
Introduction to Computer Science (CMSC151)
Lab 1: Introduction to DrScheme - Simple Programs
Due: Friday, October 2nd 2009, 10:00pm

0. Introduction

In this lab, you will learn how to use DrScheme and design a few simple programs.

0.1. Setup

Course website and mailing list

The course website is available at http://www.classes.cs.uchicago.edu/archive/2009/fall/15100-1/index.html
If you have not yet had a chance to, please subscribe to the class mailing list at
https://mailman.cs.uchicago.edu/mailman/listinfo/cmsc15100

Install DrScheme

You can install DrScheme on your machine (recommended) by following the instructions from the PLT
Scheme website or use the installed version available on cs machines in the lab.

Setup your handin account

You can set up your submission account by following the steps given on the course website (here).

1. Choose the File → Install .plt file menu item in DrScheme and paste in this url:
http://www.classes.cs.uchicago.edu/archive/2009/fall/15100-1/files/uc-cmsc15100.plt

2. Restart DrScheme. A handin button should now appear in the top right hand corner of the DrScheme
window.

3. Create an account by using the File → Manage CMSC15100 Handin Account menu item.

4. Use the Manage CMSC 15100 Handin Account... button to hand in your work. You can handin
updated work as you keep working, but please make sure your final submission is in by Friday 10pm.
You may also retrieve your current submission by selecting the ”Retrieve” checkbox from this same
interface.

Documentation/Help

The course textbook contents, teachpacks references, a language reference are all available from the doc-
umentation section of the PLT Scheme website or from the Help → Help Desk menu in DrScheme. For

1

http://www.classes.cs.uchicago.edu/archive/2009/fall/15100-1/index.html
https://mailman.cs.uchicago.edu/mailman/listinfo/cmsc15100
http://plt-scheme.org/
http://plt-scheme.org/
http://www.classes.cs.uchicago.edu/archive/2009/fall/15100-1/index.html
http://www.htdp.org/
http://docs.plt-scheme.org/teachpack/index.html
http://docs.plt-scheme.org/reference/index.html
http://docs.plt-scheme.org/index.html
http://docs.plt-scheme.org/index.html

help outside the lab sessions or office hours, please send an email to the class mailing list or email me at
gabri@cs..

1. Getting started with DrScheme

DrScheme is a programming environment that allows the exploration of the different variants of Scheme
that PLT Scheme provides. DrScheme looks like this:

The upper area is the definitions window which is used for defining new programs. The lower area (the
interactions window) allows direct interaction.

Before we begin, we must first select the language to work with: from the ”Languages→ Choose Language”
menu item, choose ”Beginning Student”. We then click the ”Execute” button and the selected language
should show up at the bottom left corner of the DrScheme window.

2

2. Numbers, Expressions, Simple Programs

Numbers in Scheme may be integers (4, -5), rationals (7
3), reals (

√
2) and complex (3 + 5i) with exact or

inexact representations (preceded by # i, e.g.
√

(2) = #i1.4142135623730951).

A numeric expression is of the form:

(operation $E_1 ... E_n$)

where Ei are either atomic (numbers, variables - see below) or compound expressions of the form given
above. e.g. (+ 4 5), (sqrt 4), (+ 3 (/ 8 2))

Try evaluating a few expressions in the DrScheme interaction window and check the help desk to see if
there are predefined operations for finding the cube of a number.

To see how a more complex expression is evaluated, we can use DrScheme’s step tool. We will write our
expression in the definitions window this time. Clicking ”Run” will yield the final result 7. To follow
the evaluation step by step, we will open a stepper window by clicking the ”Step” button at the top of the
DrScheme window. The left-hand side highlights in green the subexpression evaluated in the current step,
while the right-hand side highlights in purple the result of this evaluation. By clicking ”Next” repeatedly,
we see the evaluation step by step.

A simple program can be thought of as a rule for producing data when given input data. This rule speci-
fication may include placeholders for the data being processed: variables. For example, a simple program
that calculates the amount resulting from doubling a bet:

(define (double-bet b)
(* b 2))

Once we have defined this program (in the DrScheme definitions window) we can call it as if it were a
primitive operation (in the interactive window) thus applying it to concrete input data:

> (double-bet 10)
20

Even in designing such a simple program example we are actually following a design recipe:

1. We have given our program a meaningful name and decided what information it consumes (a number
representing the initial betting amount) and what it produces (another number representing the amount
after doubling). This is our program’s contract CONTRACT. We should state this contract as follows
(double ;; represents a comment) :

;;Contract: double-bet : number - > number

Our program’s HEADER restates the program name and names the inputs:

(define (double-bet b) ...)

