CMSC 22100/32100: Programming Languages Sample solution to Homework 1

M. Blume Due: October 7, 2008

1. Consider the rules:

These rules define a set of terms **nat** representing natural numbers in Peano encoding and a set of terms **list** representing lists of such numbers.

We can inductively (i.e., recursively) define the following append function on lists:

$$append(\mathbf{nil}, m) = m$$

 $append(\mathbf{cons}(n, l), m) = \mathbf{cons}(n, append(l, m))$

(a) Represent append as a ternary relation and give its definition inductively.

Solution:

9pt

10pt

12pt

Let the relation A be the smallest set such that

- i. For every y such that y list we have $(\mathbf{nil}, y, y) \in A$.
- ii. If $(x, y, z) \in A$ and a nat, then $(\mathbf{cons}(a, x), y, \mathbf{cons}(a, z)) \in A$.
- (b) Write down a set of inference rules that defines the same ternary relation.

(c) Prove that the so-defined relation is single-valued, i.e., that it represents a binary function.

To show:

If append(x, y, z) and append(x, y, z'), then z = z'.

Proof

By induction on the derivation of **append**(x, y, z).

Case 1: Rule R1 was used to derive **append**(x, y, z), so x = nil and y = z. Since x = nil, rule R1 must also have been used to derive **append**(x, y, z'). Thus, z' = y = z.

- Case 2: Rule R2 was used to derive $\operatorname{append}(x,y,z)$. Thus, $x = \operatorname{cons}(a,x_0)$ for some a and x_0 , and $z = \operatorname{cons}(a,z_0)$ for some z_0 . Furthermore, inversion of R2 gives $\operatorname{append}(x_0,y,z_0)$. Since $x \neq \operatorname{nil}$, R2 must also have been used to derive $\operatorname{append}(x,y,z')$. Thus, we have $z' = \operatorname{cons}(a,z'_0)$ and $\operatorname{append}(x_0,y,z'_0)$ for some z'_0 . Using the induction hypothesis we find that $z_0 = z'_0$. Therefore, $z = \operatorname{cons}(a,z_0) = \operatorname{cons}(a,z'_0) = z'$ as required.
- 2. (See Chapter 2.1) Let $s \mapsto s'$ be some arbitrary binary relation and let \mapsto^* be defined by the following two inference rules:

$$\frac{s \mapsto s' \qquad s' \mapsto^* s''}{s \mapsto^* s''} \text{ Trans}$$

Prove that \mapsto^* is indeed transitive, *i.e.*, that $\forall s, s', s''$. $s \mapsto^* s' \land s' \mapsto^* s'' \Rightarrow s \mapsto^* s''$.

Solution:

20pt

By induction on the derivation of $s \mapsto^* s'$:

Case 1: Rule REFL was used last to derive $s \mapsto^* s'$, so s = s'. Thus, trivially, $s \mapsto^* s''$.

- Case 2: Rule TRANS was used last to derive $s \mapsto^* s'$. Thus, by inversion of the rule there exists a t such that $s \mapsto t$ and $t \mapsto^* s'$. We use the IH on $t \mapsto^* s'$ and $s' \mapsto^* s''$, finding that $t \mapsto^* s''$. Using rule TRANS in forward direction on $s \mapsto t$ and $t \mapsto^* s''$ lets us conclude that $s \mapsto^* s''$ as required.
- 3. Consider a language where all values are Peano-encoded natural numbers given by the **nat** judgment from question 1. The expressions e of the language shall be of one of the following forms: **zero** representing the constant 0, $\mathbf{succ}(e)$ representing the operation of producing the successor of a given argument, $\mathbf{pred}(e)$ representing the operation of producing the natural predecessor e of a given argument, and $\mathbf{if0}(e_1, e_2, e_3)$ representing

¹The natural predecessor of n+1 is n, and the natural predecessor of 0 is taken to be 0.

a tests of e_1 for being 0, returning the result of e_2 if it is or the result of e_3 if it is not.

(a) Give a definition of e in BNF style.

6pt

8pt

10pt

Solution: $e::=\mathbf{zero}\mid\mathbf{succ}(e)\mid\mathbf{pred}(e)\mid\mathbf{if0}(e,e,e)$

(b) Give equivalent inference rules for a judgment e **exp** which holds if e is an expression of the language.

$$egin{aligned} rac{e \; \mathbf{exp}}{\mathbf{zero} \; \mathbf{exp}} \; ^{\mathrm{z}} & rac{e \; \mathbf{exp}}{\mathbf{succ}(e) \; \mathbf{exp}} \; ^{\mathrm{s}} & rac{e \; \mathbf{exp}}{\mathbf{pred}(e) \; \mathbf{exp}} \; ^{\mathrm{p}} \end{aligned}$$
 $egin{aligned} rac{e_1 \; \mathbf{exp}}{\mathbf{succ}(e_1, e_2, e_3) \; \mathbf{exp}} \; ^{\mathrm{c}} \end{aligned}$

(c) Give a set of inference rules for judgments of the form $e \Rightarrow n$ where e is an expression and n is a natural number (in Peano-encoding). The judgment should express the "evaluates-to" relation in the style of a big-step operational semantics and must correspond to the informal description given above.

The tricky bits are:

- We need two rules for **pred**—one for the case that the argument evaluates to **zero** and one for the case where the argument evaluates to some $\mathbf{succ}(n)$.
- The rules for **if0** require an explicit premise of the form e_3 **exp** or e_2 **exp** for the sub-term that does not get evaluated. Otherwise the statement to be proved in part (d) would not be true.

