
CMSC 22100/32100: Programming Languages

An Overview of Standard ML

M. Blume October 2, 2008

Contents

1 What is SML 2

2 Integers, reals, booleans 2

3 Variables 3

4 Constructing new types 4
4.1 Option type . 4
4.2 List type . 4
4.3 Tuples . 5
4.4 Records . 6
4.5 Data Types . 6

5 Functions 9
5.1 Function values and function definitions 9
5.2 Function application . 10
5.3 Curried function definitions . 10

6 Other types 11
6.1 The unit type . 11
6.2 References—the ref type . 11
6.3 Text—the types char and string . 11

7 Block structure 12
7.1 Simultaneous bindings and mutual recursion 13

8 Patterns and pattern matching 14
8.1 Examples . 16

9 Other language features 18
9.1 Polymorphism . 18
9.2 Modules . 18
9.3 Exceptions . 21
9.4 Infix declarations . 21

10 Using Files 21
10.1 Function use . 21
10.2 A note on polymorphism and type inference 22
10.3 Generativity of datatype definitions 22
10.4 CM — the SML/NJ compilation manager 23

1

A Reserved words 23

B Pre-defined infix operators 24

C Other restricted identifiers 24

1 What is SML

Standard ML is a strongly typed, impure, strict functional language.

Strongly typed: Every value, expression in the language has a type (int, real,
bool etc.). The compiler rejects a program that does not conform to the
type system of the language.

Functional: Each expression evaluates to a value. Some of these values are
functions. In fact, every function in ML is a value. Like other values,
functions can be bound to variables, passed as arguments to other func-
tions, returned as values from function calls, and stored in data structures.

Impure: Unlike in other functional languages such as Haskell, the evaluation
of expressions in ML can incur side-effects, e.g., assignment to locations
within mutable data structures or I/O.

Strict: Unlike “lazy” languages such as Haskell, arguments to ML functions are
evaluated before the function call is performed. This means that if one of
the arguments loops forever, then so will the entire program, regardless
of whether or not the function actually needed that argument. Similarly,
all side-effects caused by the evaluation of the arguments occur before any
side-effects caused by the evaluation of the function body.

In this class, we will use the SML/NJ compiler. SML/NJ generates reason-
ably fast executable code, although some other compilers, e.g., MLton, outper-
form it on a regular basis. However, SML/NJ can be used interactively and
comes with a mature programming environment. (Some people use SML/NJ
for development and use MLton to speed up the final version. However, in this
class, runtime performance will not be an issue.)

2 Integers, reals, booleans

Among the built-in data types are the following: int, real, bool, ’a option,
etc. Standard ML calls the type of floating points numbers real.1 Here are
some examples.

$ sml
Standard ML of New Jersey v110.68 [built: Mon Sep 8 13:47:59 2008]
- (* Integers: *)

1This is a misnomer; they are really finite precision numbers.

2

- 1;
val it = 1 : int
- 2;
val it = 2 : int
- 1+2;
val it = 3 : int
-
- (* Reals: *)
- 1.0;
val it = 1.0 : real
- 2.0;
val it = 2.0 : real
- Math.sqrt(3.0*3.0+4.0*4.0);
[autoloading]
[library $SMLNJ-BASIS/basis.cm is stable]
[autoloading done]
val it = 5.0 : real
- (* Booleans: *)
- false;
val it = false : bool
- true;
val it = true : bool
- if true then 1 else 2;
val it = 1 : int

Some notes:

• Comments in Standard ML are enclosed within comment brackets: (*
. . . *). Comments are nestable.

• Many library functions such as Math.sqrt are automatically loaded by
the SML/NJ interactive system on an on-demand basis. This is what
accounts for the [autoloading . . . done] sequence of messages.

3 Variables

Variables in Standard ML are identifiers that name values. Once a binding for
a variable is established, the variable continues to name the same value until it
goes out of scope. In other words, Standard ML variables are immutable.

Imperative programming with assignment, while possible using reference val-
ues (see below), it is not encouraged and cannot be done using variables alone.

Assignment to variables can usually be avoided by writing iterative algo-
rithms in recursive style. In this style, instead of changing the value of a vari-
able one simply establishes a new binding. The new binding can use the same
identifier, in which case the old binding will be shadowed and go out of scope.

As an example, consider the following iterative version of the factorial func-
tion, written in tail-recursive style:

3

- fun fac_loop (n, f) = if n = 0 then f else fac_loop (n-1, f*n);
val fac_loop = fn : int * int -> int
- fun fac n = fac_loop (n, 1);
val fac = fn : int -> int
- fac 10;
val it = 3628800 : int

4 Constructing new types

ML has a variety of built-in type constructors, and programmers can add to that
variety by defining their own. A type constructor maps a sequence of types to
another type. The length of the argument sequence is called the arity of the
type constructor. The names of “ordinary” types, e.g., int, bool, real, and
so on are actually type constructors of arity 0. When forming types, the type
arguments precede the name of the constructor.2

4.1 Option type

One of the predefined type constructors in Standard ML is option. It gives rise
to the family of option types.

