CS 221/321 Programming Languages Homework Solution 4
Fall 2009 Due Nov 12, 2009

1. [75 points] We can augment the MinML language by adding pairs (binary Cartesian products).
Concretely, this amounts to adding three new expression forms to the abstract syntax, as shown
here:

ex=...| (e, e)|fst(e) | snd(e)

The basic pair expression has the form (e, ea), where e; and eg are arbitrary expressions. Its value
is a pair made up of the values of e; and es. The expression £st(e) projects out the first component
of the pair denoted by e, while snd(e) yields the second component. Thus if v = (2, true),
then fst(v) = 2 and snd(v) = true. Note that the first and second components of a pair can have
different types, and also that those types can be arbitrary; a pair can have primitive values, functions,
or pairs as components.

The definition of a value is also extended to include pair values:
vi=...| (v, v)

i.e., a pair of values is a value.

The type expressions are correspondingly extended with a product form:
Tu=...|T*T

As with the function arror operator, the product operator for types is writen using infix notation.

(a) [10 points]. Add new typing rules for the three new expression forms (note that intuitively, a
value like (2, true) has the product type int * bool).

Solution:

'tei:mm T'he: m
I F (61,62): T1 X T2

(P1)

'ke: m*xm
' F snd(e) : 7

I'Fe: mixm
I'F fst(e): 7

(P2) (P3)

(b) [15 points]. Add new small-step evaluation rules for the transition relation — to cover the new
expression forms. Evaluation of a pair expression should be left-to-right, as it is for the arguments
of plus and apply. [Hint: there will be only 6 new rules, two of which will be instructions.]

Solution: Note that in rules (PE1) and (PE2) the pair must be fully evaluated before the projections
can be evaluated. One can imaging “call-by-name” versions of these rules that did not evaluate
the discarded pair element, but this would conflict with the search rules, which specify left-to-right
evaluation of pair expressions. Note also that there is no instruction rule for pair expressions since
(v1,v2) is a value, and hence a final state in the transition system.

fst((vy,v2)) — v1 (PEL) snd((vy,v2)) — vo (PE2)
e e e e

fst(e) — fst(e’) (PES3) snd(e) — snd(e’) (PE4)
Lo e (PE5) L (PES)

(e1,e2) — (€}, e2) (e1,e2) — (€}, e2)

(c) [10 points]. State the new clauses in the Inversion Theorem (Theorem 9.1, p. 53) and the
Canonical Forms Lemma (Lemma 10.2, p. 61) needed to deal with pairs.

Solution:

Inversion Theorem:

(DT F (e1,e2): 12 = Ik ep:mand T'F eg: 7
Q) F fst(e): 7 = Inl Fe: 7xn

Bl Fsndle): 7 = InT Fe: mx7

(d) [20 points]. Give the new case of the proof of the Progress Theorem relating to pair expressions
of the form (e1, e3).

Solution: The assumption of the theorem is that - e : 7, where e = (e, e2), and the proof is by
induction on the derivation of the typing judgment. By the Inversion Theorem, we have 7 = 71 * 7
and

(1) F el . 71

(2) Fe: m

The induction hypotheses are
(IH1) e; avalueor eg — €

(IH2) ey avalueor ey — €

If e; and eg are both values, then e = (eq, e2) is also a value, and we are done. If e; — ¢ then
stepe(e], e2) by (PE5). Finally, if e is a value and e3 — €, then stepe(eq, €)) by (PE6).

(e) [20 points]. Give the new cases of the Preservation Theorem relating to expressions of the form
fst(e).

Solution: The proof assumptions are that - e : 7 and e — €', and the proof is by induction on the
derivation of the transition judgement.

Case e = fst((v1,v2)) and e — vy, with ¢’ = vy (rule (Pel)). Then e = (e, e2) and by inversion
we have F vy : 7, hence - € : 7, as required.

Case e = fst(e1) and €/ = fst(e]) where e; — €] (rule (PE3)). By inversion, there exists a type
T such that = e; : 7 % 75. The induction hypothesis is - €} : 7 % 72. Thus by the rule (P2) from
part (a) we have - fst(e)): 7,ie. F €' : 7.

