
The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #7 (08/15/2007)
Due: 08/17/2007 @ 5:00pm

Name:

Student ID: Instructor: Borja Sotomayor

Page 1 of 5

Do not write in this area

1 2 3 4 TOTAL

Maximum possible points: 45

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #7 (08/15/2007)
Due: 08/17/2007 @ 5:00pm

Exercise 1 <<15 points>>

Implement the hangman game (Exercise 4 from Homework #2, including the extra
credit portion) using Python.

Exercise 2 <<20 points>>

In language processing, two texts can be compared to determine how similar they are
according to multiple criteria. In this exercise, we will simplify the definition of “distance”
between two texts, in such a way that it will be possible to compute this distance using a
python script.

Before computing the distance, we need to generate the following information for each
text:

● Word frequencies. Given the text, compute the frequency of each word. This
should result in a file containing a list of (word,frequency) pairs, which we will
denote as w i , f i . You are already provided with several example frequency
files for this exercise. Writing a word frequency generator is a separate exercise.

● Normalized word frequencies. Given the word frequencies, normalize them. To do
this, simply take each frequency and divide it by the square root of the sum of the
squares of all the frequencies:

w i ,
f i

∑ f i
2


You can consider the normalized word frequencies as the specification of a point, where
each word is a dimension, and the normalized frequency is the position of the text on
that dimension. So, we compute the distance between two texts as a Euclidean distance:

distancetext1,text2=∑ fnorm1, i−fnorm2,i
2

Note: If a text has a word that never appears in the other text, you can consider that
the position along that word-dimension is 0 in the other text.

You must write a Python script called distance.py that, given two files (specified as
parameters) with the word frequencies of two texts, computes the distance between the
two texts.

Page 2 of 5

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #7 (08/15/2007)
Due: 08/17/2007 @ 5:00pm

Example
Suppose we have the following two files:

text1

His cat is fat, and
that is his fat
fate.

text2

The cat is fat, and
that is his feline
fate.

The word frequency files would be:

text1.freq

fat 2
his 2
is 2
and 1
cat 1
fate 1
that 1

text2.freq

is 2
and 1
cat 1
fat 1
fate 1
feline 1
his 1
that 1
the 1

To compute the distance between the two files, we would run our program like this:

python distance.py text1.freq text2.freq

Page 3 of 5

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #7 (08/15/2007)
Due: 08/17/2007 @ 5:00pm

Internally, the distance.py program would first compute the normalized frequencies,
which would be the following:

text1.freq
(Normalized)

fate 0,25000
cat 0,25000
and 0,25000
fat 0,50000
that 0,25000
is 0,50000
his 0,50000

text2.freq

(Normalized)

feline 0,28868
fate 0,28868
the 0,28868
cat 0,28868
and 0,28868
fat 0,28868
that 0,28868
his 0,28868
is 0,57735

Based on these frequencies, and using the distance formula, the script would output the
following:

0.517641

You are provided with several word frequency files you can use to test your solution:

● Distance between shrew.txt.freq and muchado.txt.freq: 0.358753109402
● Distance between shrew.txt.freq and baskervilles.txt.freq: 0.60759609533
● Distance between shrew.txt.freq and oz.txt.freq: 0.696044403252
● Distance between shrew.txt.freq and rfc2821.txt.freq: 0.884945364129

Exercise 4 <<10 points>>

Write a word frequency generator in Python. Your program must take a text file and
count the number of times each word appears. Of course, no text is just a sequence of
words, and there is also punctuation, spacing, etc. to take into account. So, for
simplicity, our word frequency generator will be case-insensitive and will consider any
non-letter character as a separator between words. So, for example, “the dog's nose”
would be considered as four words: “the”, “dog”, “s” and “nose”. Similarly, “The year
1991 was an uneventful one” is considered as six words: “The”, “year”, “was”, “an”,
“uneventful”, “one” (notice how the number 1991 is ignored, as it is just considered part
of the separation between “year” and “was”).

Page 4 of 5

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #7 (08/15/2007)
Due: 08/17/2007 @ 5:00pm

Your program must be written in a file called freq.py. The program will accept two
command line parameters: the file whose word frequencies we will determine, and a file
in which to store the word frequencies.

python freq.py example.txt example.txt.freq

The output file will have a line for each word, consisting of the word, a space character,
and the frequency. You should be able to use the generated file with your solution to
Exercise 3. Note, however, that your generated file need not be exactly the same as the
provided ones (these are sorted by frequency, and then by word; your file does not need
to be sorted).

Hint: The solution to this exercise can be greatly simplified if you use the regular
expressions module of the Python Standard Library.

Page 5 of 5

