have ` fst(e′1) : τ , i.e. ` e′ : τ .

3

