CS 221/321 Programming Languages Homework Solution 3
Fall 2009 Due October 29, 2009

1. Termination in Arith.

Prop: foralle € Arith. - eok = Jn € Nat.e — num(n).

Proof: We define a function size mapping Arith expressions to natural numbers. size simply counts the
number of syntax constructors in the expression:

size(num(n)) 1

size(var(z)) = 1
size(plus(ej,e2)) = size(er)+ size(eq) +1
size(times(e1,e3)) = size(er)+ size(es) +1
size(let(er,z.e2)) = size(e;)+size(es) +1

Now we prove a lemma saying that if e — ¢’, the size of ¢’ is strictly less than the size of e.
Lemma. (— e,e’) = size(e’) < size(e). Proof: By rule induction the judgement e — ¢’.

Case (base): e — ¢’ by rule E1. Then ¢ = plus(num(m),num(n)) and ¢’ = num(p), where p = m + n. So
size(e) = 3 and size(e’) = 1, hence size(e’) < size(e).

Case (base): e — ¢’ by rule E2. Same as the previous case, with plus replaced by times.
Case (base): e — €’ by rule E3. Then e = let(num(n), z.e2) and ¢’ = {num(n)/z}es.

Claim: size({num(n)/x}es) = size(eq). This is proved by a straightforward induction over the structure
of ey. Intuitively, the substitution results in all var(z) subterms of es being replaced by num(n). Since
var(z) and num(n) are both of size 1, the substitution does not change the size of the term.

Since size(e) = size(ey) + size(eqz) + 1, and by the Claim, size(e’) = size(es), we have size(e') <
size(e).

Case (ind): e — ¢’ by rule E4. Then e = plus(ey, ez) and €’ = plus(e], e2), where (by inversion), e; — €.
(IH) size(e)) < size(eq).

Hence

size(e’) = size(e]) +size(es) +1
< size(e;) + size(ez) +1

= size(e)

Cases (ind): e — €’ by rule E5, E6, E7, and E8 are essentially the same as E4 with minor variations.

2. [20 points] Prove the following version of the Substitution Lemma for Arith:
Lemma: IfT" - e; okandT'U {z} F ey ok, then T F {e;/x}es ok.

Proof: By induction on the derivation of I' U {z} F e ok. [Note: it is tempting to try induction on the the
structure of es, but this approach gets hung up on the let case.

Case (base): By rule S1, with eo = var(x). Then {e;/x}es = e1,s0T F {e1/x}es ok by assumption.



Case (base): By rule S1, with es = var(y) where y # z. Then {e;/x}es = es = y, so the fact that
Tu{z} F e ok implies that y € T'U{z}, but since y # x this means that y € T'. Hence I" - {e;/xz}es ok
by the var rule (S1).

Case (base): By rule S2. Then es = num(n). Then {e; /x}es = num(n) by the definition of substitution, and
' b {e1/x}es ok by the num rule (S2).

Case (ind): By rule S3, with e = plus(es, e4). Then the induction hypotheses are:

(IH1) T' + {e1/z}es ok and

(IH2) T + {e1/x}eq ok

But {e1/x}eq = plus({e1/x}es, {e1/x}es), and T + plus({e;/x}es, {e1/x}es) ok by the plus rule (S3).
Case (ind): By rule S4, es = X (es, e4). Similar to the previous case.

Case (ind): By rule S5 (let rule). Then es = let(es, y.e4). We can assume that the bound variable y is not
2 (if necessary by a-converting the bound variable). Then {e;/x}es = let({e1/x}es,y.({e1/x}es)). B
inversion of the second assumption, we have

(1) Tu{z} F e3 0k

(2) (TU{z})U{y} F edok

and (2) can be rephrased as

(3) VU {x}) F ed ok

where I" = T" U {y}. Noting that I” F ¢; (a “Weakening Lemma” allows extraneous variables to be added
to the context in an ok judgement). We have the induction hypotheses:

(IH1) T F {ei/x}es) ok
(IH2) TV F {e1/x}eq) ok
But from these if follows by the let rule (S5) that

' let({e1/x}es,y.({e1/x}eq)) ok
HenceI' - {e1/xz}ey ok.
3. [15 points] Write out the Induction Principle for proofs of properties of Arith expression as a logical

formula. This is a bit of a trick question. The problem is how to treat the abstractor argument of let, which
is not quite an expression.

Here is the simple version: Let P(e) be a predicate over Arith expressions.

VYn.P(num(n)) &
Va.P(var(z)) &
Vey.Ves. (P(e1)&P(eq
Vey.Ves. (P(e1)&P(eq
Ve .Ves. (P(e1)&P(eq
= Ve.P(e

= P(plus(ej,es))) &
= P(times(er,ez))) &
= P(let(ey,m.e2)))

)
)
)
)

The problem with this formulation is that it may not work for a predicate P which depends on taking proper
account of free variables. Note that the last clause for let expressions has an inductive hypothesis P(e3)
where e, has an additional free variable.

In some cases, one needs to design the predicate so that it relates an epression to a context I" of free variables.
Even this approach may not succeed — take the previous problem as an example.

Most of our proofs will involve inductions not directly over the structure of expressions, but over derivations
of judgments for typing or transition relations, which relate expressions to contexts, or closed expressions to
other closed expressions.

4. [15 points] Consider an alternate, more flexible, way of treating the primitive arithmetic operations plus
and times in Arith. Instead of making plus and times basic syntactic forms of the language, we have a more



general form oper (o, e1, e2) with a new syntactic category
o = +|x

e ==num(n) | var(v) | oper(o,e,e) | Let(e, z.€)

Give rules for the static (I' - e ok) and dynamic (e — ¢’) semantics for this alternative abstract syntax. You
should unify the instruction rules for arithmetic operations by assuming a mapping from operator symbols
(4, x) to the corresponding arithmetic operations. We could denote this mapping as M (o), so M (+) denotes
the real arithmetic addition operation.

New static rule:

I'F e ok T'F eyo0k

4
(S3/54) I' - oper(o,e1,ez) ok

New dynamic rules:

(p = M(o)(m,n))

E1/E2
(E1/E2) oper (o, num(m), num(n)) — num(p)
e1 — €}
E4/E6
(E4/E6) oper(o, e1, ez) — oper(o, €}, ez)
/
(E5/ET) 2 %

oper(o,num(n), ez) — oper(o,num(n), e5)

where as suggested, M(o) denotes the mathematical operation that the operator symbol o represents, e.g. it
maps “+” to the plus operation on natural numbers. The (E1/E2) rule replaces the instruction rules for plus
and times. The other two rules replace pairs of search rules for plus and times.

5. [20 points]. Programming exercise. Modify the code in the file arith-SOS.sml to use the modified abstract
syntax from Problem 4. Make sure your code compiles without error, and test it.

See the file arith-SOS-oper.sml (linked from the class web page).



