
CMSC 23500 — Introduction to Database Systems

Discussion Session #3

April 14, 2008

1 SQLite

In the first part of this course, we will be using the SQLite relational DBMS (http:
//sqlite.org/. This is a light-weight DBMS that will allow us to experiment with
SQL and to get a feel for how a database works, without having to go through the
more complex interactions involved in using heavier systems like MySQL, PostreSQL,
Oracle, etc.

One of SQLite’s main advantages is that it stores a database in a single file which
can be easily copied and moved around, and accessed directly through a command-line
interface or simple APIs. Larger DBMSs also store their data in files, but they are
rarely (if ever) manipulated directly by the user/programmer. Instead, they must be
accessed through a database server, which is typically not easy to set up. On the other
hand, SQLite is simple to install and requires no configuration, so you can start toying
and tinkering with it right away, and using an existing database is as easy as making
a copy of a database file. More details about SQLite’s main features can be found at
http://www.sqlite.org/different.html.

Of course, SQLite does have its drawbacks. Most notably, it does not scale well to
high-concurrency applications (e.g., high-traffic websites) or large datasets. Addition-
ally, it does not support all the features of SQL, although this will not be a problem
for the simple queries we will be seeing in this lab.

2 Using SQLite

Starting SQLite from one of the CS machines is as simple as running the sqlite3
command:

$ sqlite3

SQLite version 3.3.8

Enter ".help" for instructions

sqlite>

1

This starts an SQLite shell where we can type in SQL statements. Of course,
there are other ways to access an SQLite database other than typing in raw SQL
statements into a shell. For example, there are GUIs (SQLiteman is a popular one,
although not installed on the CS machines; see http://sqliteman.com) and APIs
for several programming languages (see http://www.sqlite.org/cvstrac/wiki?p=
SqliteWrappers for a complete list). However, for now we will keep the focus on
interacting with the database through SQL commands.

Since we started the SQLite shell without accessing an existing database, the only
types of statements we could run at this point would be DDL statements (e.g., to
create a new table). In this lab you are provided with an example database (you can
download it from the course website), and we will focus on using DML statements to
access and manipulate the contents of that database. To start the SQLite shell, and
attach it to the database, just run the following:

$ sqlite3 planet_express.db

Besides SQL, this shell also provides several administration commands, which all
begin with a dot. Two commands we will find useful are .tables and .schema. The
first one will show a list of all the tables in the database:

sqlite> .tables

Client Has_Clearance Planet

Employee Package Shipment

The .schema command shows the DDL command that was used to create a table:

sqlite> .schema Planet

CREATE TABLE Planet (

PlanetID INTEGER PRIMARY KEY NOT NULL,

Name TEXT NOT NULL,

Coordinates REAL NOT NULL

);

Running .schema without any parameter will dump the entire schema for the
database. Note that you will see several statements related to “TRIGGER”s. You
can ignore them for now. They have been added because SQLite does not enforce
referential integrity automatically, so we must rely on triggers, a common mechanism
found in relational databases, to enforce referential integrity.

Now, let’s try to run an SQL query that returns the entire contents of the Planet
table. Type in the following:

sqlite> SELECT * FROM Planet;

You should see the following output:

2

1|Omicron Persei 8|89475345.3545

2|Decapod X|65498463216.3466

3|Mars|32435021.65468

4|Omega III|98432121.5464

5|Tarantulon VI|849842198.354654

6|Cannibalon|654321987.21654

7|DogDoo VII|65498721354.688

8|Nintenduu 64|6543219894.1654

9|Amazonia|65432135979.6547

By default, SQLite makes no attempt to pretty-print the results of a query (this is
good to process the output of a query with another program, but not that good if it’s
going to be read by a human). You can make the output look nicer by running the
following administration commands:

sqlite> .mode column

sqlite> .headers on

If you rerun the previous query, you should now see the following:

PlanetID Name Coordinates

---------- ---------------- -------------

1 Omicron Persei 8 89475345.3545

2 Decapod X 65498463216.3

3 Mars 32435021.6546

4 Omega III 98432121.5464

5 Tarantulon VI 849842198.354

6 Cannibalon 654321987.216

7 DogDoo VII 65498721354.6

8 Nintenduu 64 6543219894.16

9 Amazonia 65432135979.6

Finally, note that you can break a query into as many lines as you want. The end
of a query is always delimited by a semicolon. For example:

sqlite> SELECT *

..> FROM Planet;

3 The Planet Express database

Before running more elaborate SQL queries, take a look at Figure 1, which shows
the relational schema of the example database. This schema models the data from
the Planet Express delivery company, focusing on keeping track of shipments. In
particular, the company has several employees, each of which can be the manager for

3

Figure 1: Relational schema for the Planet Express database

zero or more shipments. A shipment includes several packages, all delivered to the
same planet. If a shipment has been carried out, the shipment date is noted in the
database. Otherwise, its value will be NULL (indicating this is a pending shipment).
Employees, furthermore, can be cleared (by the pertinent authorities) to land in zero
or more planets. Each clearance has a specific level, from 1 to 4. Packages in each
shipment will have a code that is unique within that shipment, and the database will
keep track of who the sender and recipient of the package are (both of which will have
an account number with the company).

