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Fall 2009 Due 13 Oct 2009

1. We use ref for the binary relation corresponding to the re flect function.

leaf(n)
leaf( (1)
n) leaf(n) ref
node(l,r) tree r r2 ref l 12 ref

(2)

We will say that “ref is single-valued at z” to mean that there is a unique y such that x y ref
and moreover that ytree. In this case, we call the corresponding y “the value of ref at x.”

node(l,r) node(r2,12) ref

As rule (1) is the only rule which defines z y ref with x a leaf, if leaf(n) holds, then there
is a unique y such that leaf(n) y ref, namely y = leaf(n).

Suppose inductively that » tree and ! tree, and that ref is single-valued on r and [. Let r2
and [2 be the values of ref at 7 and [, respectively. Then by rule R"“? we know that node(l, ") and
by rule (2), we know that node(l,r) node(r2,l2) ref.

Suppose that node(l, ) node(r2,(2) ref and also that node(l,) node(r3,13) ref. Since
rule (2) is the only rule that could have produced these expressions, we conclude that r 3 ref and
I 13 ref. But by assumption ref is single-valued at r and /, hence we have r2 = r3 and (2 = [3,
so ref is single-valued at node(l, r).

This completes the structural induction over the definition of a tree, hence we have shown that the
binary relation ref as defined above is single-valued at every tree. In other words, ref well-defines
a function, which we clearly recognize as the re flect function defined in the exercise.
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2. The rule n nat
n
(Riger)

n succ(n) nat
is admissible but not derivable.

First, a useful lemma: n nat is derivable from no assumptions iff n = succ®(zero) for some
k € N. Obviously if n = succ”(zero) then n nat is derivable from no assumptions by R7%
and k applications of R™ . We show the converse by induction on the length of a derivation. If
the derivation has length 1, then it must consist only of the rule R7% in which case n = zero =
succ’(zero), as desired. If the derivation has length k, then it ends with the rule R , so we must
have n = succ(ny) for some n; such that n; nat is derivable from no assumptions by a derivation

of length k — 1. By induction, n; = succ”~!(zero), hence n = succ”(zero).

R!ess is admissible: Suppose n nat is derivable from no assumptions. By the lemma above,

wmcr
n = succk(zero) for some k € N. One application of R7%_ and one application of R3¢ gives us

zero succ(zero) less

from no assumptions. Then k applications of R3S, gives us

k:-i-l(

succk(zero) succ zero) less

which is easily seen to be equivalent to n succ(n) less.

R!ess is not derivable: If the rule were derivable, it would be true in every model of nat, succ.

ner
( Rnat)
w nat «

However, if we add the rule
(where w is a new primitive), we can show that w succ(w) less is not derivable. For if w ever
appears in a statement of the form = y less, it must appear as succ(w). By induction on the

erivation of such a statement: if the derivation uses applied to the conclusion o , the
d t f such a stat t: if the d t leeii) pplied to th | f R, th

conclusion is zero succ(w) less. If RS is used, then both arguments in the conclusion begin

with succ. Hence w succ(w) 1less is not derivable in this model, so Rﬁfﬁfci is not derivable in
general.

The two rules R!®*3 and RY3S are sufficient to define the usual less-than ordering on N, as

zZero succ
suggested by the lemma. Here is a derivation of 3 < 5: from no assumptions, apply R"%_and then

RN twice to get succ?(zero) nat. Then apply RS to get zero succ?(zero) less. Finally,

apply R3¢ three times to get the desired conclusion.
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3. Suppose s — s’ for some n > 0. If n = 0, then we have s’ = s, so we also have s — . If
-1 . :
n > 0, then there must be an s” such that s — s” and s "= s'. By induction on n, s” ~ s, and
then applying the definition of — we conclude that s + '
Conversely, suppose s — 5. Proceed by induction on the length of a derivation of this fact. If it

R . 0 . .
can be derived in a single step, then s’ = s, so we have s — '. If it can be derived in n > 1 steps,
then the last step must use the rule

s s
and s” > s’ must be derivable in n — 1 steps. By the induction hypothesis, s” — s’ for some k € N.

Hence, applying the definition of k»i}, we find that s 75" ' , as desired. O
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3. Lambda calculus

(a) Here A, and . are terminals, as are all variable symbols x, where x € Var, a countable set
of variable symbols. For instance Var could be the set of all alphanumeric identifiers.

V o= =z, ... (z € Var)
T == V|TT|AV.T
(b)
Terms t ::= var(x] | apply(t1,t2) | lambda(var|z],t)
where x € Var, and ¢, ¢, and 5 all designate terms.

(©) .
M (Variables)
var[x] term
t1 term ty term o
Applicat
apply(ti,t2) term (Application)
Var[a:] term t term .
A
lambda(var|z],t) term (A Abstraction)
(d)
nlambdas(var[z]) = 0
nlambdas(apply(t1,t2)) = nlambdas(ty) + nlambdas(tz)

nlambdas(lambda(var[n],t)) = 1+ nlambdas(t)