Example: Values of type int option come in two varieties: There is the
singleton value NONE or the set of values of the form SOME i where i an integer.

In general, types of the form t option are used to describe situations where
there may or may not be a value of type t. For example, the library function
Int.fromString takes a string argument and returns an int option, using
NONE to indicate that the argument could not be parsed as an integer.

- NONE;
val it = NONE : ’a option
- SOME 1;
val it = SOME 1 : int option
- SOME 1.0;
val it = SOME 1.0 : real option
- SOME false;
val it = SOME false : bool option

The option type is really a datatype (see below) defined by:

datatype ’a option = NONE | SOME of ’a

4.2 List type

Another predefined type constructor in Standard ML is list. A type t list
contains values that are finite lists whose elements are values of type t. The

2If there is more than one, the arguments are given as a comma-separated list, enclosed in
parentheses.

4

empty list is called nil. The keyword nil is special in that it is interchangeable
with the notation []. A non-empty list consists of a head element and a tail
list (of the same type). If h is the head and t is the tail, then the entire list is
h :: t. The infix constructor :: is sometimes pronounced “cons.” It associates
to the right.

A k-element list x1 :: · · · :: xk :: nil can alternatively be written
[x1, . . ., xk].

- nil;
val it = [] : ’a list
- 1 :: nil;
val it = [1] : int list
- true :: false :: nil;
val it = [true,false] : bool list
- [1.0,2.0,4.0];
val it = [1.0,2.0,4.0] : real list

The list type is essentially a datatype (see below) defined by:

datatype ’a list = nil | :: of ’a * ’a list

However, to be precise, one must also declare :: as an infix operator and estab-
lish the alternative syntax using square brackets. The former would be possible
using a Standard ML infix declaration (actually, since we need right associativ-
ity, it would be an infixr declaration), but the latter is built-in syntax—which
is why the list type itself must be built-in and cannot be defined from first
principles.

4.3 Tuples

The built-in type constructor *, which is written in infix notation and may
be repeated as in int * real * bool to form arbitrary n-ary tuple type con-
structors, produces types that correspond to cartesian products of other types.
The values inhabiting these types are called tuples and are written as comma-
separated sequences enclosed in round parentheses.

- (1, 2);
val it = (1,2) : int * int
- (1.0, 2.0);
val it = (1.0,2.0) : real * real
- (1, 2.0, true, NONE);
val it = (1,2.0,true,NONE) : int * real * bool * ’a option

The notation #i where i is an integer literal greater or equal than 1, speci-
fying a position, can be used to project from tuples. However, it is often more
convenient to get at the elements of a tuple by pattern matching (see below).

5

- #1 (1, 2.0);
val it = 1 : int
- #2 (1, 2.0);
val it = 2.0 : real

4.4 Records

Records generalize tuples by making it possible to give names (labels) to fields
instead of relying on positional information. (In fact, Standard ML defines
tuples to be special cases of records where the labels are numeric and form an
uninterrupted sequence from 1 to some natural number n.) Projection from
records uses the notation #l where l is the label name.

- val r = { a = 1.0, b = true, c = {a = 3.0}, d = fn x => x};
val r = {a=1.0,b=true,c={a=3.0},d=fn}
: {a:real, b:bool, c:{a:real}, d:’a -> ’a}

- #a (#c r);
val it = 3.0 : real
- (#d r) 1;
val it = 1 : int

As shown in the examples above, record types have the form

{l1:t1, . . . ,ln:tn}

where the li are the labels and the ti are the corresponding types of individual
record fields. Record expressions have the form:

{l1=e1, . . . ,ln=en}

4.5 Data Types

Datatype definitions in Standard ML serve several purposes at once:

• The introduce “brand new” types not equal to any other types defined
elsewhere in the program (or in the library).

• The defined types can be sum types, which combine several different types
t1, . . . , tk called variants into a single type. Some of the ti can be identical.
This does not cause confusion since variants are distinguished based on
their respective constructors (see below).

• A datatype definition introduces constructors that are used to distinguish
between variants. Constructors themselves serve a dual purpose:

1. They act as functions that inject values vi of their respective type
ti into the datatype. The value vt resulting from such an injection
remembers the original value vi as well as the constructor ci that was
used to perform the injection.

6

2. When a constructor ci is within a pattern (see below), it serves the
purpose of determining whether or not a given value was formed by
injecting some vi into the datatype using the constructor ci. If so,
the pattern match also recovers vi.

• Datatype definitions can define recursive types. That is, the name of the
defined type may be used on the right-hand side of the definition.

