
CS 221/321 Programming Languages Homework 3
Fall 2009 Due: Oct 27, 2009

1. [20 points] Termination in Arith. Define a size function for expressions in the abstract syntax for
Arith.

e ::= num(n) | var(x) | plus(e, e) | × (e, e) | let(e, x.e)

where n ranges over natural number constants and x ranges over a set of variables. For instance, the
size function might count the number syntax constructors in the expression. It should be obvious
that the size of an expression is strictly greater than the size of a proper subexpression. Use the size
function to prove that the SOS evaluation of any closed expression terminates in a finite number of
steps, by showing that if e 7→ e′ then size(e) > size(e′).

Challenge Question. Suppose that we replace the two rules for let expressions with the following
single rule

let(e1, x.e2) 7→ {e1/x}e2
(1)

The question is whether, using this “by-name” treatment of let, does the evaluation of every expres-
sion still terminate. The answer is yes, but the proof idea used above doesn’t work any more. See if
you can find a termination proof for this new version of evaluation.

2. [20 points] Prove the following version of the Substitution Lemma for Arith: Lemma: If
Γ ` e1 ok and Γ ∪ {x} ` e2 ok, then Γ ` {e1/x}e2 ok.

3. [15 points] Write out the Induction Principle for proofs of properties of Arith expression as
a logical formula. This is a bit of a trick question. The problem is how to treat the abstractor
argument of let, which is not quite an expression.

4. [15 points] Consider an alternate, more flexible, way of treating the primitive arithmetic op-
erations plus and times in Arith. Instead of making plus and times basic syntactic forms of the
language, we have a more general form op(o, e1, e2) with a new syntactic category

o ::= + | ×

e ::= num(n) | var(v) | op(o, e, e) | let(e, x.e)

Give rules for the static (Γ ` e ok) and dynamic (e 7→ e′) semantics for this alternative abstract
syntax. You should unify the instruction rules for arithmetic operations by assuming a mapping
from operator symbols (+, ×) to the corresponding arithmetic operations. We could denote this
mapping as M(o), so M(+) denotes the real arithmetic addition operation.

5. [20 points]. Programming exercise. Modify the code in the file arith-SOS.sml to use the
modified abstract syntax from Problem 4. Make sure your code compiles without error, and test it.

