
CMSC 23700
Winter 2008

Introduction to Computer Graphics Project 3
February 7

A simple OpenGL viewer
Due: Thursday, February 21 at 1pm

1 Summary

This project is the third part of a three-part project. In this part, you will add code to support real-
time shadows using the Shadow Map technique discussed in class. In addition to programmable
shaders, this project will also involve using OpenGL’s frame-buffer-object (FBO) extension and
depth textures.

2 Description

Shadows are one of the most important visual cues for understanding the relationship of objects
in a 3D scene. As discussed in class, there are a number of techniques that can be used to render
shadows using OpenGL. For this project, we will use shadow maps.

The basic idea is that for each frame, you will the scene render two times. The first pass will
render the scene from the light’s point of view, generating a depth texture that will be used as a
shadow map in the second pass.1 The first pass can be done with the fixed pipeline (i.e., without
shaders). The second pass will require both a vertex shader and fragment shader. The vertex shader
will extend the shader from Project 2 by also computing texture coordinates for the shadow map(s).
The fragment shader will combine per-pixel lighting with the shadow-map information to compute
the fragment color.

2.1 Lights

You will need to support shadows from one or two lights depending on the current view state (see
below). One light is a directional light and the other is a spotlight hanging above the box. To allow
light into the box, we have removed the top wall.

For each light l, you should compute the ambient (Al) and diffuse (Dl) intensity as in Project 2
(these will be color vectors). You should also compute a value Sl, which is 0.5 when the pixel is in
shadow and 1.0 otherwise. Then, assuming that the input color is Cin, A is the global ambient light
level, and L is the set of enabled lights, the resulting color should be

Cout = Cin max

(
A, clamp

(∑
l∈L

Sl(Al + Dl)

))
1If there are two lights enabled, then you will have to generate two shadow maps.



Note that for the directional light, Al +Dl will always be greater than zero, but that for the spotlight
Al + Dl = 0, when the fragment is outside the cone of light.

2.2 User interface

The user interface will be somewhat different from Project 2. The sample code supports the follow-
ing keyboard commands:

l toggle the lighting mode between directional, spotlight, and both lights.
+ add a ball to the simulation
- remove a ball from the simulation
s enable/disable shadows.
q quit the viewer

2.3 Support code

The sample code will include support for using FBOs (see fbo.h) and support for matrix opera-
tions (see matrix.h).

2.4 Hints

Note that the whole scene can be bounded by a sphere at the origin that has radius
√

3. You can use
this sphere to help determine the far plane when setting up the light’s projection matrix.

For the directional light, you will need to use an orthographic projection.

Since the lights do not move, you can compute their model-view and projection matrices as
startup time. You can also precompute the texture matrix needed to map eye-space vertices to the
light’s clipping space.

You may find it useful to render the shadow map to the screen as a debugging aid. One way to
do this is to create a second window that is the shadowmap size. You can map the depth values to a
grey scale (i.e., −1 maps to black and 1 maps to white) using a simple shader.

3 Submission

We will set up a gforge repository for each student on the Computer Science server (see the Lab
notes (Handout 2) for more information on gforge). We will collect the projects at 3:30pm on
Wednesday February 20th from the repositories, so make sure that you have committed your final
version before then. You will also be expected to demonstrate your code during Lab in Week 7
(February 20).

History

2008-02-18 Fixed lighting equation (min should be max).

2



2008-02-07 Original version.

2008-02-12 Updated due date.

3


