
The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Lab #3 (08/08/2007)

Name:

Student ID: Lab Instructor: Borja Sotomayor

In this lab, your exercises must be compiled using make. In particular, the instructor
must be able to compile your exercises simply by running make exN (where N is the
exercise number; e.g., make ex3 to compile exercise 3). You are provided with a sample
Makefile which you can use as a starting point.

Page 1 of 10

Do not write in this area

1 2 3 4 5 TOTAL

Maximum possible points: 30+ 10

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Lab #3 (08/08/2007)

FLTK: A simple GUI library
In the first part of the lab you will be writing a series of C/C++ programs that use the
FLTK library (http://www.fltk.org/), a simple library for building graphical user interfaces
(GUI). This library will enable you to write programs that open windows, react to events
like button clicks, etc. The FLTK library is already installed on the CS machines, so there
is no need to install it first.

Exercise 1 <<5 points>>

In this first exercise, you are provided with C/C++ code that uses the FTLK library. The
goal of this exercise is for you to see how the library is included in your program, and
how this affects how your program is compiled. In the next exercise you will build on this
code.

You do not need to hand in any code for this exercise. When you are done, raise your
hand and the instructor will verify that you've compiled and run the FLTK program
correctly.

The code you will compile and run is similar to the example included in the FLTK
documentation:

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Box.H>

int main(int argc, char **argv)
{

Fl_Window *window = new Fl_Window(300,200);
Fl_Box *box = new Fl_Box(20,20,260,100,"Hello, World!");
box->box(FL_UP_BOX);
box->labelsize(36);
box->labelfont(FL_BOLD+FL_ITALIC);
box->labeltype(FL_SHADOW_LABEL);
window->end();
window->show(argc, argv);
return Fl::run();

}

For now, don't worry about the code inside the main function. Nonetheless, notice the
#include statements at the top of the file. These statements include the FLTK header
files, so the compiler will be aware of the classes, functions, and other declarations
included with the FLTK library. Since the FTLK library is already installed on the CS
machines, the include files are already in a well-known standard location (in
/usr/include; take a look at this directory, and you will see header files from a wide

Page 2 of 10

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Lab #3 (08/08/2007)

variety of libraries). So, the include statement specifies the path to the header files
<between less-than and greater-than symbols>. This instructs the compiler to search
for the files in standard locations (like /usr/include).

Now, try to compile the program:

g++ test_fltk.cpp -o test_fltk

You should see a lot of “undefined reference” errors like this:

/tmp/ccwUroJt.o: In function `main':
test_fltk.cpp:(.text+0x42): undefined reference to `Fl_Window::Fl_Window[in-
charge](int, int, char const*)'
test_fltk.cpp:(.text+0x12c): undefined reference to
`fl_define_FL_SHADOW_LABEL()'
test_fltk.cpp:(.text+0x146): undefined reference to `Fl_Group::end()'
...

These are all linker errors, meaning that the program compiled successfully, but failed in
the linking step because the compiler could not find the implementation of the FLTK
functions used in our program (in fact, if you try to compile without linking, using “g++
-c test_fltk.cpp -o test_fltk.o”, you will see no error messages at all).

What is the problem? Although we have correctly included the FLTK headers in our code,
and those headers are correctly installed on our systems, we still have to tell the
compiler to link with the FLTK libraries. This is done with the “-l” option:

g++ test_fltk.cpp -l fltk -o test_fltk

Now, your program should compile fine. If you run it, you should see the following:

Page 3 of 10

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Lab #3 (08/08/2007)

Now, let's take a closer look at the code inside the main function:

Fl_Window *window = new Fl_Window(300,200);
Fl_Box *box = new Fl_Box(20,20,260,100,"Hello, World!");

First of all, we create a new window (of size 300 pixels by 200 pixels). This is done by
creating a new Fl_Window object. Next, we create a “box” with some text in it. The box is
created in the window we just created and, in particular, it is placed in coordinates
(20,20). In most GUI libraries, the origin point of a window is its upper-left corner. The
box has size 260 pixels by 100 pixels, and its text is “Hello, World!”. As we can see when
running the program, this box appears at the top of our window.

box->box(FL_UP_BOX);
box->labelsize(36);
box->labelfont(FL_BOLD+FL_ITALIC);
box->labeltype(FL_SHADOW_LABEL);

The elements in our GUI (windows, boxes, buttons, etc.) are usually called widgets.
Widgets generally have a set of attributes that we can modify, to customize the look of
our GUI. So, after creating the box, we modify a couple of its attributes using member
functions of the FL_Box class:

● We indicate the type of box using the box() method. FL_UP_BOX indicates that this
is a “raised” box (notice how the box stands out from the rest of the window).

