CMSC 23700 Introduction to Computer Graphics Handout 2
Winter 2008 January 9

Lab tips

This handout provides an introduction to some of the tools you will use to complete the pro-
gramming projects.

Getting Started

You will need an account on the CS machines (this is different from your harper account). If you
do not already have one, you can request one at

www.cs.uchicago.edu/info/services/account_request

We recommend that you use the Intel Macs in the Mac Lab for your project. These machines
support OpenGL 2.0 and have good-quality graphics cards. Apple’s Developer tools also include
useful tools for debugging and optimizing your OpenGL applications.

It may be possible to use the Mac Lab linux machines too, but we have not yet verified that they
support a recent enough version of OpenGL.

Using OpenGL and GLUT functions in your C programs

In order to use OpenGL and GLUT functions in your program you will need to include the ap-
propriate header files. The file glut . h header file includes the OpenGL header files (g1 .h and
glu.h), so it is the only one you will need to include. Unfortunately, Linux and MacOS X differ
in where they put the glut . h file. The following bit of preprocessor code will allow your program
to compile on both platforms:

#if defined(__APPLE__) && defined(__MACH_)
d1nclude <GLUT/glut.h>

#else

include <GL/glut.h>

#endif

Compiling under MacOS X

MacOS X also uses gee as its default C compiler. Apple uses a different set of linking flags from
Linux. To link an OpenGL program, you need the following linker flags:

—framework GLUT -framework OpenGL -framework Foundation

Apple provides an IDE (called Xcode) that you may use to develop your project, but please include
a makefile in you submissions.

Compiling under Linux

On Linux systems, you should use the default version of gee (version 4.1), which accessed using
the path /usr/bin/gcc. To compile and link an OpenGL program under Linux, you must use
the following linking options:

—lglut -1GL -1GLU —-1m

Doxygen

For this course, it is not sufficient to just write working code, you code should be well organized and
documented. To help with the latter, we will use the Doxygen tool (doxygen.org) to generate
documentation from source code. Specifically, we expect you to document each file, data structure,
and function, as well as other significant definitions (e.g., macros). You will be expected to hand in
a hardcopy of your documentation as part of the project submission.

Makefiles

For each of your projects, you should include a makefile in your submission. We will provide a
skeleton makefile for you, but you are responsible for maintaining it. For a simple project, such as
Project 0, that contains only a single source file, the following makefile will suffice:

SHELL = /bin/sh

ifeqg ($(shell uname -s),Darwin)
CC = cc —-std=gnu99

LDFLAGS = —-framework GLUT -framework OpenGL -framework Foundation
else

CC = gcc -std=gnu99

LDFLAGS = —-lglut -1GL -1GLU -1m
endif
projectO: main.c

$(CC) S$(CFLAGS) -o project0 main.c $(LDFLAGS)

clean:
rm —-rf projectO
This makefile works on both Linux and MacOS X by setting the LDFLAGS make variable based on
the host OS. If you have not used make before, you should take a look at the documentation. Infor-
mation about make is available at www.gnu.org/software/make and online documentation
can be found at www.gnu.org/manual/make/html_chapter/make.html.

Gforge

We are using a new system to keep track of projects called gforge. A server has been set up
with hostname cmsc23700-gforge.cs.uchicago.edu. You can access it using your web
browser at that address.

Before you can have a project, you need to register yourself as a user. Do this by pointing
your web browser to http://cmsc23700-gforge.cs.uchicago.edu/ and clicking on
the link “New Account” on the top right corner of the page. Follow the directions (you only need
to fill in the starred fields) and submit the form. In a few seconds you should receive an email with
a link to confirm your registration. Click on it and log in and you should have an active account.
When this is complete, email me at jriehl@cs.uchicago.edu with the account name you
just set up.

Using Subversion

Once a project is created for you, it will have a Subversion repository on the server. You are expected
to keep the source code of your projects in the repository. To checkout a copy of a project called
foo, run the following command:

svn checkout svn://cmsc23700-gforge.cs.uchicago.edu/foo

On your first checkout, you should be prompted for your password. It will assume you are using
the username of the account executing svn. If your gforge username is different than this name, just
press enter on the password prompt and it will then ask you for your username first and then your
password. If everything checks out, a directory called foo will be created in the current directory.
All the files related to your project should live in this directory.

Now suppose you create a file called main. c in your foo directory. In order for Subversion
to keep track of it, it needs to be added to the repository. You do this using the following command:

svn add main.c
You should see a message like:
A main.c

This command records the fact that main . c has been added to the repository, but the file will only
be added when you commit your changes. To do so, type the following command:

svn commit

to add the file permanently to the repository. You will be prompted to enter a log message in an
editor. You can avoid editors altogether by typing your log message on the command line with the
-m flag:

svn commit -m "added files"
After you have entered your message, you will see a message like the following:

Adding main.c
Transmitting file data
Committed revision 1.

Changes you make to your files are recorded in the repository every time you do a svn commit.

Before you make changes to your files, you can ensure that you have a current version, by running
svn update. This fact is not of tremendous significance for individual projects, but matters when
more that one person can modify the same files.

Not all the files in your project directory need to be in the repository. For example, you should
not put your executable files in the repository — these can always be recreated (hopefully!) by
compiling the source.

The “svn diff” command is for comparing differences between versions. If no files (or
options) are specified, all working files are compared to their last committed versions, otherwise
only the specified files are compared. There are also flags to compare other versions, see the man
pages or the online manual for details.

Useful resources

There are links to some useful Computer Graphics resources on the course web page at
www.classes.cs.uchicago.edu/archive/2008/winter/23700/

Information about make is available at www . gnu.org/software/make/ and online docu-
mentation can be found at www.gnu.org/manual /make/html_chapter/make.html.

The Doxygen home page is at http://doxygen.org and it includes an online manual.

The Subversion home page isat http://subversion.tigris.org/. Official documen-
tationis at http://svnbook.red-bean.com/.

