
CMSC 22100/32100: Programming Languages

Sample solution to Homework 1

M. Blume Due: October 7, 2008

1. Consider the rules:

zero nat
zero

n nat
succ(n) nat

succ
nil list

nil

n nat l list
cons(n, l) list

cons

These rules define a set of terms nat representing natural numbers in
Peano encoding and a set of terms list representing lists of such numbers.

We can inductively (i.e., recursively) define the following append function
on lists:

append(nil, m) = m

append(cons(n, l), m) = cons(n, append(l,m))

(a) Represent append as a ternary relation and give its definition induc-
tively.9pt

Solution:
Let the relation A be the smallest set such that

i. For every y such that y list we have (nil, y, y) ∈ A.

ii. If (x, y, z) ∈ A and a nat, then (cons(a, x), y, cons(a, z)) ∈
A.

(b) Write down a set of inference rules that defines the same ternary
relation.10pt

Solution:

y list
append(nil, y, y)

r1
append(x, y, z) a nat

append(cons(a, x), y, cons(a, z))
r2

(c) Prove that the so-defined relation is single-valued, i.e., that it repre-
sents a binary function.12pt

1

To show:
If append(x, y, z) and append(x, y, z′), then z = z′.
Proof:
By induction on the derivation of append(x, y, z).

Case 1: Rule r1 was used to derive append(x, y, z), so x = nil
and y = z. Since x = nil, rule r1 must also have been used
to derive append(x, y, z′). Thus, z′ = y = z.

Case 2: Rule r2 was used to derive append(x, y, z). Thus, x =
cons(a, x0) for some a and x0, and z = cons(a, z0) for some
z0. Furthermore, inversion of r2 gives append(x0, y, z0).
Since x 6= nil, r2 must also have been used to derive
append(x, y, z′). Thus, we have z′ = cons(a, z′0) and
append(x0, y, z′0) for some z′0. Using the induction hypoth-
esis we find that z0 = z′0. Therefore, z = cons(a, z0) =
cons(a, z′0) = z′ as required.

2. (See Chapter 2.1) Let s 7→ s′ be some arbitrary binary relation and let
7→∗ be defined by the following two inference rules:

s 7→∗ s
refl

s 7→ s′ s′ 7→∗ s′′

s 7→∗ s′′
trans

Prove that 7→∗ is indeed transitive, i.e., that ∀s, s′, s′′. s 7→∗ s′ ∧ s′ 7→∗
s′′ ⇒ s 7→∗ s′′.20pt

Solution:
By induction on the derivation of s 7→∗ s′:

Case 1: Rule refl was used last to derive s 7→∗ s′, so s = s′. Thus,
trivially, s 7→∗ s′′.

Case 2: Rule trans was used last to derive s 7→∗ s′. Thus, by inversion of
the rule there exists a t such that s 7→ t and t 7→∗ s′. We use the IH
on t 7→∗ s′ and s′ 7→∗ s′′, finding that t 7→∗ s′′. Using rule trans in
forward direction on s 7→ t and t 7→∗ s′′ lets us conclude that s 7→∗ s′′

as required.

3. Consider a language where all values are Peano-encoded natural numbers
given by the nat judgment from question 1. The expressions e of the
language shall be of one of the following forms: zero representing the
constant 0, succ(e) representing the operation of producing the successor
of a given argument, pred(e) representing the operation of producing the
natural predecessor 1 of a given argument, and if0(e1, e2, e3) representing

1The natural predecessor of n + 1 is n, and the natural predecessor of 0 is taken to be 0.

2

a tests of e1 for being 0, returning the result of e2 if it is or the result of
e3 if it is not.

(a) Give a definition of e in BNF style.6pt

Solution:

e : : = zero | succ(e) | pred(e) | if0(e, e, e)

(b) Give equivalent inference rules for a judgment e exp which holds if
e is an expression of the language.8pt

zero exp
z

e exp
succ(e) exp

s
e exp

pred(e) exp
p

e1 exp e2 exp e3 exp
if0(e1, e2, e3) exp

c

(c) Give a set of inference rules for judgments of the form e⇒ n where e
is an expression and n is a natural number (in Peano-encoding). The
judgment should express the “evaluates-to” relation in the style of a
big-step operational semantics and must correspond to the informal
description given above.10pt

The tricky bits are:

• We need two rules for pred—one for the case that the ar-
gument evaluates to zero and one for the case where the
argument evaluates to some succ(n).

