
Lecture 3

Review of C Programming Tools
Unix File I/O System Calls



Review of C Programming Tools

Compilation
Linkage



The Four Stages of Compilation

• preprocessing
• compilation
• assembly
• linking



gcc driver program (toplev.c)

• cpp: C PreProcessor
• cc1: RTL (Register Transfer Language) 

processor
• as: assembler
• ld: loader (linker)



The GNU CC Compilation Process

• GCC is portable:
– multiplatform (intel, MIPS, RISC, Sparc, 

Motorola, etc.)
– multiOS (BSD,AIX, Linux, HPUX, mach, 

IRIX, minix, msdos, Solaris, Windoze, etc.)
– Multilingual (C, Objective C, C++, Fortran, 

etc.)
• Single first parsing pass that generates a parsing 

tree



The GNU CC Compilation Process
• Register Transfer Language generation

– close to 30 additional passes operate on RTL 
Expressions (RTXs), constructed from partial syntax 
trees

– gcc –c –dr filename.c
– RTL is Lisp-like

• cond(if_then_else cond then else)
• (eq: m x y)
• (set lval x)
• (call function numargs)
• (parallel [x0 x1 x2 xn])

• Final output is assembly language, obtained by mapping 
RTX to a machine dependency dictionary
– ~/mark/pub/51081/compiler/i386.md



Assembler Tasks

• converts assembly source code into machine 
instructions, producing an “object” file (called 
“.o”)



Loader (Linker) tasks

• The Loader (linker) creates an executable process 
image within a file, and makes sure that any 
functions or subprocesses needed are available or 
known. Library functions that are used by the 
code are linked in, either statically or 
dynamically.



Preprocessor Options
• -E preprocess only: send preprocessed output to standard 

out--no compile
– output file: file.c -> file.i file.cpp -> file.ii

• -M produce dependencies for make to stdout (voluble)
• -C keep comments in output (used with -E above):

– -E -C

• -H printer Header dependency tree
• -dM Tell preprocessor to output only a list of macro defs in 

effect at end of preprocessing. (used with -E above)
– gcc -E -dM funcs.c |grep MAX



Compiler Options

• -c compile only
• -S send assembler output source to *.s

– output file: file.c -> file.s 
• -w Suppress All Warnings

– gcc warnings.c
– gcc -w warnings.c

• -W Produce warnings about side-effects (falling 
out of a function)
– gcc -W warnings.c



Compiler Options (cont)

• -I Specify additional include file paths
• -Wall Produce many warnings about questionable 

practices; implicit declarations, newlines in 
comments, questionable lack of parentheses,
uninitialized variable usage, unused variables, etc.
– gcc -Wall warnings.c

• -pedantic Warn on violations from ANSI 
compatibility (only reports violations required by 
ANSI spec).
– gcc -pedantic warnings.c



Compiler Options (cont)

• -O optimize (1,2,3,0)
– -O,-O1 base optimizations, no auto inlines, no loops
– -O2 performs additional optimizations except inline-

functions optimization and loop optimization
– -O3 also turns on inline-functions and loop 

optimization
– -O1 default

• -g include debug info (can tell it what debugger):
– -gcoff COFF format for sdb (System V < Release 4)
– -gstabs for dbx on BSD
– -gxcoff for dbx on IBM RS/6000 systems
– -gdwarf for sdb on System V Release 4



Compiler Options (cont)

• -save-temps save temp files (foo.i, foo.s, foo.o)
• -print-search-dirs print the install, program, and 

libraries paths
• -gprof create profiling output for gprof
• -v verbose output (useful at times)
• -nostartfiles skip linking of standard start files, 

like /usr/lib/crt[0,1].o, /usr/lib/crti.o, etc.
• -static link only to static (.a=archive) libraries
• -shared if possible, prefer shared libraries over 

static



Assembler Options (use gcc -Wa,-
options to pass options to assembler)

• -ahl generate high level assembly language source
– gcc -Wa,-ahl warnings.c

• -as generate a listing of the symbol table
– gcc -Wa,-as warnings.c



Linker Options (use gcc -Wl,-options to 
pass options to the loader)

• gcc passes any unknown options to the linker
• -l lib (default naming convention liblib.a)
• -L lib path (in addition to default /usr/lib and /lib)
• -s strip final executable code of symbol and 

relocation tables
– gcc -w –g warnings.c ; ls -l a.out ; gcc -w -

Wl,-s warnings.c ; ls -l a.out
• -M create load Map to stdout



Static Libraries and ar
(cd /pub/51081/static.library)

• Create a static library: the ar command:
– ar [rcdusx] libname objectfiles ...

