
Lecture 8

Remote Procedure Calls
Introduction to Multithreaded

Programming

Remote Procedure Calls

Digital ONC RPC

http://www.cs.arizona.edu/computer.help/policy/DIGITAL_unix/AA-Q0R5B-TET1_html/TOC.html
http://www.cs.arizona.edu/computer.help/policy/DIGITAL_unix/AA-Q0R5B-TET1_html/TOC.html

The Point

• “What’s the difference between local and
remote procedure calling?”
– “Very little—that’s the point”

• Remote Procedures generally accept and
return pointers to data

The Process
xdr.x

(You Write
This)

rpcgen
protocol
compiler

*_clnt.c
(Client Stub)

xdr.h
(common
header)

*_svc.c
(Server

Skeleton)

client.c
(You write

this)

client
executable

impl_proc.c
(You write

this)

server
executable

Call Sequence

Client
(You Write This)

*_clnt.c
Client Stub

(rpcgen)

Server
implementation
(You Write This)

*_svc.c
Server Skeleton

(rpcgen)

The Network

The Network

Remote Services

• SUN Remote Procedure Call
– If the time to transfer the data is more than the

time to execute a remote command, the latter
is generally preferable.

– UDP protocol is used to initiate a remote
procedure, and the results of the computation
are returned.

SUN RPC

• Communication is message-based
• When a server starts, it binds an arbitrary port

and publishes that port and the PROGRAM and
VERSION with the portmapper daemon (port
111)

• When a client starts, it contacts the portmapper
and asks where it can find the remote procedure,
using PROGRAM and VERSION ids. The
portmapper daemon returns the address and client
and server communicate directly.

Sample protocol definition file
(.x file)

this XDR file (somefile.x):
program NUMPROG
{

version NUMVERS
{

int READNUM(int) = 1; /* version 1 */
} = 1; /* version of functions */

} = 0x2000002; /* PROGRAM number */

is turned into this header file by rpcgen (somefile.h):

#define NUMPROG 0x2000002
#define NUMVERS 1

#if defined(__STDC__) || defined(__cplusplus)
#define READNUM 1
extern int * readnum_1(int *, CLIENT *);
extern int * readnum_1_svc(int *, struct svc_req *);

RPC Paradigms for Client
Server

• Fat Client-DBMS (2 Tier)
– VB <=> Sybase (ODBC)
– Motif C++ <=> DBMS (ctlib)

• Fat Client-Application Server-DBMS
– C Front End <=> C Business Logic <=>

DBMS

RPC Under the Hood

• RPC is important because it handles
network details for you:
– Network Details

• Byte Ordering (Big Endian, Little Endian)
– Alignment Details

• 2/4 Byte alignment
– String Termination (NULL ?)
– Pointers (how to handle migration of

pointers?)

RPC eXternal Data
Representation

• XDR provides:
– Network Transparency

• Single Canonical Form using Big-Endian
• 4-Byte alignment
• XDR passes all data across the wire in a byte

stream

– Filters

XDR Filters

• Integer: int (4 bytes)
• Unsigned Integer: unsigned int (4 bytes)
• char: int (4 byte signed integer)
• Double: double (8 bytes IEEE754 FP)
• Float: float (4 bytes IEEE754 FP)
• int week[7]
• int orders <50> (variable length array)
• opaque data<1000> any data

Building an RPC Application

• Create XDR file
(~mark/pub/518/rpc/[linux|sun]/numdisp.x)

• run rpcgen to create
– client stub: numdisp_clnt.c
– server skeleton: numdisp_svc.c
– common header: numdisp.h

• write client.c and numdisp_proc.c
• compile client and server (in subdirs)
• run (client on devon, server on orcus)
• example: ~mark/pub/518/rpc/linux,

~mark/pub/518/rpc/sun

Introduction to Multithreaded
Programming with POSIX

Pthreads

Pthreads Information
Threads FAQ

Pthread Tutorial at Amherst
Pthreads Programming Bouncepoint

http://www.cs.ucr.edu/~sshah/pthreads/
http://www.cs.ucr.edu/~sshah/pthreads/
http://www.serpentine.com/~bos/threads-faq
http://www.serpentine.com/~bos/threads-faq
http://dis.cs.umass.edu/~wagner/threads_html/tutorial.html
http://dis.cs.umass.edu/~wagner/threads_html/tutorial.html
http://www.humanfactor.com/pthreads/
http://www.humanfactor.com/pthreads/

Processes Revisited

• A process is an active runtime environment that
cradles a running program, providing an
execution state along with certain resources,
including file handles and registers, along with:
– a program counter (Instruction Pointer)
– a process id, a process group id, etc.
– a process stack
– one or more data segments
– a heap for dynamic memory allocation
– a process state (running, ready, waiting, etc.)

