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The Point

• “What’s the difference between local and 
remote procedure calling?”
– “Very little—that’s the point”

• Remote Procedures generally accept and 
return pointers to data



The Process
xdr.x

(You Write
This)

rpcgen
protocol
compiler

*_clnt.c
(Client Stub)

xdr.h
(common
header)

*_svc.c
(Server

Skeleton)

client.c
(You write

this)

client
executable

impl_proc.c
(You write

this)

server
executable



Call Sequence

Client
(You Write This)

*_clnt.c
Client Stub

(rpcgen)

Server
implementation
(You Write This)

*_svc.c
Server Skeleton

(rpcgen)

The Network

The Network



Remote Services

• SUN Remote Procedure Call
– If the time to transfer the data is more than the 

time to execute a remote command, the latter 
is generally preferable.

– UDP protocol is used to initiate a remote 
procedure, and the results of the computation 
are returned.



SUN RPC

• Communication is message-based
• When a server starts, it binds an arbitrary port 

and publishes that port and the PROGRAM and 
VERSION with the portmapper daemon (port 
111)

• When a client starts, it contacts the portmapper 
and asks where it can find the remote procedure, 
using PROGRAM and VERSION ids.  The
portmapper daemon returns the address and client 
and server communicate directly.



Sample protocol definition file 
(.x file)

this XDR file (somefile.x):
program NUMPROG
{

version NUMVERS
{

int READNUM(int) = 1; /* version 1 */
} = 1; /* version of functions */

} = 0x2000002; /* PROGRAM number */

is turned into this header file by rpcgen (somefile.h):

#define NUMPROG 0x2000002
#define NUMVERS 1

#if defined(__STDC__) || defined(__cplusplus)
#define READNUM 1
extern int * readnum_1(int *, CLIENT *);
extern int * readnum_1_svc(int *, struct svc_req *);



RPC Paradigms for Client 
Server

• Fat Client-DBMS (2 Tier)
– VB <=> Sybase (ODBC)
– Motif C++ <=> DBMS (ctlib)

• Fat Client-Application Server-DBMS
– C Front End <=> C Business Logic <=> 

DBMS



RPC Under the Hood

• RPC is important because it handles 
network details for you:
– Network Details

• Byte Ordering (Big Endian, Little Endian)
– Alignment Details

• 2/4 Byte alignment
– String Termination (NULL ?)
– Pointers (how to handle migration of 

pointers?)



RPC eXternal Data 
Representation

• XDR provides:
– Network Transparency

• Single Canonical Form using Big-Endian
• 4-Byte alignment
• XDR passes all data across the wire in a byte 

stream

– Filters



XDR Filters

• Integer:  int (4 bytes)
• Unsigned Integer:  unsigned int (4 bytes)
• char:  int (4 byte signed integer)
• Double: double (8 bytes IEEE754 FP)
• Float: float (4 bytes IEEE754 FP)
• int week[7]
• int orders <50> (variable length array)
• opaque data<1000> any data



Building an RPC Application

• Create XDR file 
(~mark/pub/518/rpc/[linux|sun]/numdisp.x)

• run rpcgen to create
– client stub: numdisp_clnt.c
– server skeleton: numdisp_svc.c
– common header: numdisp.h

• write client.c and numdisp_proc.c
• compile client and server (in subdirs)
• run (client on devon, server on orcus)
• example:  ~mark/pub/518/rpc/linux, 

~mark/pub/518/rpc/sun



Introduction to Multithreaded 
Programming with POSIX

Pthreads

Pthreads Information
Threads FAQ

Pthread Tutorial at Amherst
Pthreads Programming Bouncepoint

http://www.cs.ucr.edu/~sshah/pthreads/
http://www.cs.ucr.edu/~sshah/pthreads/
http://www.serpentine.com/~bos/threads-faq
http://www.serpentine.com/~bos/threads-faq
http://dis.cs.umass.edu/~wagner/threads_html/tutorial.html
http://dis.cs.umass.edu/~wagner/threads_html/tutorial.html
http://www.humanfactor.com/pthreads/
http://www.humanfactor.com/pthreads/


Processes Revisited

• A process is an active runtime environment that 
cradles a running program, providing an 
execution state along with certain resources, 
including file handles and registers, along with:
– a program counter (Instruction Pointer)
– a process id, a process group id, etc.
– a process stack
– one or more data segments
– a heap for dynamic memory allocation
– a process state (running, ready, waiting, etc.)