• Options
– rcs: add new files to the library and create an index 

(ranlib) (c == create the library if it doesn’t exist)
– rus: update the object files in the library
– ds: delete one or more object files from a library
– x: extract (copy) an object file from a library (remains 

in library)
– v: verbose output



Steps in Creating a Static Library
(cd ~mark/pub/51081/static.library)

• First, compile (-c) the library source code:
– gcc -Wall -g -c libhello.c

• Next, create the static library (libhello.a)
– ar rcs libhello.a libhello.o

• Next, compile the file that will use the library
– gcc -Wall -g -c hello.c

• Finally, link the user of the library to the static 
library
– gcc hello.o -lc -L. -lhello -o hello

• Execute:  ./hello



Shared Libraries 
(cd /pub/51081/shared.library)

• Benefits of using shared libraries over static 
libraries:
– saves disk space—library code is in library, 

not each executable
– fixing a bug in the library doesn't require 

recompile of dependent executables.
– saves RAM—only one copy of the library sits 

in memory, and all dependent executables 
running share that same code.



Shared Library Naming Structure
• soname: libc.so.5

– minor version and release number:
• libc.so.5.v.r eg: libc.so.5.3.1

– a soft link libc.so.5 exists and points to the 
real library libc.so.5.3.1
• that way, a program can be linked to look 

for libc.so.5, and upgrading from release to
libc.so.5.3.2 just involves resetting the 
symbolic link libc.so.5 from libc.so.5.3.1 to
libc.so.5.3.2.

• ldconfig does this automatically for system 
libraries (man ldconfig, /etc/ld.so.conf)



Building a shared library:
Stage 1:  Compile the library source

• Compile library sources with -fPIC (Position Independent 
Code):
– gcc -fPIC -Wall -g -c libhello.c
– This creates a new shared object file called libhello.o, 

the object file representation of the new library you just 
compiled

• Create the release shared library by linking the library 
code against the C library for best results on all systems:
– gcc -g -shared –Wl,-soname,libhello.so.1 -o

libhello.so.1.0.1 libhello.o –lc
– This creates a new release shared library called

libhello.so.1.0.1



Building a shared library:
Stage 2:  Create Links

• Create a soft link from the minor version to the 
release library:
– ln -sf libhello.so.1.0.1 libhello.so.1.0

• Create a soft link from the major version to the 
minor version of the library:
– ln -sf libhello.so.1.0 libhello.so.1

• Create a soft link for the linker to use when 
linking applications against the new release 
library:
– ln -sf libhello.so.1.0.1 libhello.so



Building a shared library:
Stage 3:  Link Client Code and Run

• Compile (-c) the client code that will use the 
release library:
– gcc -Wall -g -c hello.c

• Create the dependent executable by using -L to tell 
the linker where to look for the library (i.e., in the 
current directory) and to link against the shared 
library (-lhello == libhello.so):
– gcc -Wall -g -o hello hello.c -L. -lhello

• Run the app:
– LD_LIBRARY_PATH=. ./hello



How do Shared Libraries Work?

• When a program runs that depends on a shared 
library (discover with ldd progname), the 
dynamic linker will attempt to find the shared 
library referenced by the soname

• Once all libraries are found, the dependent code 
is dynamically linked to your program, which is 
then executed

• Reference:  The Linux Program-Library 
HOWTO

http://www.tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://www.tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://www.tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://www.tldp.org/HOWTO/Program-Library-HOWTO/index.html


Unix File I/O



Unix System Calls

• System calls are low level functions the operating 
system makes available to applications via a 
defined API (Application Programming 
Interface)

• System calls represent the interface the kernel 
presents to user applications



A File is a File is a File
--Gertrude Stein

• Remember, “Everything in Unix is a File”
• This means that all low-level I/O is done by 

reading and writing file handles, regardless of 
what particular peripheral device is being 
accessed—a tape, a socket, even your terminal, 
they are all files.

• Low level I/O is performed by making system 
calls



User and Kernel Space
• System memory is divided into two parts:

– user space
• a process executing in user space is executing in user mode
• each user process is protected (isolated) from another (except 

for shared memory segments and mmapings in IPC)
– kernel space

• a process executing in kernel space is executing in kernel mode
• Kernel space is the area wherein the kernel executes
• User space is the area where a user program normally executes, except 

when it performs a system call.



Anatomy of a System Call
• A System Call is an explicit request to the kernel made via 

a software interrupt
• The standard C Library (libc) provides wrapper routines, 

which basically provide a user space API for all system 
calls, thus facilitating the context switch from user to 
kernel mode

• The wrapper routine (in Linux) makes an interrupt call 
0x80 (vector 128 in the Interrupt Descriptor Table)

• The wrapper routine makes a call to a system call handler 
(sometimes called the “call gate”), which executes in 
kernel mode

• The system call handler in turns calls the system call 
interrupt service routine (ISR), which also executes in 
kernel mode.