• Some (or all) variants of a datatype can be constructors that do not carry
a type. These constructors become constants, i.e., brand-new values that
inhabit the newly defined type. If all constructors are constants, then a
datatype definition effectively becomes the definition of an enumeration
type.

• Datatypes are type constructor, i.e., they can have type arguments. In the
definition, the formal parameter list consisting of type variables precedes
the type constructor name. Type variables are identifiers that start with
the ’-character (apostrophe).

Examples:

$ sml
Standard ML of New Jersey v110.68 [built: Mon Sep 8 13:47:59 2008]
- (* enumerations *)
- datatype color = Red | Green | Blue;
datatype color = Blue | Green | Red
-
- (* integer trees with values on leaves *)
- datatype itree = Leaf of int | Node of itree * itree;
datatype itree = Leaf of int | Node of itree * itree
-
- (* real trees with values on internal nodes *)
- datatype rtree = RLeaf | RNode of real * rtree * rtree;
datatype rtree = RLeaf | RNode of real * rtree * rtree
-
- (* trees with integer values on leaves and real values on internal
= nodes *)
- datatype irtree = IRLeaf of int | IRNode of real * irtree * irtree;
datatype irtree = IRLeaf of int | IRNode of real * irtree * irtree
-
- (* integer lists *)
- datatype ilist = INil | ICons of int * ilist;
datatype ilist = ICons of int * ilist | INil
-
- (* our own list type constructor; ’a is the formal argument *)
- datatype ’a mylist = MyNil | MyCons of ’a * ’a mylist;
datatype ’a mylist = MyCons of ’a * ’a mylist | MyNil
-

7

- (* or own option type constructor *)
- datatype ’a myoption = MyNONE | MySOME of ’a;
datatype ’a myoption = MyNONE | MySOME of ’a

The option constructor that we have seen is just a (built-in) datatype. The
built-in list type constructor is essentially isomorpmic to mylist.3 Similarly,
the bool type constructor is also a built-in datatype consisting precisely of
the two constants false and true. The type is built-in because Standard ML
provides syntactic conveniences in form of if-expressions.4

We use case to dispatch on the constructor of a datatype value:

- val x = Red;
val x = Red : color
- case x of
= Red => "rouge"
= | Green => "vert"
= | Blue => "bleu";
val it = "rouge" : string

An often-used trick is to define a datatype that has only a single variant
to distinguish between two isomorphic types that have different purposes and
should not be confused within the program:

- datatype money = Dollars of real;
datatype money = Dollars of real
- datatype time = Seconds of real;
datatype time = Seconds of real

The same trick also works well in conjunction with the use of record types. In
Standard ML, projecting from a record—or, more generally, the use of flexible
record patterns—requires that the compiler knows the “shape” of the record
type, i.e., the set of all its labels, including those not being selected. The
constructor of a single-variant datatype can serve as a light-weight annotation
that provides precisely this information:

- datatype person = P of { name: string, age: int, favorite: color };
datatype person = P of {age:int, favorite:color, name:string}
- fun howold (P { name, age, ... }) =
= name ^ " is " ^ Int.toString age ^ " years old.";
val howold = fn : person -> string
- howold (P { name = "Adam", age = 23, favorite = Blue });
val it = "Adam is 23 years old." : string

3The main difference is that Standard ML provides additional syntactic conveniences for
list.

4There is more, in particular: andalso and orelse, which are short-circuiting forms logical
conjunction and disjunction.

8

5 Functions

5.1 Function values and function definitions

Functions in Standard ML take a single argument and produce a single result.
Functions that we think of as taking multiple arguments can be defined in a
number of ways, namely

• as taking a tuple argument,

• or, more generally, as taking a record of values as their argument,

• or via currying, i.e., by defining functions that return functions. In par-
ticular, if conceptually we have k arguments x1, . . . , kk to function f, then
f really takes only x1 and returns a new function that takes the remaining
arguments x2, . . . , kk. If k > 2, then any of the aforementioned techniques
can be applied recursively to that returned function.

A function that maps arguments of type t1 to results of type t2 itself has type t1
-> t2. Functions do not need to have names; they can be written anonymously
using the fn/=> syntax:

- fn x => x*2.0;
val it = fn : real -> real

Functions (like all other values) can be bound to names using the val keyword:

- val succ = fn x => x + 1;
val succ = fn : int -> int

If a function is meant to be recursive, it cannot be declared using plain val,
since in this case its name would not be bound within the right-hand side of the
definition. To circumvent this problem, one must add the rec keyword:

- val fac = fn n => if n = 0 then 1 else n * fac (n-1);
stdIn:37.44-37.47 Error: unbound variable or constructor: fac
- val rec fac = fn n => if n = 0 then 1 else n * fac (n-1);
val fac = fn : int -> int