3

2. Knowing the program’s contract and parameters we are ready to formulate a short PURPOSE STATE-
MENT for the program.

;;Purpose: Calculate the result of doubling an initial bet of value b.

3. Before we write the program body we should add representative EXAMPLES of the program func-
tionality.

;;Examples: (double-bet 5) should produce 10

4. Writing the PROGRAM BODY, which amounts to refining the header:

(define (double-bet b) (* b 2))

5. Lastly, we must TEST our program on representative examples, at least on the ones we provided in
the previous steps.

The final resulting program would be:

;;Contract: double-bet : number - > number
;;Purpose: Calculate the result of doubling an initial bet of value b.
;;Examples: (double-bet 5) should produce 10

(define (double-bet b) (* b 2))

(double-bet 5)

Problem 1
Define a program height-conv that takes a person’s height in feet and inches and calculates the person’s
height in centimeters. (1 inch=2.54cm). Follow the design recipe above and remember to test your program.

Assume our task is to determine the total amount that was bet by two players after first doubling their bets.
We now have a contract and header of the form:

;;Contract: add-double-bets : number number -> number
(define (add-double-bets bet-player1 bet-player2) ...)

Instead of repeating specifying the rule for one player doubling his/her bet, we can reuse that code:

(define (add-double-bets bet-player1 bet-player2)
(+ (* 2 bet-player1) (* 2 bet-player2)))

(define (add-double-bets bet-player1 bet-player2)
(+ (double-bet bet-player1) (double-bet bet-player2)))

Notice how this design choice makes increases our program’s readability and modularity.

Use the stepper to observe how the evaluation of (add-double-bets 3 4) happens.

4

Problem 2
Define a program cube-diff that calculates the volume difference between 2 cubes for each of which the
length of its side is given.

3. Conditional expressions

Conditional expressions in Scheme can use relational operators (<, >, =, <=, >=)

(= 5 7)

They will evaluate to truth values (boolean values) true or false.

Compound conditional expressions using operators and, or, not work on boolean values.

(not (or (= 5 7) (< 2 5)))

A cond-expression has the form:

(cond (cond
[question answer] [question answer]
... or ...
[question answer]) [else answer])

Each [question answer] line is called a cond-clause and the question must be a valid conditional expression.
Scheme will evaluate a cond-expression by evaluating these conditions one by one. For the first one that
evaluates to true, Scheme evaluates the corresponding answer which becomes the value of the entire cond-
expression.

> (cond
[(> 4 5) 0]
[(= 4 4) (+ 1 1)])

2

An answer may be another cond-expression, for example:

> (cond
[(> 4 5) 0]
[(= 4 4) (cond

[(> 2 5) 4]
[else 5])])

5

5

Problem 3
Define a program is-traffic-low? that determines if the traffic is low based on if the weather is sunny
or not, windy or not and the day of the week (weekend or not) knowing that:
1. The traffic is always high on sunny weekends.
2. The traffic is always low on cloudy weekdays.
3. In all other cases the trafic is low if it’s windy.
For example (is-traffic-low? false false false) should evaluate to true. Assume the first argument indicates if
the weather is sunny, the second if it is windy and the third if the day is a weekend.

4. Working with images

From the ”Language → Add teachpack” menu item select image.ss.

This teachpack offers primitives for manipulating images. Please read carefully through the teachpack
documentation available from the help desk or online here.

Practice drawing a few basic shapes and working with their pinholes. Recall that pinholes are not necessarily
the geometric centers of the objects drawn. We can retrieve the pinhole coordinates by using the pinhole-x
and pinhole-y, move a pinhole using move-pinhole. We can compose basic images by overlaying them on
their pinholes (overlay and overlay/xy).

We can include pictures directly in the definitions or interactions window in DrScheme by just ”Copying”
the image and then Pasting it in DrScheme (e.g. using the Edit - > Paste menu item).

Problem 4
Using the overlay functions create a semaphore with circles of given radius

6

http://docs.plt-scheme.org/teachpack/image.html

Problem 5
Align 2 copies of the following picture (download here) as shown below, where the picture on the left-hand
side is the original picture, and the one on the right-hand side is the middle part of the former (25% of the
original picture has been removed on each side):

7

http://www.cs.uchicago.edu/~gabri/home.png