Regardless…
• Regardless of the type of file you are reading or 

writing, the general strategy remains the same:
– creat() a file
– open() a file
– read() a file
– write() a file
– close() a file

• These functions constitute Unix Unbuffered I/O
• ALL files are referenced by an integer file 

descriptor (0 == STDIN, 1 == STDOUT, 2 == 
STDERR)



read() and write()

• Low level system calls return a count of the 
number of bytes processed (read or written)

• This count may be less than the amount requested
• A value of 0 indicates EOF
• A value of –1 indicates ERROR
• The BUFSIZ #define (8192, 512)



A Poor Man’s cat
(~mark/pub/51081/io/simple.cat.c)

#include <unistd.h>
#include <stdio.h>
int main(int argc, char * argv [])
{

char buf[BUFSIZ];
int numread;
while((numread = read(0, buf, sizeof(buf))) > 0)

write(1, buf, numread);
exit(0);

}

• Question:  Why didn’t we have to open file handles 
0 and 1?



read()

#include <unistd.h>

ssize_t read(int fd, void * buf, size_t 
count);

• If read() is successful, it returns the number of 
bytes read

• If it returns 0, it indicates EOF
• If unsuccessful, it returns –1 and sets errno



write()

#include <unistd.h>

ssize_t write(int fd, void * buf, size_t 
count);

• If write() is successful, it returns the number of 
bytes written to the file descriptor, this will 
usually equal count

• If it returns 0, it indicates 0 bytes were written
• If unsuccessful, it returns –1 and sets errno



open()

#include <fcntl.h>
int open(const char * path, int flags[, mode_t 

mode]);

• flags may be OR’d together:
– O_RDONLY open for reading only
– O_WRONLY open for writing only
– O_RDRW open for both reading and writing
– O_APPEND open for appending to the end of file
– O_TRUNC truncate to 0 length if file exists
– O_CREAT create the file if it doesn’t exist

• path is the pathname of the file to open/create
• file descriptor is returned on success, -1 on error



creat()

• Dennis Ritchie was once asked what was the 
single biggest thing he regretted about the C 
language.  He said “leaving off the ‘e’ on
creat()”.

• The creat() system call creates a file with certain 
permissions:
int creat(const char * filename, mode_t mode);

• The mode lets you specifiy the permissions 
assigned to the file after creation

• The file is opened for writing only



open() (create file)

• When we use the O_CREAT flag with open(), we need to 
define the mode (rights mask from sys/stat.h):
– S_IRUSR read permission granted to OWNER
– S_IWUSR write permission granted to OWNER
– S_IXUSR execute permission granted to OWNER
– S_IRGRP read permission granted to GROUP

• etc.
– S_IROTH read permission granted to OTHERS

• etc.
• Example:

int fd = open(“/path/to/file”, O_CREAT, S_IRUSR | 
S_IWUSR | S_IXUSR | S_IRGRP | S_IROTH);



close()

#include <unistd.h>
int close( int fd );

• close() closes a file descriptor (fd) that has 
been opened.

• Example:  ~mark/pub/51081/io/mycat.c



lseek()
(~mark/pub/50181/lseek/myseek.c)

#include <sys/types.h>
#include <unistd.h>
long lseek(int fd, long offset, int startingpoint)
• lseek moves the current file pointer of the file associated 

with file descriptor fd to a new position for the next 
read/write call

• offset is given in number of bytes, either positive or 
negative from startingpoint

• startingpoint may be one of:
– SEEK_SET move from beginning of the file
– SEEK_CUR move from current position
– SEEK_END move from the end of the file



Error Handling
(~mark/pub/51081/io/myfailedcat.c)

• System calls set a global integer called errno on error:
– extern int errno;   /* defined in /usr/include/errno.h */

• The constants that errno may be set to are defined in 
</usr/include/asm/errno.h>.  For example:
– EPERM operation not permitted
– ENOENT no such file or directory (not there)
– EIO I/O error
– EEXIST file already exists
– ENODEV no such device exists
– EINVAL invalid argument passed

#include <stdio.h>
void perror(const char * s);



stat():
int stat(const char * pathname; struct stat *buf);

• The stat() system call returns a structure (into a buffer 
you pass in) representing all the stat values for a given 
filename.  This information includes:
– the file’s mode (permissions)
– inode number
– number of hard links
– user id of owner of file
– group id of owner of file
– file size
– last access, modification, change times
– less /usr/include/sys/stat.h => /usr/include/bits/stat.h
– less /usr/include/sys/types.h (S_IFMT, S_IFCHR, etc.)

• Example: ~/UofC/51081/pub/51081/stat/mystat.c
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