CS 221 Programming Languages Homework Solution 1
Fall 2009 Due 13 Oct 2009

1. We use ref for the binary relation corresponding to the re flect function.

leaf(n)
leaf((1)
n) leaf(n) ref
node(l,r) tree r r2 ref l 12 ref

(2)

We will say that “ref is single-valued at z” to mean that there is a unique y such that x y ref
and moreover that ytree. In this case, we call the corresponding y “the value of ref at x.”

node(l,r) node(r2,12) ref

As rule (1) is the only rule which defines z y ref with x a leaf, if leaf(n) holds, then there
is a unique y such that leaf(n) y ref, namely y = leaf(n).

Suppose inductively that » tree and ! tree, and that ref is single-valued on r and [. Let r2
and [2 be the values of ref at 7 and [, respectively. Then by rule R"“? we know that node(l, ") and
by rule (2), we know that node(l,r) node(r2,l2) ref.

Suppose that node(l,) node(r2,(2) ref and also that node(l,) node(r3,13) ref. Since
rule (2) is the only rule that could have produced these expressions, we conclude that r 3 ref and
I 13 ref. But by assumption ref is single-valued at r and /, hence we have r2 = r3 and (2 = [3,
so ref is single-valued at node(l, r).

This completes the structural induction over the definition of a tree, hence we have shown that the
binary relation ref as defined above is single-valued at every tree. In other words, ref well-defines
a function, which we clearly recognize as the re flect function defined in the exercise.

CS 221 Programming Languages Homework Solution 2
Fall 2009 Due 13 Oct 2009
2. The rule n nat
n
(Riger)

n succ(n) nat
is admissible but not derivable.

First, a useful lemma: n nat is derivable from no assumptions iff n = succ®(zero) for some
k € N. Obviously if n = succ”(zero) then n nat is derivable from no assumptions by R7%
and k applications of R™ . We show the converse by induction on the length of a derivation. If
the derivation has length 1, then it must consist only of the rule R7% in which case n = zero =
succ’(zero), as desired. If the derivation has length k, then it ends with the rule R , so we must
have n = succ(ny) for some n; such that n; nat is derivable from no assumptions by a derivation

of length k — 1. By induction, n; = succ”~!(zero), hence n = succ”(zero).

R!ess is admissible: Suppose n nat is derivable from no assumptions. By the lemma above,

wmcr
n = succk(zero) for some k € N. One application of R7%_ and one application of R3¢ gives us

zero succ(zero) less

from no assumptions. Then k applications of R3S, gives us

k:-i-l(

succk(zero) succ zero) less

which is easily seen to be equivalent to n succ(n) less.

R!ess is not derivable: If the rule were derivable, it would be true in every model of nat, succ.

ner
(Rnat)
w nat «

However, if we add the rule
(where w is a new primitive), we can show that w succ(w) less is not derivable. For if w ever
appears in a statement of the form = y less, it must appear as succ(w). By induction on the

erivation of such a statement: if the derivation uses applied to the conclusion o , the
d t f such a stat t: if the d t leeii) pplied to th | f R, th

conclusion is zero succ(w) less. If RS is used, then both arguments in the conclusion begin

with succ. Hence w succ(w) 1less is not derivable in this model, so Rﬁfﬁfci is not derivable in
general.

The two rules R!®*3 and RY3S are sufficient to define the usual less-than ordering on N, as

zZero succ
suggested by the lemma. Here is a derivation of 3 < 5: from no assumptions, apply R"%_and then

RN twice to get succ?(zero) nat. Then apply RS to get zero succ?(zero) less. Finally,

apply R3¢ three times to get the desired conclusion.

CS 221 Programming Languages Homework Solution 3
Fall 2009 Due 13 Oct 2009

3. Suppose s — s’ for some n > 0. If n = 0, then we have s’ = s, so we also have s — . If
-1 . :
n > 0, then there must be an s” such that s — s” and s "= s'. By induction on n, s” ~ s, and
then applying the definition of — we conclude that s + '
Conversely, suppose s — 5. Proceed by induction on the length of a derivation of this fact. If it

R . 0 . .
can be derived in a single step, then s’ = s, so we have s — '. If it can be derived in n > 1 steps,
then the last step must use the rule

s s
and s” > s’ must be derivable in n — 1 steps. By the induction hypothesis, s” — s’ for some k € N.

Hence, applying the definition of k»i}, we find that s 75" ' , as desired. O

CS 221 Programming Languages Homework Solution 4
Fall 2009 Due 13 Oct 2009

3. Lambda calculus

(a) Here A, and . are terminals, as are all variable symbols x, where x € Var, a countable set
of variable symbols. For instance Var could be the set of all alphanumeric identifiers.

V o= =z, ... (z € Var)
T == V|TT|AV.T
(b)
Terms t ::= var(x] | apply(t1,t2) | lambda(var|z],t)
where x € Var, and ¢, ¢, and 5 all designate terms.

(©) .
M (Variables)
var[x] term
t1 term ty term o
Applicat
apply(ti,t2) term (Application)
Var[a:] term t term .
A
lambda(var|z],t) term (A Abstraction)
(d)
nlambdas(var[z]) = 0
nlambdas(apply(t1,t2)) = nlambdas(ty) + nlambdas(tz)

nlambdas(lambda(var[n],t)) = 1+ nlambdas(t)

