
Lecture 3

Review of C Programming Tools
Unix File I/O System Calls

Review of C Programming Tools

Compilation
Linkage

The Four Stages of Compilation

• preprocessing
• compilation
• assembly
• linking

gcc driver program (toplev.c)

• cpp: C PreProcessor
• cc1: RTL (Register Transfer Language)

processor
• as: assembler
• ld: loader (linker)

The GNU CC Compilation Process

• GCC is portable:
– multiplatform (intel, MIPS, RISC, Sparc,

Motorola, etc.)
– multiOS (BSD,AIX, Linux, HPUX, mach,

IRIX, minix, msdos, Solaris, Windoze, etc.)
– Multilingual (C, Objective C, C++, Fortran,

etc.)
• Single first parsing pass that generates a parsing

tree

The GNU CC Compilation Process
• Register Transfer Language generation

– close to 30 additional passes operate on RTL
Expressions (RTXs), constructed from partial syntax
trees

– gcc –c –dr filename.c
– RTL is Lisp-like

• cond(if_then_else cond then else)
• (eq: m x y)
• (set lval x)
• (call function numargs)
• (parallel [x0 x1 x2 xn])

• Final output is assembly language, obtained by mapping
RTX to a machine dependency dictionary
– ~/mark/pub/51081/compiler/i386.md

Assembler Tasks

• converts assembly source code into machine
instructions, producing an “object” file (called
“.o”)

Loader (Linker) tasks

• The Loader (linker) creates an executable process
image within a file, and makes sure that any
functions or subprocesses needed are available or
known. Library functions that are used by the
code are linked in, either statically or
dynamically.

Preprocessor Options
• -E preprocess only: send preprocessed output to standard

out--no compile
– output file: file.c -> file.i file.cpp -> file.ii

• -M produce dependencies for make to stdout (voluble)
• -C keep comments in output (used with -E above):

– -E -C

• -H printer Header dependency tree
• -dM Tell preprocessor to output only a list of macro defs in

effect at end of preprocessing. (used with -E above)
– gcc -E -dM funcs.c |grep MAX

Compiler Options

• -c compile only
• -S send assembler output source to *.s

– output file: file.c -> file.s
• -w Suppress All Warnings

– gcc warnings.c
– gcc -w warnings.c

• -W Produce warnings about side-effects (falling
out of a function)
– gcc -W warnings.c

Compiler Options (cont)

• -I Specify additional include file paths
• -Wall Produce many warnings about questionable

practices; implicit declarations, newlines in
comments, questionable lack of parentheses,
uninitialized variable usage, unused variables, etc.
– gcc -Wall warnings.c

• -pedantic Warn on violations from ANSI
compatibility (only reports violations required by
ANSI spec).
– gcc -pedantic warnings.c

Compiler Options (cont)

• -O optimize (1,2,3,0)
– -O,-O1 base optimizations, no auto inlines, no loops
– -O2 performs additional optimizations except inline-

functions optimization and loop optimization
– -O3 also turns on inline-functions and loop

optimization
– -O1 default

• -g include debug info (can tell it what debugger):
– -gcoff COFF format for sdb (System V < Release 4)
– -gstabs for dbx on BSD
– -gxcoff for dbx on IBM RS/6000 systems
– -gdwarf for sdb on System V Release 4

Compiler Options (cont)

• -save-temps save temp files (foo.i, foo.s, foo.o)
• -print-search-dirs print the install, program, and

libraries paths
• -gprof create profiling output for gprof
• -v verbose output (useful at times)
• -nostartfiles skip linking of standard start files,

like /usr/lib/crt[0,1].o, /usr/lib/crti.o, etc.
• -static link only to static (.a=archive) libraries
• -shared if possible, prefer shared libraries over

static

Assembler Options (use gcc -Wa,-
options to pass options to assembler)

• -ahl generate high level assembly language source
– gcc -Wa,-ahl warnings.c

• -as generate a listing of the symbol table
– gcc -Wa,-as warnings.c

Linker Options (use gcc -Wl,-options to
pass options to the loader)

• gcc passes any unknown options to the linker
• -l lib (default naming convention liblib.a)
• -L lib path (in addition to default /usr/lib and /lib)
• -s strip final executable code of symbol and

relocation tables
– gcc -w –g warnings.c ; ls -l a.out ; gcc -w -

Wl,-s warnings.c ; ls -l a.out
• -M create load Map to stdout

Static Libraries and ar
(cd /pub/51081/static.library)

• Create a static library: the ar command:
– ar [rcdusx] libname objectfiles ...

• Options
– rcs: add new files to the library and create an index

(ranlib) (c == create the library if it doesn’t exist)
– rus: update the object files in the library
– ds: delete one or more object files from a library
– x: extract (copy) an object file from a library (remains

in library)
– v: verbose output

Steps in Creating a Static Library
(cd ~mark/pub/51081/static.library)

• First, compile (-c) the library source code:
– gcc -Wall -g -c libhello.c

• Next, create the static library (libhello.a)
– ar rcs libhello.a libhello.o

• Next, compile the file that will use the library
– gcc -Wall -g -c hello.c

• Finally, link the user of the library to the static
library
– gcc hello.o -lc -L. -lhello -o hello

• Execute: ./hello

Shared Libraries
(cd /pub/51081/shared.library)

• Benefits of using shared libraries over static
libraries:
– saves disk space—library code is in library,

not each executable
– fixing a bug in the library doesn't require

recompile of dependent executables.
– saves RAM—only one copy of the library sits

in memory, and all dependent executables
running share that same code.