• Informally, a process is an executing program

Multiprocessing Revisited

• A multiprocessing or multitasking operating
system (like Unix, as opposed to DOS) can have
more than one process executing at any given
time

• This simultaneous execution may either be
– concurrent, meaning that multiple processes

in a run state can be swapped in and out by the
OS

– parallel, meaning that multiple processes are
actually running at the same time on multiple
processors

What is a Thread?

• A thread is an encapsulation of some flow of control in a
program, that can be independently scheduled

• Each process is given a single thread by default
• A thread is sometimes called a lightweight process,

because it is similar to a process in that it has its own
thread id, stack, stack pointer, a signal mask, program
counter, registers, etc.

• All threads within a given process share resource
handles, memory segments (heap and data segments), and
code. THEREFORE HEAR THIS:
– All threads share the same data segments and code

segments

What’s POSIX Got To Do With It?

• Each OS had it’s own thread library and style
• That made writing multithreaded programs difficult

because:
– you had to learn a new API with each new OS
– you had to modify your code with each port to a new

OS
• POSIX (IEEE 1003.1c-1995) provided a standard known

as Pthreads
• DCE threads were based on an early 4th draft of the

POSIX Pthreads standard (immature)
• Unix International (UI) threads (Solaris threads) are

available on Solaris (which also supports POSIX threads)

Once Again....

Process ID

Signal Dispatch
Table

Memory Map

File Descriptor Table

Stack Pointer &
Stack

Heap

Registers

Process Priority

A PROCESS

Thread ID

Signal Dispatch
Table

Stack Pointer &
Stack

Registers

Thread Priority

A THREAD

Program Counter Program Counter

All threads share
the same

memory, heap,
and file handles

(and offsets)

The Big Kahuna
Pthread Library:
libpthread.so.*

MyThreadedProgram

heap

BSS Data
Segment

registers stack

file
descriptors

text segment
(code)

Initialized Data
Segment

Kernel Process Space

KT1 KT2
KT3

UT2

stack

registers

IP

signal mask
UT1

UT3

stack

registers

IP

signal mask

UT2

stack

registers

IP

signal mask

Processes and Threads:
Creation Times

• Because threads are by definition lightweight, they can be created
more quickly that “heavy” processes:

– Sun Ultra5, 320 Meg Ram, 1 CPU
• 94 forks()/second
• 1,737 threads/second (18x faster)

– Sun Sparc Ultra 1, 256 Meg Ram , 1 CPU
• 67 forks()/second
• 1,359 threads/second (20x faster)

– Sun Enterprise 420R, 5 Gig Ram, 4 CPUs
• 146 forks()/second
• 35,640 threads/second (244x faster)

– Linux 2.4 Kernel, .5 Gig Ram, 2 CPUs
• 1,811 forks()/second
• 227,611 threads/second (125x faster)

Say What?

• Threads can be created and managed more
quickly than processes because:
– Threads have less overhead than processes, for

example, threads share the process heap, all
data and code segments

– Threads can live entirely in user space, so that
no kernel mode switch needs to be made to
create a new thread

– Processes don’t need to be swapped to create a
thread

Analogies

• Just as a multitasking operating system can have
multiple processes executing concurrently or in
parallel, so a single process can have multiple
threads that are executing concurrently or in
parallel

• These multiple threads can be taskswapped by a
scheduler onto a single processor (via a LWP), or
can run in parallel on separate processors

Benefits of Multithreading
• Performance gains

– Amdahl’s Law: speedup = 1 / (1 – p) + (p/n)
– the speedup generated from parallelizing code is the

time executing the parallelizable work (p) divided by
the number of processors (n) plus 1 minus the
parallelizable work (1-p)

– The more code that can run in parallel, the faster the
overall program will run

– If you can apply multiple processors for 75% of your
program’s execution time, and you’re running on a
dual processor box:

• 1 / ((1 - .75) + (.75 / 2)) = 60% improvement
– Why is it not strictly linear? How do you calculate p?

Benefits of Multithreading
(continued)

• Increased throughput
• Increased application responsiveness (no more

hourglasses)
• Replacing interprocess communications (you’re

in one process)
• Single binary executable runs on both

multiprocessors as well as single processors
(processor transparency)

• Gains can be seen even on single processor
machines, because blocking calls no longer have
to stop you.

On the Scheduling of Threads

• Threads may be scheduled by the system scheduler (OS)
or by a scheduler in the thread library (depending on the
threading model).

