
The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #8 (08/17/2007)
Due: 08/22/2007 @ 1:30pm

Name:

Student ID: Instructor: Borja Sotomayor

Page 1 of 8

Do not write in this area

1 2 3 TOTAL

Maximum possible points: 20 + 40

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #8 (08/17/2007)
Due: 08/22/2007 @ 1:30pm

Exercise 1 <<20 points>>

You are provided with an XML file with information about products in the store. This is a
sample file:

<?xml version="1.0"?>
<shop name="Uncle SNAFU's Computer Store">

<item id="1" stock="7" discounted="y">
<name>FOOBAR keyboard</name>
<price>39.99</price>

</item>
<item id="2" stock="15" discounted="y">

<name>Grouchobyte hard drive</name>
<price>149.99</price>

</item>
<item id="3" stock="81">

<name>Wumpus repellant</name>
<price>49.99</price>

</item>
</shop>

For each product, the following information is stored:

➢ Product ID: Each product is assigned a unique id.

➢ Items in stock: The number of products immediately available in the store.

➢ Name: The product's name.

➢ Price: The product's price.

➢ Discounted product: Indicates whether this product is currently offered at a
discounted price (-15% discount).

Write a Python program that reads an inventory file and determines the total value of all
the items in stock. In other words, for each product, multiply its price by the stock
(applying a discount if necessary), and sum all the values. The program's output should
be the total value.

The output for the above sample file should be:

6199.50

The output for the provided inventory.xml file should be:

34202.42

Page 2 of 8

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #8 (08/17/2007)
Due: 08/22/2007 @ 1:30pm

Exercise 2 <<Extra credit: 10 points>>

Write a postfix notation (also called Reverse Polish Notation) arithmetic evaluator. Your
program must ask the user for a postfix expression, evaluate it, and then allow the user
to write another expression. The program will run infinitely (i.e., don't include a “Do you
want to enter another expression?” prompt).

For example:

borja@classes:~$ python2.5 eval.py
Type your expression: 3 5 +
8
Type your expression: 2 3 + 7 *
35
Type your expression: 2 3 + 4 5 + *
45

You are allowed to assume that operands and operators are separated by a single space.
You only need to support the addition, subtraction, multiplication, and division operators.

How to evaluate a postfix expression was (briefly) discussed in class. Hint: You will need
to use a stack.

Page 3 of 8

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #8 (08/17/2007)
Due: 08/22/2007 @ 1:30pm

Exercise 3 <<Extra credit: 30 points>>

A finite state machine (FSMs) is a theoretical model for a computing system capable of
recognizing regular languages, which we can informally describe as the set of languages
expressible with regular expressions. In this lab we will not delve into the more
theoretical aspects of FSMs, and will simply provide an abstract description of what an
FSM is and how it functions. You will then have to write a Python program that simulates
a FSM. The goal of this exercise is for you to take an abstract description of a process
and then “translate” it into a programming language.

Finite State Machines
A FSM is composed of the following:

➢ A set of states, including:
 A start state
 A set of accepting states (or “end” states)

➢ A set of input symbols.
➢ A set of transitions between states or, more formally, a transition function that,

given a state and an input symbol, returns the next state the machine must
transition to.

Given a string of input symbols, the FSM will start with the start state as its current
state, will read in the first input symbol, and then update the current state with the state
returned by the transition function. It continues to do this until no more symbols remain
in the input string.
For simplicity, we make the following assumptions:

● The FSM functions as a sequence detector. In other words, we are only interested
in checking whether, after processing the input string, the current state is an
accepting state. Compare with Moore and Mealy FSMs, where the purpose of the
FSM is to produce an output in each state or transition, and the final state is
generally irrelevant.

● The FSM is deterministic. The transition function maps each unique (state,symbol)
pair to a single state. Compare with nondeterministic, where an input symbol could
result in a transition to more than one state at once.

● Our alphabet of input symbols is the set of lowercase alphabetic characters (a-z)

Page 4 of 8

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #8 (08/17/2007)
Due: 08/22/2007 @ 1:30pm

Example
Consider the following FSM:

This FSM has the following components:
➢ States: start, 1, 2, 3, error

 Start state: start
 Accepting state: 3 (denoted by a double circle)

➢ Input symbols: a-z. We use the character '*' to denote all other characters not
captured by other transitions originating in this state. Note that this is just syntactic
sugar and we would strictly need to specify all possible transitions.

➢ Transition function:
 (start,a) -> 1
 (start,*) -> error
 (1,b) -> 2
 (1,*) -> error
 (2,c) -> 3
 (2,*) -> error
 (3,c) -> 3
 (3,*) -> error
 (error,*) -> error

By inspection, we can easily see that the above FSM corresponds to the regular
expression “abc+”.

Page 5 of 8

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #8 (08/17/2007)
Due: 08/22/2007 @ 1:30pm

FSM file format
For this exercise, we will specify FSMs using text files. For example, the following
corresponds to the above FSM:

[states]
names: start,1,2,3,error
start: start
end: 3

[transitions]
start: a:1 , *:error
1: b:2 , *:error
2: c:3 , *:error
3: c:3 , *:error
error: *:error

You are not provided with a formal specification of this format, and should be able to
infer it simply by looking at the provided example files provided. Your code will be
considered valid if it can correctly read these files.

FSM simulator
You must write a Python program that simulates a FSM, with the following
characteristics:

➢ The script's name will be fsm.py
➢ The script will accept two command-line parameters: the FSM file and an input

string. For example:

fsm.py example1.fsm abccccccc

➢ If the FSM ends in an accepting state, the script will write out “Accept”. Otherwise,
it will write out “Reject. Ended in state XX” (where XX will be the current state at
the time when the FSM finished reading the input string).

➢ You must read in the FSM file at the beginning of the program and load its contents
into whatever data structures you find appropriate (lists, dictionaries, etc.). Your
program must not read the file during the simulation itself.

➢ The simulator must detect the following error conditions:
 The FSM file specifies a nondeterministic automata.
 The FSM file does not provide an exhaustive transition function (i.e., there are

state+input combinations for which the FSM would not have a transition to
follow). For simplicity, you are only required to detect this if the FSM is given an
input string that is affected by this missing transition.

Page 6 of 8

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #8 (08/17/2007)
Due: 08/22/2007 @ 1:30pm

The points for this exercise are the following:
➢ <<10 points>> Reading in the FSM file, and storing its contents using Python data

structures. Note: You can read the FSM file line-by-line and manually parsing each
line. However, there is a much easier way of reading the FSM file which will save
you a lot of time.

➢ <<10 points>> Simulating the FSM
➢ <<10 points>> Detecting the error conditions

Example files
You are provided with five example files.

example1.fsm corresponds to the FSM shown earlier.

example2.fsm corresponds to the following FSM, equivalent to regular expression
“a+bc+”:

example3.fsm corresponds to the following FSM, equivalent to regular expression
“[a­z]*abc+[a­z]*”

Page 7 of 8

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #8 (08/17/2007)
Due: 08/22/2007 @ 1:30pm

example4.fsm is a modification of example3.fsm so its transition table will be non-
exhaustive (your implementation must detect this with input strings such as “abe” and
“abu”)

example5.fsm is a modification of example3.fsm to make it nondeterministic (your
implementation must detect this)

Page 8 of 8