Shared Library Naming Structure
• soname: libc.so.5

– minor version and release number:
• libc.so.5.v.r eg: libc.so.5.3.1

– a soft link libc.so.5 exists and points to the
real library libc.so.5.3.1
• that way, a program can be linked to look

for libc.so.5, and upgrading from release to
libc.so.5.3.2 just involves resetting the
symbolic link libc.so.5 from libc.so.5.3.1 to
libc.so.5.3.2.

• ldconfig does this automatically for system
libraries (man ldconfig, /etc/ld.so.conf)

Building a shared library:
Stage 1: Compile the library source

• Compile library sources with -fPIC (Position Independent
Code):
– gcc -fPIC -Wall -g -c libhello.c
– This creates a new shared object file called libhello.o,

the object file representation of the new library you just
compiled

• Create the release shared library by linking the library
code against the C library for best results on all systems:
– gcc -g -shared –Wl,-soname,libhello.so.1 -o

libhello.so.1.0.1 libhello.o –lc
– This creates a new release shared library called

libhello.so.1.0.1

Building a shared library:
Stage 2: Create Links

• Create a soft link from the minor version to the
release library:
– ln -sf libhello.so.1.0.1 libhello.so.1.0

• Create a soft link from the major version to the
minor version of the library:
– ln -sf libhello.so.1.0 libhello.so.1

• Create a soft link for the linker to use when
linking applications against the new release
library:
– ln -sf libhello.so.1.0.1 libhello.so

Building a shared library:
Stage 3: Link Client Code and Run

• Compile (-c) the client code that will use the
release library:
– gcc -Wall -g -c hello.c

• Create the dependent executable by using -L to tell
the linker where to look for the library (i.e., in the
current directory) and to link against the shared
library (-lhello == libhello.so):
– gcc -Wall -g -o hello hello.c -L. -lhello

• Run the app:
– LD_LIBRARY_PATH=. ./hello

How do Shared Libraries Work?

• When a program runs that depends on a shared
library (discover with ldd progname), the
dynamic linker will attempt to find the shared
library referenced by the soname

• Once all libraries are found, the dependent code
is dynamically linked to your program, which is
then executed

• Reference: The Linux Program-Library
HOWTO

http://www.tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://www.tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://www.tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://www.tldp.org/HOWTO/Program-Library-HOWTO/index.html

Unix File I/O

Unix System Calls

• System calls are low level functions the operating
system makes available to applications via a
defined API (Application Programming
Interface)

• System calls represent the interface the kernel
presents to user applications

A File is a File is a File
--Gertrude Stein

• Remember, “Everything in Unix is a File”
• This means that all low-level I/O is done by

reading and writing file handles, regardless of
what particular peripheral device is being
accessed—a tape, a socket, even your terminal,
they are all files.

• Low level I/O is performed by making system
calls

User and Kernel Space
• System memory is divided into two parts:

– user space
• a process executing in user space is executing in user mode
• each user process is protected (isolated) from another (except

for shared memory segments and mmapings in IPC)
– kernel space

• a process executing in kernel space is executing in kernel mode
• Kernel space is the area wherein the kernel executes
• User space is the area where a user program normally executes, except

when it performs a system call.

Anatomy of a System Call
• A System Call is an explicit request to the kernel made via

a software interrupt
• The standard C Library (libc) provides wrapper routines,

which basically provide a user space API for all system
calls, thus facilitating the context switch from user to
kernel mode

• The wrapper routine (in Linux) makes an interrupt call
0x80 (vector 128 in the Interrupt Descriptor Table)

• The wrapper routine makes a call to a system call handler
(sometimes called the “call gate”), which executes in
kernel mode

• The system call handler in turns calls the system call
interrupt service routine (ISR), which also executes in
kernel mode.

Regardless…
• Regardless of the type of file you are reading or

writing, the general strategy remains the same:
– creat() a file
– open() a file
– read() a file
– write() a file
– close() a file

• These functions constitute Unix Unbuffered I/O
• ALL files are referenced by an integer file

descriptor (0 == STDIN, 1 == STDOUT, 2 ==
STDERR)

read() and write()

• Low level system calls return a count of the
number of bytes processed (read or written)

• This count may be less than the amount requested
• A value of 0 indicates EOF
• A value of –1 indicates ERROR
• The BUFSIZ #define (8192, 512)

A Poor Man’s cat
(~mark/pub/51081/io/simple.cat.c)

#include <unistd.h>
#include <stdio.h>
int main(int argc, char * argv [])
{

char buf[BUFSIZ];
int numread;
while((numread = read(0, buf, sizeof(buf))) > 0)

write(1, buf, numread);
exit(0);

}

• Question: Why didn’t we have to open file handles
0 and 1?