• The rules for if0 require an explicit premise of the form
e3 exp or e2 exp for the sub-term that does not get eval-
uated. Otherwise the statement to be proved in part (d)
would not be true.

Here are the rules:

zero⇒ zero
e-z

e⇒ n

succ(e)⇒ succ(n)
e-s

e⇒ zero
pred(e)⇒ zero

e-p(z)
e⇒ succ(n)
pred(e)⇒ n

e-p(s)

e1 ⇒ zero e2 ⇒ v e3 exp
if0(e1, e2, e3)⇒ v

e-c(z)

e1 ⇒ succ(n) e2 exp e3 ⇒ v

if0(e1, e2, e3)⇒ v
e-c(s)

3

(d) Prove that if e ⇒ n is derivable, then so is e exp as well as n nat.
10pt

n nat The proof proceeds by induction on the derivation of e⇒ n.
The cases e-z and e-p(z) are trivial by rule zero. Case e-
c(z) follows directly from the IH for e2. Similarly, case e-c(s)
follows from the IH for e3. For case e-s we use the IH on e
and then use rule succ. For case e-p(s) we use the IH on e
and then apply the inversion of rule succ. (As discussed in
class, this inversion is an admissible rule.)

e exp Again, the proof proceeds by induction on the derivation of
e ⇒ n. Case e-z is immediate by rule z. Case e-s uses the
IH on e and then rule s; cases e-p(z) and e-p(s) use the IH
on e and then rule p. Case e-c(z) uses the IH on e1 and e2

and then applies rule c. Notice that the last step requires
to know that e3 exp, which is given by inversion of e-c(z).
Case e-c(s) is analogous to e-c(z), with the roles of e2 and
e3 swapped.

(e) Prove that the relation ⇒ defined by your rules is single-valued.15pt

4

To show:
If e⇒ n and e⇒ n′, then n = n′.
Proof:
By induction on the derivation of e⇒ n.

e-z: We have e = zero and n = zero. e-z must have been used
to derive e⇒ n′, so n′ = zero = n.

e-s: We have e = succ(e0), n = succ(n0), and e0 ⇒ n0. e-s must
have been used to derive e⇒ n′, so n′ = succ(n′0) and e0 ⇒
n′0. By IH: n0 = n′0. Thus, n = succ(n0) = succ(n′0) = n′.

e-p(z): We have e = pred(e0), n = zero and e0 ⇒ zero. Two
sub-cases:

e-p(z) used for e⇒ n′: Here n′ = zero = n.

e-p(s) used for e⇒ n′: Here e0 ⇒ succ(n0) for some n0.
By IH this means that zero = succ(n0), which is a
contradiction. (This means that e-p(s) could not have
been used for e⇒ n′ after all.)

e-p(s): We have e = pred(e0) and e0 ⇒ succ(n). Two sub-cases:

e-p(z) used for e⇒ n′: e0 ⇒ zero, so by IH, zero =
succ(n), i.e., contradiction.

e-p(s) used for e⇒ n′: e0 ⇒ succ(n′). By IH: succ(n) =
succ(n′), so n = n′.

e-c(z): We have e = if0(e1, e2, e3) and e1 ⇒ zero. By reasoning
analogous to case e-p(z) it must be that e⇒ n′ also uses rule
e-c(z) (as opposed to e-c(s)). We use the IH on e2, which
gives the desired result.

e-c(s): We have e = if0(e1, e2, e3) and e1 ⇒ succ(n1) for some
n1. By reasoning analogous to case e-p(s) it must be that
e⇒ n′ also uses rule e-c(s) (as opposed to e-c(s)). We use
the IH on e3, which gives the desired result.

5