A convenient way of combining the definition of a named recursive function
(i.e., something one could define using val rec) with a case analysis of the
arguments is to use the fun keyword. In fact, fun is the most common way
of defining functions, even if they are not recursive or do not perform a case
analysis:

- fun frenchColor Red = "red"
= | frenchColor Blue = "bleu"
= | frenchColor Green = "vert";
val frenchColor = fn : color -> string

9

- fun fac n = if n = 0 then 1 else n * fac (n-1);
val fac = fn : int -> int
- fun append (nil, ys) = ys
= | append (x :: xs, ys) = x :: append (xs, ys);
val append = fn : ’a list * ’a list -> ’a list

5.2 Function application

In Standard ML, to apply a function f to an argument a we simply write f
next to a. While the language does not require parentheses, we often see them
anyway—either because the argument a is a tuple literal (and tuple literals
themselves use parentheses), or out of habit (and because any expression what-
soever may be freely parenthesized, even where parentheses are redundant).

Function application associates to the left, which means that f a b is equiv-
alent to (f a) b. This is the application of a curried multi-argument function
whose type is ta -> tb -> tr where ta is the type of a, tb is the type of b, and
tr is the result type. Notice that -> (which is a binary type constructor written
in infix style) associates to the right, so that ta -> tb -> tr is the same as ta
-> (tb -> tr).

5.3 Curried function definitions

A curried function can be defined conveniently using the fun syntax:

- fun plus x y = x+y;
val plus = fn : int -> int -> int

This is equivalent to

- val rec plus = fn x => fn y => x+y;
val plus = fn : int -> int -> int

And since this definition does not actually use recursion, it is also the same as:

- val plus = fn x => fn y => x+y;
val plus = fn : int -> int -> int

Notice that as far as the inner fn-expression is concerned, variable x is free
(i.e., bound in an outer context). The value obtained by evaluating this inner
fn-expression captures the value of x, so it will still be available at the time(s)
of its invocation(s).5

- val p1 = plus 1;
val p1 = fn : int -> int
- val p2 = plus 2;

5The data structure used internally to capture such free variables is called a closure, refer-
ring to the fact that it is used to “close over” free variables.

10

val p2 = fn : int -> int
- p1 3;
val it = 4 : int
- p2 3;
val it = 5 : int

The function values bound to p1 and p2 share a common underlying implemen-
tation but differ in their closures: in p1 the value of x is 1 while in p2 the value
of x is 2.

6 Other types

6.1 The unit type

The built-in type unit has precisely one value, written (). The unit type is
used for computations that do not naturally have a meaningful result and are
performed for effect only.

6.2 References—the ref type

The built-in type constructor ’a ref is used to give types to reference values.
A reference value of tpe t ref is an abstract pointer (without pointer arith-

metic!) to a mutable location holding a value of type t. Reference values are
freshly created by an application of the reference constructor (whose name is
also ref). Its argument initializes the new location. To read the location we
use a function whose name is ! (exclamation point), and to update the value
we use the infix operator :=.

- val r = ref 10;
val r = ref 10 : int ref
- !r;
val it = 10 : int
- r := !r + 1;
val it = () : unit
- !r;
val it = 11 : int

6.3 Text—the types char and string

The type string is inhabited by possibly empty sequences of characters. String
literals simply spell out the sequence enclosed in double quotes ("). If the
double quote character appears within a string, it must be protected using the
escape character \. The same is true for the escape character itself. Moreover,
a number of special escape sequences is available for specifying non-printable
characters within strings. In particular, \n stands for newline and \t stands

11

for tabulator. Strings can be concatenated using the ^ infix operator. To send
a string to standard output, use print.

White space within strings that is enclosed by escape characters is ignored.
Since white space includes newlines, this can be used to conveniently spread long
literals across multiple source lines (even without losing proper indentation).

- print "hello world";
hello worldval it = () : unit
- print "a string with\ntwo lines\n";
a string with
two lines
val it = () : unit
- print ("a string containing a \" character" ^ " along with a \\ character\n");
a string containing a " character along with a \ character
val it = () : unit
- "a string spanning \
=
=
= \multiple lines\n";
val it = "a string spanning multiple lines\n" : string
- (* let’s use multi-line strings with indentation: *)
- print "this string\
= \ also spans multiple\
= \ lines\n";
this string also spans multiple lines
val it = () : unit

Characters can also be handled individually. They have type char. Charac-
ter literals look like one-element string literals with a preceding #.

- String.sub ("abc", 1);
val it = #"b" : char

7 Block structure

We have seen a number of ways of declaring things at the interactive toplevel:
value bindings (including functions) using val, val rec, and fun, algebraic
datatypes using datatype, and type abbreviations using type. There are a few
more that have not been explained in detail: exceptions using exception as
well as infix status and operator precedence using infix and infixr.

These are the declaration forms of the Standard ML core language, and all of
them can be used at arbitrary nesting levels. New nested blocks are established
by let-expressions.