Here are the rules:

$$\begin{array}{lll} & \frac{e \Rightarrow n}{\operatorname{\mathbf{zero}} \Rightarrow \operatorname{\mathbf{zero}}} & \frac{e \Rightarrow n}{\operatorname{\mathbf{succ}}(e) \Rightarrow \operatorname{\mathbf{succ}}(n)} & \text{\tiny E-S} \\ & \frac{e \Rightarrow \operatorname{\mathbf{zero}}}{\operatorname{\mathbf{pred}}(e) \Rightarrow \operatorname{\mathbf{zero}}} & \frac{e \Rightarrow \operatorname{\mathbf{succ}}(n)}{\operatorname{\mathbf{pred}}(e) \Rightarrow n} & \text{\tiny E-P(S)} \\ & \frac{e_1 \Rightarrow \operatorname{\mathbf{zero}} & e_2 \Rightarrow v & e_3 \operatorname{\mathbf{exp}}}{\operatorname{\mathbf{if0}}(e_1, e_2, e_3) \Rightarrow v} & \text{\tiny E-C(Z)} \\ & \frac{e_1 \Rightarrow \operatorname{\mathbf{succ}}(n) & e_2 \operatorname{\mathbf{exp}} & e_3 \Rightarrow v}{\operatorname{\mathbf{if0}}(e_1, e_2, e_3) \Rightarrow v} & \text{\tiny E-C(S)} \end{array}$$

(d) Prove that if $e \Rightarrow n$ is derivable, then so is $e \exp$ as well as n nat.

10pt

- n nat The proof proceeds by induction on the derivation of $e \Rightarrow n$. The cases E-Z and E-P(Z) are trivial by rule ZERO. Case E-C(Z) follows directly from the IH for e_2 . Similarly, case E-C(S) follows from the IH for e_3 . For case E-S we use the IH on e and then use rule SUCC. For case E-P(S) we use the IH on e and then apply the inversion of rule SUCC. (As discussed in class, this inversion is an admissible rule.)
- e **exp** Again, the proof proceeds by induction on the derivation of $e \Rightarrow n$. Case E-Z is immediate by rule Z. Case E-S uses the IH on e and then rule S; cases E-P(Z) and E-P(S) use the IH on e and then rule P. Case E-C(Z) uses the IH on e_1 and e_2 and then applies rule C. Notice that the last step requires to know that e_3 **exp**, which is given by inversion of E-C(Z). Case E-C(S) is analogous to E-C(Z), with the roles of e_2 and e_3 swapped.

15pt

(e) Prove that the relation \Rightarrow defined by your rules is single-valued.

To show:

If $e \Rightarrow n$ and $e \Rightarrow n'$, then n = n'.

Proof:

By induction on the derivation of $e \Rightarrow n$.

- E-Z: We have $e = \mathbf{zero}$ and $n = \mathbf{zero}$. E-Z must have been used to derive $e \Rightarrow n'$, so $n' = \mathbf{zero} = n$.
- E-S: We have $e = \mathbf{succ}(e_0)$, $n = \mathbf{succ}(n_0)$, and $e_0 \Rightarrow n_0$. E-S must have been used to derive $e \Rightarrow n'$, so $n' = \mathbf{succ}(n'_0)$ and $e_0 \Rightarrow n'_0$. By IH: $n_0 = n'_0$. Thus, $n = \mathbf{succ}(n_0) = \mathbf{succ}(n'_0) = n'$.
- E-P(Z): We have $e = \mathbf{pred}(e_0)$, $n = \mathbf{zero}$ and $e_0 \Rightarrow \mathbf{zero}$. Two sub-cases:
 - E-P(Z) used for $e \Rightarrow n'$: Here $n' = \mathbf{zero} = n$.
 - E-P(S) **used for** $e \Rightarrow n'$: Here $e_0 \Rightarrow \mathbf{succ}(n_0)$ for some n_0 . By IH this means that $\mathbf{zero} = \mathbf{succ}(n_0)$, which is a contradiction. (This means that E-P(S) could not have been used for $e \Rightarrow n'$ after all.)
- E-P(S): We have $e = \mathbf{pred}(e_0)$ and $e_0 \Rightarrow \mathbf{succ}(n)$. Two sub-cases:
 - E-P(Z) used for $e \Rightarrow n'$: $e_0 \Rightarrow zero$, so by IH, zero = succ(n), *i.e.*, contradiction.
 - E-P(S) used for $e \Rightarrow n'$: $e_0 \Rightarrow \mathbf{succ}(n')$. By IH: $\mathbf{succ}(n) = \mathbf{succ}(n')$, so n = n'.
- E-C(Z): We have $e = \mathbf{if0}(e_1, e_2, e_3)$ and $e_1 \Rightarrow \mathbf{zero}$. By reasoning analogous to case E-P(Z) it must be that $e \Rightarrow n'$ also uses rule E-C(Z) (as opposed to E-C(S)). We use the IH on e_2 , which gives the desired result.
- E-C(S): We have $e = \mathbf{if0}(e_1, e_2, e_3)$ and $e_1 \Rightarrow \mathbf{succ}(n_1)$ for some n_1 . By reasoning analogous to case E-P(S) it must be that $e \Rightarrow n'$ also uses rule E-C(S) (as opposed to E-C(S)). We use the IH on e_3 , which gives the desired result.