• Informally, a process is an executing program



Multiprocessing Revisited

• A multiprocessing or multitasking operating 
system (like Unix, as opposed to DOS) can have 
more than one process executing at any given 
time

• This simultaneous execution may either be 
– concurrent, meaning that multiple processes 

in a run state can be swapped in and out by the 
OS

– parallel, meaning that multiple processes are 
actually running at the same time on multiple 
processors



What is a Thread?

• A thread is an encapsulation of some flow of control in a 
program, that can be independently scheduled 

• Each process is given a single thread by default
• A thread is sometimes called a lightweight process, 

because it is similar to a process in that it has its own 
thread id, stack, stack pointer, a signal mask, program 
counter, registers, etc.

• All threads within a given process share resource 
handles, memory segments (heap and data segments), and 
code.  THEREFORE HEAR THIS:
– All threads share the same data segments and code 

segments 



What’s POSIX Got To Do With It?

• Each OS had it’s own thread library and style
• That made writing multithreaded programs difficult 

because:
– you had to learn a new API with each new OS
– you had to modify your code with each port to a new 

OS
• POSIX (IEEE 1003.1c-1995) provided a standard known 

as Pthreads
• DCE threads were based on an early 4th draft of the 

POSIX Pthreads standard (immature)
• Unix International (UI) threads (Solaris threads) are 

available on Solaris (which also supports POSIX threads)



Once Again....
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The Big Kahuna
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Processes and Threads:
Creation Times

• Because threads are by definition lightweight, they can be created 
more quickly that “heavy” processes:

– Sun Ultra5, 320 Meg Ram, 1 CPU
• 94 forks()/second
• 1,737 threads/second (18x faster)

– Sun Sparc Ultra 1, 256 Meg Ram , 1 CPU
• 67 forks()/second
• 1,359 threads/second (20x faster)

– Sun Enterprise 420R, 5 Gig Ram, 4 CPUs
• 146 forks()/second
• 35,640 threads/second (244x faster)

– Linux 2.4 Kernel, .5 Gig Ram, 2 CPUs
• 1,811 forks()/second
• 227,611 threads/second (125x faster)



Say What?

• Threads can be created and managed more 
quickly than processes because:
– Threads have less overhead than processes, for 

example, threads share the process heap, all 
data and code segments

– Threads can live entirely in user space, so that 
no kernel mode switch needs to be made to 
create a new thread

– Processes don’t need to be swapped to create a 
thread



Analogies

• Just as a multitasking operating system can have 
multiple processes executing concurrently or in 
parallel, so a single process can have multiple 
threads that are executing concurrently or in 
parallel

• These multiple threads can be taskswapped by a 
scheduler onto a single processor (via a LWP), or 
can run in parallel on separate processors



Benefits of Multithreading
• Performance gains

– Amdahl’s Law:   speedup = 1 / (1 – p) + (p/n)
– the speedup generated from parallelizing code is the 

time executing the parallelizable work (p) divided by 
the number of processors (n) plus 1 minus the
parallelizable work (1-p)

– The more code that can run in parallel, the faster the 
overall program will run

– If you can apply multiple processors for 75% of your 
program’s execution time, and you’re running on a 
dual processor box:

• 1 / ((1 - .75) + (.75 / 2)) = 60% improvement
– Why is it not strictly linear?  How do you calculate p?