• The scheduler in the thread library:
– will preempt currently running threads on the basis of

priority
– does NOT time-slice (i.e., is not fair). A running

thread will continue to run forever unless:
• a thread call is made into the thread library
• a blocking call is made
• the running thread calls sched_yield()

Models

• Many Threads to One LWP
– DCE threads on HPUX 10.20

• One Thread to One LWP
– Windows NT
– Linux (clone() function)

• Many Threads to Many LWPs
– Solaris, Digital UNIX, IRIX, HPUX 11.0)

Many Threads to One LWP
DCE threads on HPUX 10.20

T1

LWP1

P1

KERNEL SPACE

USER SPACE
AKA "user space threads".
All threads are "invisible"
to the kernel (therefore
cannot be schdeduled

individually by the kernel).
Since there's only a single
LWP (kernel-scheduled

entity), user space threads
are multiplexed onto a
single processor. The

kernel sees this process
as "single threaded"

because it only sees a
single LWP.

T2 T3 T4 T5

Mx1 Variances
• very fast context switches between threads is executed

entirely in user space by the threads library
• unlimited number of user threads (memory limit) can

support logical concurrency model only
• parallelism is not possible, because all user threads map

to a single kernel-schedulable entity (LWP), which can
only be mapped on to a single processor

• Since the kernel sees only a single process, when one user
space thread blocks, the entire process is blocked,
effectively block all other user threads in the process as
well

One Thread to One LWP(Windows NT, Linux)
(there may be no real distinction between a thread

and LWP)

T1

LWP1

P1

KERNEL SPACE
The 1x1 model

executes in kernel
space, and is

sometimes called the
Kernel Threads

model. The kernel
selects kernel threads

to run, and each
process may have

one or more threads

USER SPACE
Each user space

thread is associated
with a single kernel
thread to which it is
permanently bound.
Because each user

thread is essentially a
kernel-schedulable

entity, parallel
execution is
supported.

T2 T3

LWP2 LWP3

P2

1x1 Model Variances
• Parallel execution is supported, as each user thread is

directly associated with a single kernel thread which is
scheduled by the OS scheduler

• slower context switches, as kernel is involved
• number of threads is limited because each user thread is

directly associated with a single kernel thread (in some
instances threads take up an entry in the process table)

• scheduling of threads is handled by the OS’s scheduler,
threads are seldom starved

• Because threads are essentially kernel entities, swapping
involves the kernel and is less efficient than a pure user-
space scheduler

Many Threads to Many LWPs
Solaris, Digital UNIX, IRIX, HPUX 11.0

T1

LWP1

P1

KERNEL SPACE

USER SPACE

T4 T6

LWP2 LWP3

P2

T2 T3 T5 T7 T8

LWP4

T9

LWP5

T10

Bound Thread

P4

KT1 KT2 KT3 KT4KT3

P3

MxN Model Variances
• Extraordinarily flexible, bound threads can be used to

handle important events, like a mouse handler
• Parallel execution is fully supported
• Implemented in both user and kernel space
• Slower context switches, as kernel is often involved
• Number of user threads is virtually unlimited (by

available memory)
• Scheduling of threads is handled by both the kernel

scheduler (for LWPs) and a user space scheduler (for user
threads). User threads can be starved as the thread
library’s scheduler does not preempt threads of equal
priority (not RR)

• The kernel sees LWPs. It does NOT see threads

Creating a POSIX Thread:
pthread_create()

#include <pthread.h>
void * pthread_create(pthread_t *thread, const

pthread_attr_t attr, void *(*thrfunc)(void *),
void *args);

• Each thread is represented by an identifier, of
type pthread_t

• Code is encapsulated in a thread by creating a
thread function (cf. “signal handlers”)

• Attributes may be set on a thread (priority, etc.).
Can be set to NULL.

• An argument may be passed to the thread
function as a void **

Detaching a Thread
int pthread_detach(pthread_t threadid);

• Detach a thread when you want to inform the operating
system that the threads return result is unneeded

• Detaching a thread tells the system that the thread
(including its resources—like a 1Meg default stack on
Solaris!) is no longer being used, and can be recycled

• A detached thread’s thread ID is undetermined.
• Threads are detached after a pthread_detach() call, after a

pthread_join() call, and if a thread terminates and the
PTHREAD_CREATE_DETACHED attribute was set on
creation

“Wating” on a Thread:
pthread_join()

int pthread_join(pthread_t thread,
void** retval);

• pthread_join() is a blocking call on non-detached
threads

• It indicates that the caller wishes to block until
the thread being joined exits

• You cannot join on a detached thread, only non-
detached threads (detaching means you are NOT
interested in knowing about the threads exit)