The general form of a let-expression is

let

12

decl1
...
decln

in
exp1;
...
expm

end

where n ≥ 0 and m ≥ 1. The bindings established by the declarations come
into effect incrementally, i.e., a binding established by decl i is visible in the
right-hand side of every decl j where j > i. Declarations of the form datatype,
val rec and fun are recursive, meaning that their right-hand sides can see the
bindings established on their own left-hand sides.

There can be more than one ;-separated expression between in and end.
All of them see all the bindings established by the list of declarations. All of
them except the last are evaluated for effect only. Their types should be unit
(although, unfortunately, the language does not enforce this convention). The
value expm becomes the value of the entire let-expression.

As an example, here is an alternative definition of the iterative factorial func-
tion that does not expose the binding of the “helper” function than implements
the iterative (i.e., tail-recursive) loop:

- val fac =
= let fun loop f n = if n = 0 then f else loop (f*n) (n-1)
= in loop 1
= end;
val fac = fn : int -> int
- fac 10;
val it = 3628800 : int

This example also shows a use of currying and a partial application of the curried
loop function.

7.1 Simultaneous bindings and mutual recursion

A single declaration (one of the decl i forms above) can bind multiple names by
stringing several individual declarations of the same kind together using the and
keyword.

Examples:

- val x = 1 and y = 2;
val x = 1 : int
val y = 2 : int
- fun even n = n = 0 orelse odd (n-1)
= and odd n = n <> 0 orelse even (n-1);

13

val even = fn : int -> bool
val odd = fn : int -> bool
- datatype t = A of u
= and u = B of t | C;
datatype t = A of u
datatype u = B of t | C
- type t = int and u = real;
type t = int
type u = real

Notice that and replaces the usual declaration keyword in all but the first indi-
vidual declaration.

If a declaration form is not recursive (e.g., val, or type, or exception),
then using and causes simultaneous binding, meaning that none of the right-
hand sides can see any of the new bindings.

If a declaration form is recursive (e.g., datatype, or fun, or val rec), then
using and causes mutual recursion, meaning that all of the right-hand sides can
see all of the new bindings.

8 Patterns and pattern matching

Wherever a variable can be bound in Standard ML, we can also make use of
more general patterns. Patterns are in some sense the dual to expression forms.
They essentially form “templates” with “holes” that are named by variables.
Patterns are matched against runtime values. The matching process implic-
itly deconstructs the values and binds their constituents to the corresponding
variables.

Like expressions, patterns have types. If a pattern has type t, then only
values of type t can be matched against it. A pattern of type t that matches all
values of type t is called irrefutable.

If there is more than one rule that matches a given value, the leftmost rule
takes precedence. (One can think of this as follows: Each pattern is tried in turn,
beginning from the left and stopping at the first where the matching process
succeeds.) A match where some of the rules are unreachable because all possible
values can be matched by other rules to the left is flagged as an error by the
compiler.

A match is a sequence of rules p => e, each rule consisting of a pattern p on
the left-hand side and an expression e on the right-hand side. Rules in a match
are separated by a vertical bar |. All patterns in a match must have the same
type t. Expressions on the right-hand sides can refer to the variables bound by
their respective left-hand side patterns. Given these bindings, the expressions
must all have the same type u.

If the union of the values matched by the patterns in a match covers all
values of type t, then the match is said to be exhaustive. A non-exhaustive
match can fail at runtime, causing an implicit Match or Bind exception to be
raised. The compiler issues a warning when it detects a non-exhaustive match.

14

Matches are used in fn-expressions, where they define an anonymous func-
tion of type t -> u and in case-expressions, where they are used to scrutinize
a value of type t and dispatch into one ore more distinct branches of control,
each returning a value of type u.
The syntax

case e of p1 => e1 | · · · | pn => en

is actually syntactic sugar for

(fn p1 => e1 | · · · | pn => en) e

The pattern language mirrors (to some extend) the expression language;
patterns can be made from parts that contain other patterns:

wildcard The pattern (underscore) has an arbitrary type t and matches all
values of that type. The actual runtime value is discarded, i.e., it is not
bound to any variable.

variable Any variable name x (except those currently bound to datatype con-
structors) can be used as a pattern. Such a pattern has an arbitrary type
t (which becomes the type of x within its scope) and matches any value of
that type. Within each branch of a pattern (see or -patterns below), there
can be at most one occurrence of each variable. If a value v matches the
pattern, then x becomes bound to the part of v that corresponds to the
position of x within the overall pattern.

tuple If p1, . . . , pn are patterns of types t1, . . . , tn, then (p1, . . ., pn) is a
tuple pattern of type t1 * · · · * tn. It matches a value (v1, . . ., vn)
provided that for all i we have that pi matches vi. All variable bindings
from all the sub-patterns become effective simultaneously. In function
definitions, tuple patterns are often used to give the illusion of having
multiple arguments.