read()

#include <unistd.h>

ssize_t read(int fd, void * buf, size_t
count);

• If read() is successful, it returns the number of
bytes read

• If it returns 0, it indicates EOF
• If unsuccessful, it returns –1 and sets errno

write()

#include <unistd.h>

ssize_t write(int fd, void * buf, size_t
count);

• If write() is successful, it returns the number of
bytes written to the file descriptor, this will
usually equal count

• If it returns 0, it indicates 0 bytes were written
• If unsuccessful, it returns –1 and sets errno

open()

#include <fcntl.h>
int open(const char * path, int flags[, mode_t

mode]);

• flags may be OR’d together:
– O_RDONLY open for reading only
– O_WRONLY open for writing only
– O_RDRW open for both reading and writing
– O_APPEND open for appending to the end of file
– O_TRUNC truncate to 0 length if file exists
– O_CREAT create the file if it doesn’t exist

• path is the pathname of the file to open/create
• file descriptor is returned on success, -1 on error

creat()

• Dennis Ritchie was once asked what was the
single biggest thing he regretted about the C
language. He said “leaving off the ‘e’ on
creat()”.

• The creat() system call creates a file with certain
permissions:
int creat(const char * filename, mode_t mode);

• The mode lets you specifiy the permissions
assigned to the file after creation

• The file is opened for writing only

open() (create file)

• When we use the O_CREAT flag with open(), we need to
define the mode (rights mask from sys/stat.h):
– S_IRUSR read permission granted to OWNER
– S_IWUSR write permission granted to OWNER
– S_IXUSR execute permission granted to OWNER
– S_IRGRP read permission granted to GROUP

• etc.
– S_IROTH read permission granted to OTHERS

• etc.
• Example:

int fd = open(“/path/to/file”, O_CREAT, S_IRUSR |
S_IWUSR | S_IXUSR | S_IRGRP | S_IROTH);

close()

#include <unistd.h>
int close(int fd);

• close() closes a file descriptor (fd) that has
been opened.

• Example: ~mark/pub/51081/io/mycat.c

lseek()
(~mark/pub/50181/lseek/myseek.c)

#include <sys/types.h>
#include <unistd.h>
long lseek(int fd, long offset, int startingpoint)
• lseek moves the current file pointer of the file associated

with file descriptor fd to a new position for the next
read/write call

• offset is given in number of bytes, either positive or
negative from startingpoint

• startingpoint may be one of:
– SEEK_SET move from beginning of the file
– SEEK_CUR move from current position
– SEEK_END move from the end of the file

Error Handling
(~mark/pub/51081/io/myfailedcat.c)

• System calls set a global integer called errno on error:
– extern int errno; /* defined in /usr/include/errno.h */

• The constants that errno may be set to are defined in
</usr/include/asm/errno.h>. For example:
– EPERM operation not permitted
– ENOENT no such file or directory (not there)
– EIO I/O error
– EEXIST file already exists
– ENODEV no such device exists
– EINVAL invalid argument passed

#include <stdio.h>
void perror(const char * s);

stat():
int stat(const char * pathname; struct stat *buf);

• The stat() system call returns a structure (into a buffer
you pass in) representing all the stat values for a given
filename. This information includes:
– the file’s mode (permissions)
– inode number
– number of hard links
– user id of owner of file
– group id of owner of file
– file size
– last access, modification, change times
– less /usr/include/sys/stat.h => /usr/include/bits/stat.h
– less /usr/include/sys/types.h (S_IFMT, S_IFCHR, etc.)

• Example: ~/UofC/51081/pub/51081/stat/mystat.c

	Lecture 3
	Review of C Programming Tools
	The Four Stages of Compilation
	gcc driver program (toplev.c)
	The GNU CC Compilation Process
	The GNU CC Compilation Process
	Assembler Tasks
	Loader (Linker) tasks
	Preprocessor Options
	Compiler Options
	Compiler Options (cont)
	Compiler Options (cont)
	Compiler Options (cont)
	Assembler Options (use gcc -Wa,-options to pass options to assembler)
	Linker Options (use gcc -Wl,-options to pass options to the loader)
	Static Libraries and ar (cd /pub/51081/static.library)
	Steps in Creating a Static Library(cd ~mark/pub/51081/static.library)
	Shared Libraries (cd /pub/51081/shared.library)
	Shared Library Naming Structure
	Building a shared library:Stage 1: Compile the library source
	Building a shared library:Stage 2: Create Links
	Building a shared library:Stage 3: Link Client Code and Run
	How do Shared Libraries Work?
	Unix File I/O
	Unix System Calls
	A File is a File is a File--Gertrude Stein
	User and Kernel Space
	Anatomy of a System Call
	Regardless¡­
	read() and write()
	A Poor Man¡¯s cat(~mark/pub/51081/io/simple.cat.c)
	read()
	write()
	open()
	creat()
	open() (create file)
	close()
	lseek()(~mark/pub/50181/lseek/myseek.c)
	Error Handling(~mark/pub/51081/io/myfailedcat.c)
	stat():int stat(const char * pathname; struct stat *buf);