Exiting from a Thread Function
int pthread_exit(void * retval);

• A thread ends when it returns from (falls out of)
its thread function encapsulation

• A detached thread that ends will immediately
relinquish its resources to the OS

• A non-detached thread that exists will release
some resources but the thread id and exit status
will hang around in a zombie-like state until some
other thread requests its exit status via
pthread_join()

Miscellaneous Functions
pthread_t pthread_self(void);

– pthread_self() returns the currently executing thread’s
ID

int sched_yield(void);

– sched_yield() politely informs the thread scheduler
that your thread will willingly release the processor if
any thread of equal or lower priority is waiting

int pthread_setconcurrency(int threads);

– pthread_setconcurrency() allows the process to
request a fixed minimum number of light weight
processes to be allocated for the process. This can, in
some architectures, allow for more efficient
scheduling of threads

Managing Dependencies and
Protecting Critical Sections

• Mutexes
• Condition Variables
• Reader/Writer Locks
• Semaphores
• Barriers

Mutexes

• A Mutex (Mutual Exclusion) is a data element
that allows multiple threads to synchronize their
access to shared resources

• Like a binary semaphore, a mutex has two states,
locked and unlocked

• Only one thread can lock a mutex
• Once a mutex is locked, other threads will block

when they try to lock the same mutex, until the
locking mutex unlocks the mutex, at which point
one of the waiting thread’s lock will succeed, and
the process begins again

Statically Initialized Mutexes

• Declare and statically initialize a mutex:
pthread_mutex_t mymutex =
PTHREAD_MUTEX_INITIALIZER;

• Then, lock the mutex:
pthread_mutex_lock(&mymutex);

• Then, unlock the mutex when done:
pthread_mutex_unlock(&mymutex);

NonStatically Initialized Mutexes

• Declare a mutex:
pthread_mutex_t mymutex;

• Initialize the mutex:
pthread_mutex_init(&mymutex,
(pthread_mutexattr_t *)NULL);

• Lock the mutex
pthread_mutex_lock(&mymutex);

• Unlock the mutex:
pthread_mutex_unlock(&mymutex);

Dynamic Mutexes
• Declare a mutex pointer:
pthread_mutex_t * mymutex;

• Allocate memory for the mutex and pointer.
• Optionally declare a mutex attribute and initialize it
pthread_mutexattr_t mymutex_attr;
pthread_mutexattr_init(&mymutex_attr);
• initialize the mutex:
pthread_mutex_init(mymutex,
&mymutex_attr);

• Lock and Unlock the mutex as normal...
• Finally, destroy the mutex
pthread_mutex_destroy(mymutex);

Condition Variables
• A Condition variable is synchronization mechanism that

allows multiple threads to conditionally wait, until some
defined time at which they can proceed

• Condition variables are different from mutexes because
they don’t protect code, but procedure

• A thread will wait on a condition variable until the
variable signals it can proceed

• Some other thread signals the condition variable,
allowing other threads to continue.

• Each condition variable, as a shareable datum, is
associated with a particular mutex

• Condition Variables are supported on Unix platforms, but
not on NT

How Condition Variables Work
1. A thread locks a mutex associated with a condition variable
2. The thread tests the condition to see if it can proceed
3. If it can (the condition variable is true):

1. your thread does its work
2. your thread unlocks the mutex

4. If it cannot (the condition variable is false)
1. the thread sleeps by calling cond_wait(&c,&m), and the mutex

is automatically released for you
2. some other thread calls cond_signal(&c) to indicate the

condition is true
3. your thread wakes up from waiting with the mutex

automatically locked, and it does its work
4. your thread releases the mutex when it’s done

General Details

Thread β

mutex_lock(&m);

condition_ok = TRUE;

cond_signal(&c);

mutex_unlock(&m);

Thread α

T1: mutex_lock(&m);

T2: while(! condition_ok)

T3: while(cond_wait(&c,&m);

T4:

T5:

T6:

T7:

T8: go_ahead_and_do_it();

T9: mutex_unlock(&m);

Reader/Writer Locks
• Mutexes are powerful synchronization tools, but

too broad a use of mutexes can begin to serialize
a multithreaded application

• Often, a critical section only needs to be
protected if multiple threads are going to be
modifying (writing) the data

• Often, multiple reads can be allowed, but
mutexes lock a critical section without regard to
reading and writing

• Reader/Writer locks allow multiple threads in for
reading only and only one writer thread in a
given critical section

Barriers:
The Ultimate Top Ten Countdown

• Sometimes, you want several threads to work together in a group, and
not to proceed past some point in a critical section (the Barrier)
before all threads in the group have arrived at the same point

• A Barrier is created by setting its value to the number of threads in
the group

• A Barrier can be created that acts as a counter (similar to a counting
semaphore), and each thread that arrives at the Barrier decrements the
Barrier counter and goes to sleep.