● We set the font size of the text in the box using the labelsize() method.
● We set the font properties (bold and italic) using the labelfont() method.
● We set the type of label using the labeltype() method. In this case, by specifying

FL_SHADOW_LABEL we have added a shadow effect to the text.

window->end();
window->show(argc, argv);
return Fl::run();

Finally, we indicate that we have finished specifying this window using the end()
method. If we created more widgets, they would not be added to our window. Next, we
make the window visible using the show() method. Finally, we call FLTK's run() function,
which will create and visualize the GUI we just specified.

Page 4 of 10

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Lab #3 (08/08/2007)

Exercise 2 <<10 + 5 points>>

The previous exercise showed a very simple example of a FTLK-based program. There
are dozens of other widgets we could add to our program, and literally hundreds of other
aspects we could modify in our GUI, and the example is just meant to illustrate how we
can add new functionality to our programs (like a GUI) with relatively little effort
(compared to writing a GUI library ourselves). If you want to learn more about FLTK, the
best starting points are the FTLK website and the FLTK programming manual
(http://www.fltk.org/doc-1.1/toc.html). In fact, in this exercise, you will have to look at
the manual to find instructions on how to add a new widget to your program.

In this exercise, you must add a button widget, with the text “Press me!” on it. The
dimensions and position of the button are specified in the following figure:

Note that adding this button involves adding a single additional line to your program.

Exercise 3 <<Extra credit: 5 points>>

Modify the program so that, when the button is clicked, its label changes to “You clicked
me!”.

Page 5 of 10

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Lab #3 (08/08/2007)

GSL: GNU Scientific Library
In this part of the lab you will install a library that is not currently installed on the CS
machines. This library is the GNU Scientific library, a numerical library for C/C++ that
provides advanced mathematics capabilities not included in the standard C/C++ math
libraries.

Exercise 4 <<5 points>>

In this exercise you will install the GSL on your machine, and will then compile and run a
sample program. You do not need to hand in any code for this exercise. When you are
done, raise your hand and the instructor will verify that you've compiled and run the GSL
program correctly.

First of all, download the GSL library from the GSL website. You can use the following
link: ftp://ftp.gnu.org/gnu/gsl/gsl-1.9.tar.gz. Save the file to a temporary directory, like
/tmp or /var/tmp. Note that, from the command line, you can use the wget command to
download a file from an HTTP or FTP server:

wget ftp://ftp.gnu.org/gnu/gsl/gsl-1.9.tar.gz

This file is compressed, and we will have to uncompress it. We can do this with the “tar”
program:

tar xvzf gsl-1.9.tar.gz

This will result in a new directory called gsl-1.9. Change to that directory:

cd gsl-1.9

There is no universal way of installing a new library, so we must generally look for an
INSTALL or README file in the downloaded library with instructions on how to install the
library. It is also common to find installation instructions on the software's website. In
GSL's case, there is an INSTALL file. You do not have to read through it, since installation
instructions are included in this handout.

Whenever we download a new library, the installation is usually divided into three steps:
configuring the installation, building the library binaries from the source code, and
actually installing the library. There are more automatic ways of doing this, and many
GNU/Linux distributions provide package management systems (like APT, RPM, ...) that
will install additional libraries with much less hassle (however, those systems are beyond
the scope of this course). In general, the best starting point is always the installation

Page 6 of 10

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Lab #3 (08/08/2007)

instructions provided by the authors of the software we want to install (e.g., in their
website, in the INSTALL/README file, etc.)

So, first of all, we need to configure the installation. This is accomplished by running a
“configure” script that is already provided for us:

./configure --prefix=$HOME

The “--prefix=$HOME” option simply specifies that we want to install the software in our
home directory. The default is to install the software in well-known standard directories
(e.g., /usr/local). However, we do not have administrative access on the CS machines
(i.e., we would not be able to place new files in directories like /usr/local), so we must
install GSL in our home directory.

Once you run the above script, you should see several messages indicating if we meet all
the prerequisites to install the library. If we don't meet the prerequisites (e.g., we're
missing a required library), the configure script will tell us about it. In our case, the
configure script will terminate without errors.

Next, we have to build the library. Take into account that we are provided with the
source code of the library, and we will not be able to use it until we've compiled it. In
some cases, we can download pre-compiled binaries of a library and skip this step.

To build the library, the only thing we need to run is the following:

make

Your computer will spend about five minutes compiling the library. Once it is done, you
can install the library by running the following:

make install

If you look at your home directory, you will notice new directories like “lib”, “include”,
etc.