record Similarly, under the same assumption as above, the pattern { l1 = p1,
. . ., ln = pn } is a record pattern of type { l1 : t1, . . ., ln : tn }
and matches record values of that type. As a syntactic shortcut, if some
pi happens to be a variable that is lexically equal to the corresponding li,
then li = pi can be abbreviated simply as li. Record patterns can be used
in function definitions to give the illusion of the function taking several
named arguments.

flexible record pattern Under the same assumptions, the pattern { l1 = p1,
. . ., ln = pn, ... } is equivalent to some pattern { l1 = p1, . . ., ln
= pn, ln+1 = , . . ., ln+m = } for some m ≤ 0 and some labels
ln+1, . . . , ln+m. An additional restriction is that the compiler must be able
to determine m and ln+1, . . . , ln+m from the context in which the pattern
is used.

The notation #l is a shorthand for fn { l, ... } => l.

15

list If p1, . . . , pn are patterns of type t, then [p1,. . .,pn] is a pattern of type
t list. It matches list values [v1,. . .,vn] that are precisely n elements
long provided that each element vi matches its corresponding sub-pattern
pi.

integer Any integer literal i is a pattern of type int that matches precisely the
value i.

string Any string literal s is a pattern of type string that matches precisely
the value s.

data constructor Let ci be a datatype constructor of type ti -> t, and let pi

be a pattern of type ti. Then ci pi is a pattern of type t. It will match
values of the form ci vi where vi matches pi. (These are the values of type
t than were formed by applying the constructor ci to vi.)

If ci has infix status, then it must be written as an infix operator: px ci py

instead of ci(px, py). A frequently occurring example of this is the “cons”
constructor :: of type list.

or pattern (This is a conservative extension to Standard ML implemented by
SML/NJ.) If p1 and p2 are patterns of the same type t, then p1 | p2 is
also a pattern of type t. It matches the union of the values matched by
p1 and p2. The sub-patterns p1 and p2 must agree precisely on the set
of variable that are bound by them (same set of variables, same types).
Matching proceeds from left to right, meaning that if a value matches both
p1 and p2 at the same time, then the bindings from p1 will go into effect.

as-pattern If p is a pattern of type t and x is a variable pattern, then x as p
is also a pattern of type t. It matches the same values v that p alone
would match. In this case, in addition to the variable bindings that are
established within p, the variable x is bound to the respective v itself.

reference If p is a pattern of type t, then ref p is a pattern of type t ref.
It matches a value v if v denotes a location that at the time the match is
performed contains a value v′ matching p. Reference patterns are unusual
in that they incur a side-effect (reading of a mutable location).

8.1 Examples

As mentioned above, patterns are used in case-expressions and fn-expressions.
They are also used in function definitions in clause form (using keyword fun).

Examples:

- fun fac n =
= case n of
= 0 => 1
= | _ => n * fac (n-1);
val fac = fn : int -> int

16

-
- (* several equivalent ways of defining "reverse-and-append": *)
- fun revappend (xs, ys) =
= case xs of
= [] => ys
= | x :: xs => revappend (xs, x :: ys);
val revappend = fn : ’a list * ’a list -> ’a list
-
- fun revappend2 ([], ys) = ys
= | revappend2 (x :: xs, ys) = revappend2 (xs, x :: ys);
val revappend2 = fn : ’a list * ’a list -> ’a list
-
- val rec revappend3 =
= fn ([], ys) => ys | (x :: xs, ys) => revappend3 (xs, x :: ys);
val revappend3 = fn : ’a list * ’a list -> ’a list

Notice that in case- and fn-expressions the syntax requires the use of the
double-arrow =>, while function definitions in clause form (using fun) use an
equal sign =.
The definition of a curried function in clause form

fun f p11 . . . p1n = b1

| f p21 . . . p2n = b2

...
| f pm1 . . . pmn = bm

de-sugars as follows:

fun f x1 . . . xn =
case (x1,. . .,xn) of

(p11,. . .,p1n) => b1

| (p21,. . .,p2n) => b2

...
| (pm1,. . .,pmn) => bm

assuming x1, . . . , xn to be fresh variables.
Here is an example of how one would use an as-pattern:

- fun f (x as (y, z)) = (x, y+z);
val f = fn : int * int -> (int * int) * int
- f (2, 3);
val it = ((2,3),5) : (int * int) * int

17

9 Other language features

9.1 Polymorphism

9.2 Modules

One of the most distinguishing features of Standard ML is its module system.
It deserves a much more complete introduction. However, we will use only
relatively little of its full power, so the following overview should suffice:

Structures

(First-order) Modules in Standard ML are called structures. Structures can be
bound to module names much like values can be bound to variables. A module
binding is established by a declaration that starts with the keyword structure.

