1. We use ref for the binary relation corresponding to the reflect function.

$$\frac{\frac{\text{leaf}(n)}{\text{leaf}(n) \text{ leaf}(n) \text{ ref}}}{\text{node}(l,r) \text{ tree} \quad r \cdot r2 \text{ ref} \quad l \cdot l2 \text{ ref}}{\text{node}(l,r) \text{ node}(r2,l2) \text{ ref}} \quad (2)$$

We will say that "ref is single-valued at x" to mean that there is a unique y such that $x \ y$ ref and moreover that ytree. In this case, we call the corresponding y "the value of ref at x."

As rule (1) is the only rule which defines $x \ y \ \text{ref with } x \text{ a leaf}, \text{ if } \text{leaf}(n) \text{ holds}, \text{ then there}$ is a unique y such that $\text{leaf}(n) \ y \ \text{ref}, \text{ namely } y = \text{leaf}(n).$

Suppose inductively that r tree and l tree, and that ref is single-valued on r and l. Let r2 and l2 be the values of ref at r and l, respectively. Then by rule R_{node}^{tree} we know that node(l,r) and by rule (2), we know that node(l,r) node(r2,l2) ref.

Suppose that $node(l, r) \quad node(r2, l2) \quad ref \ and \ also that <math>node(l, r) \quad node(r3, l3) \quad ref.$ Since rule (2) is the only rule that could have produced these expressions, we conclude that $r \quad r3 \quad ref \ and \ l \quad l3 \quad ref.$ But by assumption ref is single-valued at $r \quad and \quad l$, hence we have $r2 = r3 \quad and \quad l2 = l3$, so ref is single-valued at node(l, r).

This completes the structural induction over the definition of a tree, hence we have shown that the binary relation ref as defined above is single-valued at every tree. In other words, ref well-defines a function, which we clearly recognize as the reflect function defined in the exercise.

CS 221 Fall 2009	Programming Languages	Homework Solution 2 Due 13 Oct 2009

2. The rule

$$\frac{n \text{ nat}}{n \text{ succ}(n) \text{ nat}} \quad (R_{incr}^{less})$$

is admissible but not derivable.

First, a useful lemma: n nat is derivable from no assumptions iff $n = \operatorname{succ}^k(\operatorname{zero})$ for some $k \in \mathbb{N}$. Obviously if $n = \operatorname{succ}^k(\operatorname{zero})$ then n nat is derivable from no assumptions by R_{zero}^{nat} and k applications of R_{succ}^{nat} . We show the converse by induction on the length of a derivation. If the derivation has length 1, then it must consist only of the rule R_{zero}^{nat} , in which case $n = \operatorname{zero} = \operatorname{succ}^0(\operatorname{zero})$, as desired. If the derivation has length k, then it ends with the rule R_{succ}^{nat} , so we must have $n = \operatorname{succ}(n_1)$ for some n_1 such that n_1 nat is derivable from no assumptions by a derivation of length k-1. By induction, $n_1 = \operatorname{succ}^{k-1}(\operatorname{zero})$, hence $n = \operatorname{succ}^k(\operatorname{zero})$.

 R_{incr}^{less} is admissible: Suppose n nat is derivable from no assumptions. By the lemma above, $n = succ^k(zero)$ for some $k \in \mathbb{N}$. One application of R_{zero}^{nat} and one application of R_{zero}^{less} gives us

from no assumptions. Then k applications of R_{succ}^{less} gives us

$$\operatorname{succ}^k(\operatorname{zero}) \operatorname{succ}^{k+1}(\operatorname{zero})$$
 less

which is easily seen to be equivalent to n succ(n) less.