Benefits of Multithreading 
(continued)

• Increased throughput
• Increased application responsiveness (no more 

hourglasses)
• Replacing interprocess communications (you’re 

in one process)
• Single binary executable runs on both

multiprocessors as well as single processors 
(processor transparency)

• Gains can be seen even on single processor 
machines, because blocking calls no longer have 
to stop you.



On the Scheduling of Threads

• Threads may be scheduled by the system scheduler (OS) 
or by a scheduler in the thread library (depending on the 
threading model).  

• The scheduler in the thread library:
– will preempt currently running threads on the basis of 

priority
– does NOT time-slice (i.e., is not fair).  A running 

thread will continue to run forever unless:
• a thread call is made into the thread library
• a blocking call is made
• the running thread calls sched_yield()



Models

• Many Threads to One LWP
– DCE threads on HPUX 10.20

• One Thread to One LWP
– Windows NT
– Linux (clone() function)

• Many Threads to Many LWPs
– Solaris, Digital UNIX, IRIX, HPUX 11.0)



Many Threads to One LWP
DCE threads on HPUX 10.20

T1
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P1
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LWP (kernel-scheduled

entity), user space threads
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single processor.  The

kernel sees this process
as "single threaded"

because it only sees a
single LWP.

T2 T3 T4 T5



Mx1 Variances
• very fast context switches between threads is executed 

entirely in user space by the threads library
• unlimited number of user threads (memory limit) can 

support logical concurrency model only
• parallelism is not possible, because all user threads map 

to a single kernel-schedulable entity (LWP), which can 
only be mapped on to a single processor

• Since the kernel sees only a single process, when one user 
space thread blocks, the entire process is blocked, 
effectively block all other user threads in the process as 
well



One Thread to One LWP( Windows NT, Linux) 
(there may be no real distinction between a thread 

and LWP)
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1x1 Model Variances
• Parallel execution is supported, as each user thread is 

directly associated with a single kernel thread which is 
scheduled by the OS scheduler

• slower context switches, as kernel is involved
• number of threads is limited because each user thread is 

directly associated with a single kernel thread (in some 
instances threads take up an entry in the process table)

• scheduling of threads is handled by the OS’s scheduler, 
threads are seldom starved

• Because threads are essentially kernel entities, swapping 
involves the kernel and is less efficient than a pure user-
space scheduler



Many Threads to Many LWPs
Solaris, Digital UNIX, IRIX, HPUX 11.0
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MxN Model Variances
• Extraordinarily flexible, bound threads can be used to 

handle important events, like a mouse handler
• Parallel execution is fully supported
• Implemented in both user and kernel space
• Slower context switches, as kernel is often involved
• Number of user threads is virtually unlimited (by 

available memory)
• Scheduling of threads is handled by both the kernel 

scheduler (for LWPs) and a user space scheduler (for user 
threads).  User threads can be starved as the thread 
library’s scheduler does not preempt threads of equal 
priority (not RR)

• The kernel sees LWPs.  It does NOT see threads



Creating a POSIX Thread:
pthread_create()

#include <pthread.h>
void * pthread_create(pthread_t *thread, const

pthread_attr_t attr, void *(*thrfunc)(void *), 
void *args);

• Each thread is represented by an identifier, of 
type pthread_t

• Code is encapsulated in a thread by creating a 
thread function (cf. “signal handlers”)

• Attributes may be set on a thread (priority, etc.).  
Can be set to NULL.

• An argument may be passed to the thread 
function as a void **



Detaching a Thread
int pthread_detach(pthread_t threadid);

• Detach a thread when you want to inform the operating 
system that the threads return result is unneeded

• Detaching a thread tells the system that the thread 
(including its resources—like a 1Meg default stack on 
Solaris!) is no longer being used, and can be recycled

• A detached thread’s thread ID is undetermined.
• Threads are detached after a pthread_detach() call, after a

pthread_join() call, and if a thread terminates and the 
PTHREAD_CREATE_DETACHED attribute was set on 
creation



“Wating” on a Thread:
pthread_join()

int pthread_join(pthread_t thread, 
void** retval);

