1. An axis-aligned bounding box (AABB) in 2D is defined by four scalar values:

$$\langle minX, maxX, minY, maxY \rangle$$

We use (1, -1, 1, -1) to denote the empty AABB. Let

$$bb_1 = \langle minX_1, maxX_1, minY_1, maxY_1 \rangle$$

and

$$bb_2 = \langle minX_2, maxX_2, minY_2, maxY_2 \rangle$$

be two *non-empty* AABBs.

- (a) What is the minimum AABB that contains the union of bb_1 and bb_2 ?
- (b) What is the minimum AABB that contains the intersection of bb_1 and bb_2 ?
- (c) What is the minimum AABB that contains the difference of bb_1 and bb_2 (i.e., $bb_1 \setminus bb_2$).?
- 2. One way to make LOD transitions is to use an α fade, where you lerp the α channel to blend the two LODs. Assume that you have a triangle $\langle \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \rangle$ and a vertex \mathbf{q} that bisects the line $\mathbf{p}_2\mathbf{p}_3$, splitting the triangle into two triangles $\langle \mathbf{p}_1, \mathbf{p}_2, \mathbf{q}_3 \rangle$ and $\langle \mathbf{p}_1, \mathbf{q}, \mathbf{p}_3 \rangle$.

Assuming that triangles have the following representation:

```
typedef struct {
    Vec3f_t verts[3];
    Vec3f_t normal;
    Vec3f_t color;
} Triangle_t;
```

Define a function

```
void alphaLerp (Triangle_t *tri, Vec3f_t q, float t);
```

that takes as arguments the triangle tri, the point of bisection q, and a parameter $0 \le t \le 1$ that controls the blending of the two images. When t is 0, just the single triangle should be drawn, and when t is 1, just the triangle pair should be drawn. You may use mathematical notation or C code to write your answer, but it should clearly specify the OpenGL state used in rendering.