• Once all threads have arrived, the Barrier counter is 0, and all threads
are signaled to awaken and continue

• A Barrier is made up of both a mutex and a condition variable
• Metaphor: A group of people are meeting for dinner at a restaurant.

They all wait outside until all have arrived, and then go in.

Synchronization Problems

• Deadlocks
• Race Conditions
• Priority Inversion

Deadlocks
(avoid with pthread_mutex_trylock())

• Deadlocks can occur when locks are locked out
of order (interactive). Neither thread can execute in
order to allow the other to continue :

Thread β

pthread_mutex_lock(b)

pthread_mutex_lock(a)

Thread α

T1: pthread_mutex_lock(a);

T2: pthread_mutex_lock(b);

• Or when a mutex is locked by the same thread
twice (recursive) Thread α

T1: pthread_mutex_lock(a);

...

Tn: pthread_mutex_lock(a);

Race Conditions

• Race conditions arise when variable assignment
is undetermined, due to potential context
swapping or parallelization:

Thread β

x = 7;

/* context switch to α */

Thread α

T1: int x = 10;

T2: /* context switch to β*/

T3:

T4:

T5: printf(“%d”,x);

Priority Inversion

• Imagine the following scenario:
1. A low priority thread acquires mutex m
2. A medium priority thread preempts the lower

priority thread
3. A high priority thread preempts the medium

priority thread, and needs to lock mutex m in
order to proceed:

• The mutex lock held by the sleeping low-
priority thread blocks the high priority thread
from acquiring the mutex and proceeding!

Inversion Solutions
• Priority Inheritance Protocol for mutexes:

– any thread inherits the highest priority of all threads
that block while holding a given mutex

– In the previous example, when the high priority thread
blocks on the mutex m being held by the low priority
thread, the priority of that low priority thread is
bumped up to the priority of the highest priority thread
blocking, thus increasing its chances for being
scheduled

• Priority Ceiling Protocol Emulation
– associates a priority with a mutex, and this priority is

set to at least the priority of the highest priority thread
that can lock the mutex

– When a thread locks a mutex, it’s priority is raised to
the mutex’s priority

Threads and Signals
• NB: Signals are not supported on NT
• Under POSIX, a signal is delivered to the process, NOT

to the thread or LWP
• The signal is of course handled by a thread, and the one

chosen to handle it is determined based on it’s priority,
run-state, and most of all on the threads’ signal masks.

• For synchronous signals (SIGFPE, SIGILL, etc.), the
signal is delivered to the offending thread

• One recommendation (Bil Lewis) is to have all threads
but one mask all signals, and have a single thread handle
all asynchronous signals by blocking on a sigwait() call.

	Lecture 8
	Remote Procedure Calls
	The Point
	The Process
	Call Sequence
	Remote Services
	SUN RPC
	Sample protocol definition file (.x file)
	RPC Paradigms for Client Server
	RPC Under the Hood
	RPC eXternal Data Representation
	XDR Filters
	Building an RPC Application
	Introduction to Multithreaded Programming with POSIX Pthreads
	Processes Revisited
	Multiprocessing Revisited
	What is a Thread?
	What¡¯s POSIX Got To Do With It?
	Once Again....
	The Big Kahuna
	Processes and Threads:Creation Times
	Say What?
	Analogies
	Benefits of Multithreading
	Benefits of Multithreading (continued)
	On the Scheduling of Threads
	Models
	Many Threads to One LWPDCE threads on HPUX 10.20
	Mx1 Variances
	One Thread to One LWP(Windows NT, Linux) (there may be no real distinction between a thread and LWP)
	1x1 Model Variances
	Many Threads to Many LWPsSolaris, Digital UNIX, IRIX, HPUX 11.0
	MxN Model Variances
	Creating a POSIX Thread: pthread_create()
	Detaching a Thread
	¡°Wating¡± on a Thread:pthread_join()
	Exiting from a Thread Function
	Miscellaneous Functions
	Managing Dependencies and Protecting Critical Sections
	Mutexes
	Statically Initialized Mutexes
	NonStatically Initialized Mutexes
	Dynamic Mutexes
	Condition Variables
	How Condition Variables Work
	General Details
	Reader/Writer Locks
	Barriers:The Ultimate Top Ten Countdown
	Synchronization Problems
	Deadlocks(avoid with pthread_mutex_trylock())
	Race Conditions
	Priority Inversion
	Inversion Solutions
	Threads and Signals

