
CS 221 Programming Languages Homework Solution 1
Fall 2009 Due 13 Oct 2009

1. We use ref for the binary relation corresponding to the reflect function.
leaf(n)

leaf(n) leaf(n) ref
(1)

node(l, r) tree r r2 ref l l2 ref

node(l, r) node(r2, l2) ref
(2)

We will say that “ref is single-valued at x” to mean that there is a unique y such that x y ref
and moreover that ytree. In this case, we call the corresponding y “the value of ref at x.”

As rule (1) is the only rule which defines x y ref with x a leaf, if leaf(n) holds, then there
is a unique y such that leaf(n) y ref, namely y = leaf(n).

Suppose inductively that r tree and l tree, and that ref is single-valued on r and l. Let r2
and l2 be the values of ref at r and l, respectively. Then by rule Rtree

node we know that node(l, r) and
by rule (2), we know that node(l, r) node(r2, l2) ref.

Suppose that node(l, r) node(r2, l2) ref and also that node(l, r) node(r3, l3) ref. Since
rule (2) is the only rule that could have produced these expressions, we conclude that r r3 ref and
l l3 ref. But by assumption ref is single-valued at r and l, hence we have r2 = r3 and l2 = l3,
so ref is single-valued at node(l, r).

This completes the structural induction over the definition of a tree, hence we have shown that the
binary relation ref as defined above is single-valued at every tree. In other words, ref well-defines
a function, which we clearly recognize as the reflect function defined in the exercise.

1

2

CS 221 Programming Languages Homework Solution 2
Fall 2009 Due 13 Oct 2009

2. The rule
n nat

n succ(n) nat
(Rless

incr)

is admissible but not derivable.

First, a useful lemma: n nat is derivable from no assumptions iff n = succk(zero) for some
k ∈ N. Obviously if n = succk(zero) then n nat is derivable from no assumptions by Rnat

zero

and k applications of Rnat
succ. We show the converse by induction on the length of a derivation. If

the derivation has length 1, then it must consist only of the rule Rnat
zero, in which case n = zero =

succ0(zero), as desired. If the derivation has length k, then it ends with the rule Rnat
succ, so we must

have n = succ(n1) for some n1 such that n1 nat is derivable from no assumptions by a derivation
of length k − 1. By induction, n1 = succk−1(zero), hence n = succk(zero).

Rless
incr is admissible: Suppose n nat is derivable from no assumptions. By the lemma above,

n = succk(zero) for some k ∈ N. One application of Rnat
zero and one application of Rless

zero gives us

zero succ(zero) less

from no assumptions. Then k applications of Rless
succ gives us

succk(zero) succk+1(zero) less

which is easily seen to be equivalent to n succ(n) less.

Rless
incr is not derivable: If the rule were derivable, it would be true in every model of nat, succ.

However, if we add the rule

ω nat
(Rnat

ω)

(where ω is a new primitive), we can show that ω succ(ω) less is not derivable. For if ω ever
appears in a statement of the form x y less, it must appear as succ(ω). By induction on the
derivation of such a statement: if the derivation uses Rless

zero applied to the conclusion of Rnat
ω , the

conclusion is zero succ(ω) less. If Rless
succ is used, then both arguments in the conclusion begin

with succ. Hence ω succ(ω) less is not derivable in this model, so Rless
incr is not derivable in

general.

The two rules Rless
zero and Rless

succ are sufficient to define the usual less-than ordering on N, as
suggested by the lemma. Here is a derivation of 3 < 5: from no assumptions, apply Rnat

zero and then
Rnat

succ twice to get succ2(zero) nat. Then apply Rless
zero to get zero succ2(zero) less. Finally,

apply Rless
succ three times to get the desired conclusion.

3

CS 221 Programming Languages Homework Solution 3
Fall 2009 Due 13 Oct 2009

3. Suppose s n7→ s′ for some n ≥ 0. If n = 0, then we have s′ = s, so we also have s ∗7→ s′. If
n > 0, then there must be an s′′ such that s 7→ s′′ and s′′ n−17→ s′. By induction on n, s′′ ∗7→ s′, and
then applying the definition of ∗7→ we conclude that s ∗7→ s′.

Conversely, suppose s ∗7→ s′. Proceed by induction on the length of a derivation of this fact. If it
can be derived in a single step, then s′ = s, so we have s 07→ s′. If it can be derived in n > 1 steps,
then the last step must use the rule

s 7→ s′′ s′′
∗7→ s′

s
∗7→ s′

and s′′ ∗7→ s′ must be derivable in n−1 steps. By the induction hypothesis, s′′ k7→ s′ for some k ∈ N.
Hence, applying the definition of k+17→ , we find that s k+17→ s′, as desired. �

4

CS 221 Programming Languages Homework Solution 4
Fall 2009 Due 13 Oct 2009

3. Lambda calculus

(a) Here λ, and . are terminals, as are all variable symbols x, where x ∈ Var, a countable set
of variable symbols. For instance Var could be the set of all alphanumeric identifiers.

V ::= x, . . . (x ∈ Var)
T ::= V | TT | λV. T

(b)
Terms t ::= var[x] | apply(t1, t2) | lambda(var[x], t)

where x ∈ Var, and t, t1, and t2 all designate terms.
(c)

(x ∈ Var)
var[x] term

(Variables)

t1 term t2 term

apply(t1, t2) term
(Application)

var[x] term t term

lambda(var[x], t) term
(λ Abstraction)

(d)

nlambdas(var[x]) = 0
nlambdas(apply(t1, t2)) = nlambdas(t1) + nlambdas(t2)

nlambdas(lambda(var[n], t)) = 1 + nlambdas(t)