• pthread_join() is a blocking call on non-detached 
threads

• It indicates that the caller wishes to block until 
the thread being joined exits

• You cannot join on a detached thread, only non-
detached threads (detaching means you are NOT 
interested in knowing about the threads exit)



Exiting from a Thread Function
int pthread_exit(void * retval);

• A thread ends when it returns from (falls out of) 
its thread function encapsulation

• A detached thread that ends will immediately 
relinquish its resources to the OS

• A non-detached thread that exists will release 
some resources but the thread id and exit status 
will hang around in a zombie-like state until some 
other thread requests its exit status via
pthread_join()



Miscellaneous Functions
pthread_t pthread_self(void);

– pthread_self() returns the currently executing thread’s 
ID

int sched_yield(void);

– sched_yield() politely informs the thread scheduler 
that your thread will willingly release the processor if 
any thread of equal or lower priority is waiting

int pthread_setconcurrency(int threads);

– pthread_setconcurrency() allows the process to 
request a fixed minimum number of light weight 
processes to be allocated for the process.  This can, in 
some architectures, allow for more efficient 
scheduling of threads



Managing Dependencies and 
Protecting Critical Sections

• Mutexes
• Condition Variables
• Reader/Writer Locks
• Semaphores
• Barriers



Mutexes

• A Mutex (Mutual Exclusion) is a data element 
that allows multiple threads to synchronize their 
access to shared resources

• Like a binary semaphore, a mutex has two states, 
locked and unlocked

• Only one thread can lock a mutex
• Once a mutex is locked, other threads will block

when they try to lock the same mutex, until the 
locking mutex unlocks the mutex, at which point 
one of the waiting thread’s lock will succeed, and 
the process begins again



Statically Initialized Mutexes

• Declare and statically initialize a mutex:
pthread_mutex_t mymutex = 
PTHREAD_MUTEX_INITIALIZER;

• Then, lock the mutex:
pthread_mutex_lock(&mymutex);

• Then, unlock the mutex when done:
pthread_mutex_unlock(&mymutex); 



NonStatically Initialized Mutexes

• Declare a mutex:
pthread_mutex_t mymutex;

• Initialize the mutex:
pthread_mutex_init(&mymutex, 
(pthread_mutexattr_t *)NULL );

• Lock the mutex
pthread_mutex_lock(&mymutex);

• Unlock the mutex:
pthread_mutex_unlock(&mymutex);



Dynamic Mutexes
• Declare a mutex pointer:
pthread_mutex_t * mymutex;

• Allocate memory for the mutex and pointer.
• Optionally declare a mutex attribute and initialize it
pthread_mutexattr_t mymutex_attr;
pthread_mutexattr_init(&mymutex_attr);
• initialize the mutex:
pthread_mutex_init(mymutex, 
&mymutex_attr);

• Lock and Unlock the mutex as normal...
• Finally, destroy the mutex
pthread_mutex_destroy(mymutex);



Condition Variables
• A Condition variable is synchronization mechanism that 

allows multiple threads to conditionally wait, until some 
defined time at which they can proceed

• Condition variables are different from mutexes because 
they don’t protect code, but procedure

• A thread will wait on a condition variable until the 
variable signals it can proceed

• Some other thread signals the condition variable, 
allowing other threads to continue. 

• Each condition variable, as a shareable datum, is 
associated with a particular mutex

• Condition Variables are supported on Unix platforms, but 
not on NT



How Condition Variables Work
1. A thread locks a mutex associated with a condition variable
2. The thread tests the condition to see if it can proceed
3. If it can (the condition variable is true):

1. your thread does its work
2. your thread unlocks the mutex

4. If it cannot (the condition variable is false)
1. the thread sleeps by calling cond_wait(&c,&m), and the mutex

is automatically released for you
2. some other thread calls cond_signal(&c) to indicate the 

condition is true
3. your thread wakes up from waiting with the mutex

automatically locked, and it does its work
4. your thread releases the mutex when it’s done