The right-hand side of a structure declaration is often a structure expres-
sion, i.e., a sequence of declarations enclosed within struct and end. Any
declaration that can appear at top level can also appear within a structure.

One of the roles that structures play is that of name space management.
Declarations that appear within a module are not visible directly. Any reference
to a name bound within a module, when used from elsewhere, must be qualified
with the module’s name.

Structures are bound
Example:

- structure A = struct
= type t = int
= type u = t * t
= fun f (x : t) = (x, x+1) : u
= end;
structure A :
sig
type t = int
type u = t * t
val f : t -> u

end
- A.f 10;
val it = (10,11) : A.u

Signatures

Much like values that are classified by types, structures are classified by sig-
natures. Programmers can explicitly write signatures, bind them to signature
names, and ascribe them to structures.

For every structure (even in the absence of a signature ascription) the com-
piler infers a principal signature, which in some sense is the “default” signature
of the structure. An ascribed signature may elide some elements and give more

18

specific types for some values, but it must otherwise match the principal signa-
ture.

An opaque signature ascription can also hide the identity of certain types,
thus rendering them abstract. This is Standard ML’s primary way of defining
abstract types. An opaque signature ascription uses the symbol :>, while its
counterpart, transparent signature ascription uses :.

Examples:
First define the signature and bind it to S:

- signature S = sig
= type t
= val x : t
= val f : t -> int
= end;
signature S =
sig
type t
val x : t
val f : t -> int

end

Now define a matching structure (but still without ascription):

- structure M = struct
= type t = int
= val x = 10
= fun f y = y (* still polymorphic *)

val a = "hello"
= end;
structure M :
sig
type t = int
val x : int
val f : ’a -> ’a
val a : string

end
- M.x;
val it = 10 : int
- M.f M.x;
val it = 10 : int
- M.f 3;
val it = 3 : int
- M.f true;
val it = true : bool

The transparent ascription of S to M hides a and makes the type of f less general:

19

- structure MT = M : S;
structure MT : S
- MT.x;
val it = 10 : M.t
- MT.f MT.x; (* MT.t is the same as int *)
val it = 10 : int
- MT.f 3;
val it = 3 : int
- MT.f true; (* MT.f is specialize to int now *)
stdIn:1.1-1.10 Error: operator and operand don’t agree [tycon mismatch]
operator domain: M.t
operand: bool
in expression:
MT.f true

If we use opaque ascription instead, the identity of type t (i.e., the fact that it
is defined to be int) becomes hidden:

- structure MO = M :> S;
structure MO : S
- MO.x;
val it = - : MO.t
- MO.f MO.x; (* MO.f and MO.x still have matching types *)
val it = 10 : int
- MO.f 3; (* but MO.t is not the same as int anymore *)
stdIn:36.1-36.7 Error: operator and operand don’t agree [literal]
operator domain: MO.t
operand: int
in expression:
MO.f 3

- MO.f true; (* and, of course, it is not bool either *)
stdIn:1.1-1.10 Error: operator and operand don’t agree [tycon mismatch]
operator domain: MO.t
operand: bool
in expression:
MO.f true

Functors

In Standard ML, a functor is a “function” from structures to structures. Func-
tors make it possible to write generic code that is parametrized not only over
other values but also over other types. In this course we will have little need for
writing our own functors, but we will sometimes make use of functors defined
in libraries.

20

9.3 Exceptions

9.4 Infix declarations

10 Using Files

When you start SML/NJ using the sml command, you find yourself in the
interactive toplevel loop. Code you type here is compiled to machine code on
the fly and then executed right away. A pretty-printing mechanism displays
results or gives a summary of the definitions that were entered.

Code entered at the interactive level is ephemeral, since the system does not
save it for you. Therefore, any program longer than a few lines of code should
first be saved to a text file and then read into the system. While it would
be possible to use your favorite GUI’s cut&paste feature to achieve the latter,
SML/NJ provides a number of facilities to make the process easier.

10.1 Function use

Function use takes an argument that must be the name of a file containing
Standard ML code. It opens the file and invokes the compiler on its contents.
The code may refer to bindings created earlier at top level. If compilation
succeeds, the code is executed. Variable bindings created at execution time are
later available at the top level. In effect, the code in the file is treated in almost
exactly the same way as code entered manually at the interactive prompt.

Example:
Recall our earlier definition of the mylist type constructor:

- datatype ’a mylist = MyNil | MyCons of ’a * ’a mylist;
datatype ’a mylist = MyCons of ’a * ’a mylist | MyNil

Now suppose the contest of file mylistlength.sml is:

fun myLength MyNil = 0
| myLength (MyCons (x, xs)) = 1 + myLength xs

Invoking use on this file loads it into the system and makes—as indicated by
the message—the binding to myLength available.