Make sure you understand the diagram. More specifically, look at the primary keys
and foreign keys. Do they make sense? Are they consistent with the description pro-
vided above? Can you identify what foreign keys are the result of a 1..N relationship,
and which ones are a result of an N..M relationship? Is there any table that originated
from a weak entity?

4 A couple sample queries

You will be seeing SQL in detail in this week’s lectures. So, take the following queries
with a healthy dose of salt. Their purpose is for you to become familiar with running
SQL queries in SQLite and to demonstrate how SQL has a simple syntax providing
similar functionality to the relational algebra. For example, the following query shows
how you can do a projection (instead of selecting all the columns from a table):

sqlite> SELECT EmployeeID, Name, Position FROM Employee;

4

You should see the following output:

EmployeeID Name Position

---------- -------------- ------------

1 Phillip J. Fry Delivery boy

2 Turanga Leela Captain

3 Bender Bending Robot

4 Hubert J. Farn CEO

5 John A. Zoidbe Physician

6 Amy Wong Intern

7 Hermes Conrad Bureaucrat

8 Scruffy Scruff Janitor

SQL also allows you to specify selection conditions:

sqlite> SELECT EmployeeID, Name, Position FROM Employee

..> WHERE Salary >= 10000;

The above query should return the following:

EmployeeID Name Position

---------- ------------- ----------

2 Turanga Leela Captain

4 Hubert J. Far CEO

7 Hermes Conrad Bureaucrat

Next, let’s see what happens if we try to violate the primary key integrity of a table.
The following statement adds a new tuple to the Planet table, setting the primary
key to 4. If you look at the results of our first query, which returned all the contents
of the Planet table, you’ll see that there is already a tuple with that primary key.

sqlite> INSERT INTO Planet(PlanetID, Name, Coordinates)

..> VALUES (4, ‘‘Jupiter’’, 1839102.5);

This statement should result in the following error: SQL error: PRIMARY KEY
must be unique

Finally, let’s see what happens if we violate referential integrity. Remember that a
foreign key in table A must have the value of the primary key in the existing tuples of
table B (where, furthermore A and B can be the same table). A foreign key can also
be NULL, if allowed by the schema. The following statement creates a new shipment
that refers to a planet that does not exist in the Planet table:

sqlite> INSERT INTO Shipment(ShipmentID, Date, Manager, Planet)

..> VALUES (10, ‘‘11/04/3004’’, 1, 50);

5

This statement should fail, presenting the following error: SQL error: insert on
table ‘‘Shipment’’ violates foreign key constraint ‘‘fki Shipment Planet -
Planet PlanetID’’

5 Exercises

As you can see, the SQL syntax is pretty simple. Give it a whirl, and see if you can do
the following (the expected result is shown so you can verify if your query was correct):

1. Select the packages from shipment 3.

Shipment PackageNumber Contents Weight Sender

---------- ------------- ---------- ---------- ----------

3 1 Undeclared 15.0 3

3 2 Undeclared 3.0 5

3 3 Undeclared 7.0 2

Recipient

4

1

3

2. Select the packages from shipment 3, with a weight larger than 10.

Shipment PackageNumber Contents Weight Sender

---------- ------------- ---------- ---------- ----------

3 1 Undeclared 15.0 3

Recipient

4

3. Select the contents and weight of all the packages.

Contents Weight

---------- ----------

Undeclared 1.5

Undeclared 10.0

A bucket o 2.0

Undeclared 15.0

Undeclared 3.0

Undeclared 7.0

Undeclared 5.0

Undeclared 27.0

Undeclared 100.0

6

4. Select all the pending shipments.

ShipmentID Date Manager Planet

---------- ---------- ---------- ----------

3 2 3

4 2 4

5 7 5

5. Create a new shipment that, unlike the query shown above, does not violate
referential integrity. Verify that the insertion was successful by viewing the
contents of the Shipment table.

7