General Details

Thread β

mutex_lock(&m);

condition_ok = TRUE;

cond_signal(&c);

mutex_unlock(&m);

Thread α

T1: mutex_lock(&m);

T2: while(! condition_ok)

T3: while(cond_wait(&c,&m);

T4:

T5:

T6:

T7:

T8: go_ahead_and_do_it();

T9: mutex_unlock(&m);



Reader/Writer Locks
• Mutexes are powerful synchronization tools, but 

too broad a use of mutexes can begin to serialize
a multithreaded application

• Often, a critical section only needs to be 
protected if multiple threads are going to be 
modifying (writing) the data

• Often, multiple reads can be allowed, but
mutexes lock a critical section without regard to 
reading and writing

• Reader/Writer locks allow multiple threads in for 
reading only and only one writer thread in a 
given critical section



Barriers:
The Ultimate Top Ten Countdown

• Sometimes, you want several threads to work together in a group, and 
not to proceed past some point in a critical section (the Barrier) 
before all threads in the group have arrived at the same point

• A Barrier is created by setting its value to the number of threads in 
the group

• A Barrier can be created that acts as a counter (similar to a counting 
semaphore), and each thread that arrives at the Barrier decrements the 
Barrier counter and goes to sleep.

• Once all threads have arrived, the Barrier counter is 0, and all threads 
are signaled to awaken and continue

• A Barrier is made up of both a mutex and a condition variable
• Metaphor:  A group of people are meeting for dinner at a restaurant.  

They all wait outside until all have arrived, and then go in.



Synchronization Problems

• Deadlocks
• Race Conditions
• Priority Inversion



Deadlocks
(avoid with pthread_mutex_trylock())

• Deadlocks can occur when locks are locked out 
of order (interactive). Neither thread can execute in 
order to allow the other to continue :

Thread β

pthread_mutex_lock(b)

pthread_mutex_lock(a)

Thread α

T1: pthread_mutex_lock(a);

T2: pthread_mutex_lock(b);

• Or when a mutex is locked by the same thread 
twice (recursive) Thread α

T1: pthread_mutex_lock(a);

...

Tn: pthread_mutex_lock(a);



Race Conditions

• Race conditions arise when variable assignment 
is undetermined, due to potential context 
swapping or parallelization:

Thread β

x = 7;

/* context switch to α */

Thread α

T1: int x = 10;

T2: /* context switch to  β*/

T3:

T4:

T5: printf(“%d”,x);



Priority Inversion

• Imagine the following scenario:
1. A low priority thread acquires mutex m
2. A medium priority thread preempts the lower 

priority thread
3. A high priority thread preempts the medium 

priority thread, and needs to lock mutex m in 
order to proceed:

• The mutex lock held by the sleeping low-
priority thread blocks the high priority thread 
from acquiring the mutex and proceeding!



Inversion Solutions
• Priority Inheritance Protocol for mutexes:

– any thread inherits the highest priority of all threads 
that block while holding a given mutex

– In the previous example, when the high priority thread 
blocks on the mutex m being held by the low priority 
thread, the priority of that low priority thread is 
bumped up to the priority of the highest priority thread 
blocking, thus increasing its chances for being 
scheduled

• Priority Ceiling Protocol Emulation
– associates a priority with a mutex, and this priority is 

set to at least the priority of the highest priority thread 
that can lock the mutex

– When a thread locks a mutex, it’s priority is raised to 
the mutex’s priority



Threads and Signals
• NB:  Signals are not supported on NT
• Under POSIX, a signal is delivered to the process, NOT 

to the thread or LWP
• The signal is of course handled by a thread, and the one 

chosen to handle it is determined based on it’s priority, 
run-state, and most of all on the threads’ signal masks.

• For synchronous signals (SIGFPE, SIGILL, etc.), the 
signal is delivered to the offending thread

• One recommendation (Bil Lewis) is to have all threads 
but one mask all signals, and have a single thread handle 
all asynchronous signals by blocking on a sigwait() call.
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