Now, we are ready to try out a sample program. We will use the one provided in the
GSL's Reference Manual (http://www.gnu.org/software/gsl/manual/):

#include <iostream>
#include <gsl/gsl_sf_bessel.h>
using namespace std;

Page 7 of 10

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Lab #3 (08/08/2007)

int main (void)
{
 double x = 5.0;
 double y = gsl_sf_bessel_J0 (x);
 cout << "J0(" << x << ") = " << y << endl;
 return 0;
}

This program computes the value of the Bessel function J0(x) for x=5. Notice how we're
including the GSL's Bessel header:

#include <gsl/gsl_sf_bessel.h>

And then using the function gsl_sf_bessel_J0() in our program.

However, compiling this program won't be as simple as in the FTLK example. Try the
following:

g++ test_gsl.cpp -o gsl

You will see the following error messages:

test_gsl.cpp:2:31: gsl/gsl_sf_bessel.h: No such file or directory
test_gsl.cpp: In function `int main()':
test_gsl.cpp:7: error: `gsl_sf_bessel_J0' undeclared (first use this function)
test_gsl.cpp:7: error: (Each undeclared identifier is reported only once for
 each function it appears in.)

The compiler can't find the GSL header file and, consequently, doesn't know what the
gsl_sf_bessel_J0 function is. The reason for this is that we have installed the GSL library
(including its header files) in a non-standard location (our home directory). So, when
compiling, we must inform the compiler of where those header files can be found:

g++ test_gsl.cpp -o gsl -I$HOME/include

However, we will still be unable to compile the program:

/tmp/ccigPHDq.o: In function `main':
test_gsl.cpp:(.text+0x20): undefined reference to `gsl_sf_bessel_J0'
collect2: ld returned 1 exit status

Although the compiler can find the header files (and thus knows what the
gsl_sf_bessel_J0 function is), it can't find the implementation for that function. Similarly

Page 8 of 10

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Lab #3 (08/08/2007)

to the FLTK example, we need to link with the GSL libraries:

g++ test_gsl.cpp -o gsl -I$HOME/include -lgsl -lgslcblas

After running the above, you should see the following message:

/usr/bin/ld: cannot find -lgsl
collect2: ld returned 1 exit status

We've specified that we want to link with the GSL libraries, but the compiler can't find
them. Once more, this is due to the fact that the libraries are in a non-standard location
(our home directory), so we have to tell the compiler where it should search for libraries:

g++ test_gsl.cpp -o gsl -I$HOME/include -lgsl -lgslcblas -L$HOME/lib

At last, our program will compile! However, we're not out of the woods yet... If we try to
run it:

./gsl

We will get the following error:

./gsl: error while loading shared libraries: libgsl.so.0: cannot open shared
object file: No such file or directory

The problem is that now the operating system cannot find the GSL library, which it needs
to dynamically link with. Again, this is because we installed the library in a non-standard
location. In a Linux system, we can specify where the operating system should look for
libraries by setting the LD_LIBRARY_PATH environment variable:

export LD_LIBRARY_PATH=$HOME/lib

Now, if you run the program, you should finally see the following:

J0(5) = -0.177597

Of course, keeping track of all the options you must specify when running the compiler
can be very tiresome (and error-prone). This is an example where using make can be
very useful. For example, we could use the following makefile:

INCLUDES = -I$(HOME)/include
LDFLAGS = -lgsl -lgslcblas -L$(HOME)/lib

Page 9 of 10

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Lab #3 (08/08/2007)

CPPFLAGS = $(LDFLAGS) $(INCLUDES)

all: test_gsl

test_gsl: test_gsl.cpp

clean:
 rm test_gsl

The above Makefile uses make's CPPFLAGS variable, which allows us to specify what
options should be passed along to g++. Notice how it is defined in terms of two other
variables: INCLUDES and LDFLAGS.

With the above Makefile, compiling the program is as simple as running this:

make

Exercise 5 <<10 points>>

Find the GSL function that will allow you to evaluate a polynomial (see the GSL
Reference Manual: http://www.gnu.org/software/gsl/manual/). Use this GSL function
to write a program that will evaluate the following polynomial:

3x4
5x2

2x−1

For x=1, 2, 3, ... , 9, 10. The output of your program should be:

poly(1) = 9
poly(2) = 71
poly(3) = 293
poly(4) = 855
poly(5) = 2009
poly(6) = 4079
poly(7) = 7461
poly(8) = 12623
poly(9) = 20105
poly(10) = 30519

Exercise 6 <<Extra credit: 5 points>>

Modify the above program so that the user can specify an arbitrary polynomial of any
degree. The user must also be able to specify the range of values to evaluate: a starting
value, and end value, and an increment. For example, in the previous exercise, the
starting value was 1, the end value was 10, and the increment was 1.

Page 10 of 10