 R_{incr}^{less} is not derivable: If the rule were derivable, it would be true in every model of nat, succ. However, if we add the rule

$$\frac{}{\omega \text{ nat}}$$
 (R_{ω}^{nat})

(where ω is a new primitive), we can show that ω $\operatorname{succ}(\omega)$ less is not derivable. For if ω ever appears in a statement of the form x y less, it must appear as $\operatorname{succ}(\omega)$. By induction on the derivation of such a statement: if the derivation uses R_{zero}^{less} applied to the conclusion of R_{ω}^{nat} , the conclusion is $\operatorname{zero} \operatorname{succ}(\omega)$ less. If R_{succ}^{less} is used, then both arguments in the conclusion begin with succ . Hence ω $\operatorname{succ}(\omega)$ less is not derivable in this model, so R_{incr}^{less} is not derivable in general.

The two rules R_{zero}^{less} and R_{succ}^{less} are sufficient to define the usual less-than ordering on \mathbb{N} , as suggested by the lemma. Here is a derivation of 3 < 5: from no assumptions, apply R_{zero}^{nat} and then R_{succ}^{nat} twice to get $\operatorname{succ}^2(\operatorname{zero})$ nat. Then apply R_{zero}^{less} to get zero $\operatorname{succ}^2(\operatorname{zero})$ less. Finally, apply R_{succ}^{less} three times to get the desired conclusion.

|--|

3. Suppose $s \stackrel{n}{\mapsto} s'$ for some $n \geq 0$. If n = 0, then we have s' = s, so we also have $s \stackrel{*}{\mapsto} s'$. If n > 0, then there must be an s'' such that $s \mapsto s''$ and $s'' \stackrel{n-1}{\mapsto} s'$. By induction on $n, s'' \stackrel{*}{\mapsto} s'$, and then applying the definition of $\stackrel{*}{\mapsto}$ we conclude that $s \stackrel{*}{\mapsto} s'$.

Conversely, suppose $s \stackrel{*}{\mapsto} s'$. Proceed by induction on the length of a derivation of this fact. If it can be derived in a single step, then s' = s, so we have $s \stackrel{0}{\mapsto} s'$. If it can be derived in n > 1 steps, then the last step must use the rule

$$\frac{s \mapsto s'' \ s'' \stackrel{*}{\mapsto} s'}{s \stackrel{*}{\mapsto} s'}$$

and $s'' \stackrel{*}{\mapsto} s'$ must be derivable in n-1 steps. By the induction hypothesis, $s'' \stackrel{k}{\mapsto} s'$ for some $k \in \mathbb{N}$. Hence, applying the definition of $\stackrel{k+1}{\mapsto}$, we find that $s \stackrel{k+1}{\mapsto} s'$, as desired.

CS 221 Fall 2009 **Programming Languages**

Homework Solution 4 Due 13 Oct 2009

3. Lambda calculus

(a) Here λ , and . are terminals, as are all variable symbols x, where $x \in Var$, a countable set of variable symbols. For instance Var could be the set of all alphanumeric identifiers.

$$V ::= x, \dots (x \in Var)$$

 $T ::= V \mid TT \mid \lambda V. T$

(b)

 $Terms \ t ::= \mathtt{var}[x] \mid \mathtt{apply}(t_1, t_2) \mid \mathtt{lambda}(\mathtt{var}[x], t)$

where $x \in Var$, and t, t_1 , and t_2 all designate terms.

(c)

$$\frac{(x \in \text{Var})}{\text{var}[x] \text{ term}} \quad \text{(Variables)}$$

$$\frac{t_1 \text{ term} \quad t_2 \text{ term}}{\text{apply}(t_1, t_2) \text{ term}} \quad \text{(Application)}$$

$$\frac{\text{var}[x] \text{ term} \quad t \text{ term}}{\text{lambda}(\text{var}[x], t) \text{ term}} \quad (\lambda \text{ Abstraction)}$$

(d)

$$\begin{array}{rcl} nlambdas(\mathtt{var}[x]) & = & 0 \\ nlambdas(\mathtt{apply}(t_1,t_2)) & = & nlambdas(t_1) + nlambdas(t_2) \\ nlambdas(\mathtt{lambda}(\mathtt{var}[n],t)) & = & 1 + nlambdas(t) \end{array}$$