- use "mylistlength.sml";
[opening mylistlength.sml]
val myLength = fn : ’a mylist -> int
val it = () : unit

Notice that the result of use itself is () (the unit value), indicating that use is
used for effect, namely the effect of creating additional toplevel bindings. Since
myLength is now available, we are able to invoke it:

- myLength (MyCons (1, MyCons (2, MyCons (3, MyNil))));
val it = 3 : int

21

10.2 A note on polymorphism and type inference

Notice that the type of myLength is ’a mylist -> int. Implicitly, the type
variable ’a is universally quantified. This means that myLength can be used
with any instantiation of mylist. (Indeed, the implementation of myLength
completely ignores the contents carried by the MyCons nodes of the list.)

The type of myLength (or any other polymorphic value) is automatically
instantiated appropriately as needed wherever it is used. This process is part
of type inference, a mechanism implemented by the compiler designed to relieve
the programmer from having to write most of the type annotations that are
necessary in many other statically typed programming languages.

10.3 Generativity of datatype definitions

Previously we put the code of myLength into its own file but left the definition
of the corresponding type out. This means that once we exit SML/NJ the type
definition is gone and has to be re-entered by hand before one can use the file
again.

One possibility is to put the type definition into the same file as the code
of the function. But perhaps we want to write many functions that operate on
mylists, and having all of them in the same file could be awkward. Thus, let
us put the type definition into its own source file mylist.sml:

datatype ’a mylist = MyNil | MyCons of ’a * ’a mylist

We can now easily recover the type definition whenever we need it:

- use "mylist.sml";
[opening mylist.sml]
datatype ’a mylist = MyCons of ’a * ’a mylist | MyNil
val it = () : unit

Once the type is in place, we can also load the code of the function:

- use "mylistlength.sml";
[opening mylistlength.sml]
val myLength = fn : ’a mylist -> int
val it = () : unit

Finally, we can test it out:

- myLength (MyCons (1, MyCons (2, MyNil)));
val it = 2 : int

Now, suppose for some reason we reload the type definition:

- use "mylist.sml";
[opening mylist.sml]
datatype ’a mylist = MyCons of ’a * ’a mylist | MyNil
val it = () : unit

22

Apparently this works without problem. But now, if we want to run another
test of myLength, we find trouble:

- myLength (MyCons (1, MyNil));
stdIn:6.1-6.29 Error: operator and operand don’t agree [tycon mismatch]
operator domain: ’Z ?.mylist
operand: int mylist
in expression:
myLength (MyCons (1,MyNil))

This rather cryptic error message indicates that the expected argument type of
myLength does not match the type of the actual argument! Why is that?

The reason for this behavior is that reloading the definition of mylist has the
effect of creating a brand-new type with brand-new constructors. But myLength,
which had not been reloaded, still has the old type! In fact, as indicated by
the question marks ? in the error message, it now has a type that cannot even
be named anymore, since the new but identically named definition of mylist
shadows it.

10.4 CM — the SML/NJ compilation manager

The solution, of course, is to reload mylistlength.sml whenever we reload
mylist.sml. More generally, to be consistent we must reload any file that
depends on another file that has been reloaded.6 While the compiler will always
check and make sure that there are no fundamental inconsistencies (i.e., those
that would compromise type safety), it is a cumbersome task to manually track
down all dependencies. Moreover, some inconsistencies merely result in the
wrong version of some code getting executed, which is something the compiler
will not tell us about.

The SML/NJ compilation manager (CM for short) is designed to help with
compilation dependencies. It lets programmers define projects as collection of
source files and it automatically determines their inter-dependencies. It then
monitors file modification time stamps and provides a service called smart re-
compilation, i.e., after a modification it determines the smallest set of files that
need to be recompiled and reloaded.

Since CM inherently relies on programs being written in a style that makes
use of the module system, we will come back to this topic later after we discussed
the basics of ML modules.

6The details here are actually somewhat more complicated, but we will stick to this first
approximation of an explanation.

23

A Reserved words

The following identifiers are reserved words in Standard ML. They cannot be
used as names of user-defined variables, constructors, types, or modules:

abstype and andalso as case datatype do else end eqtype exception
fn fun functor handle if in include infix infixr let local nonfix of
op open orelse raise rec sharing sig signature struct structure then
type val where with withtype while () [] { } , : ; ... | = =>
-> # :>

The SML/NJ implementation of Standard ML adds the following two addi-
tional reserved words to the above list:

abstraction funsig

B Pre-defined infix operators

The following operators are pre-defined and have infix status. Although in
principle it would be possible to re-define these names in user code, it is recom-
mended not to do so:

before o ∗ / mod div ^ + - := > < >= <= = <> :: @

C Other restricted identifiers

Although they are not classified as “reserved” (i.e., they are not keywords that
are used in parsing Standard ML), the following pre-defined identifiers are re-
stricted in the sense that it is illegal for user code to re-bind them:

true false nil :: ref it

24

