
The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #6 (08/10/2007)
Due: 08/15/2007 @ 1:30pm

Name:

Student ID: Instructor: Borja Sotomayor

In this homework, your exercises must be compiled using make. In particular, the
instructor must be able to compile your exercises simply by running make exN (where N is
the exercise number; e.g., make ex3 to compile exercise 3).

Page 1 of 9

Do not write in this area

1 2 3 4 5 TOTAL

Maximum possible points: 65 + 20

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #6 (08/10/2007)
Due: 08/15/2007 @ 1:30pm

Exercise 1 <<20 points>>

PhoneCorp and PhoneTech, the two biggest phone companies in the US, have just
completed a corporate merger. They are now faced with the daunting task of merging
their client data files into a single file. In particular, each company has a text file with the
social security numbers of their clients (one 9-digit number in each line) in increasing
order. Your task is to create a program that takes those two files and creates a new file
with the numbers from both files, in increasing order. You can assume that the two file
have no numbers in common (i.e. the two sets of clients are disjoint)

For example:

Your program must be run like this:

ex1 <clientfile1> <clientfile2> <result>

A skeleton ex1.cpp file is provided showing how to retrieve the command-line
parameters.

For full credit (10 points otherwise), your file must perform the merge doing a single
pass through each of the files, without loading them into memory.

Note: Two example files (clients1 and clients2) are provided in the homework files.

Page 2 of 9

111111111
222222222
444444444
666666666
888888888

555555555
999999999

111111111
222222222
444444444
555555555
666666666
888888888
999999999

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #6 (08/10/2007)
Due: 08/15/2007 @ 1:30pm

The result of correctly merging these two files is the following:

113624982
135648623
154564564
168943568
193215689
236584654
276546846
279461322
283216569
295464654
316243213
333218954
342654658
345654858
393546562
395221354
399321545
412135468
422354943
462213589
493215812
539565482
539635482
783213542
896546543
973213215
993219953

Hint 2: This is a good example of an exercise you should try to first solve with a more
reduced problem set, before approaching the complete problem. For example, to
familiarize yourself with the merging algorithm (without dealing with all the I/O
messiness), try merging two 5-position arrays (preloaded with any integers you want, as
long as they are in increasing order) into a 10-position array. When you do start to add
the I/O code, first give your algorithm a try with smaller files than the ones provided
(with single-digit integers, for example, which are easier to check than 9-digit numbers).

Exercise 2 <<5 points>>

Make a simple modification to Exercise 4 so that you program will be able to handle files
with common numbers (i.e. the two companies share some clients in common, so the
two sets of clients are not disjoint). For example:

Page 3 of 9

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #6 (08/10/2007)
Due: 08/15/2007 @ 1:30pm

Note: Two example files (clients1_rep and clients2_rep) are provided in the
homework files. The result of correctly merging these two files is the following:

113624982
135648623
168943568
236584654
256684623
276546846
279461322
295464654
316243213
333218954
342654658
345654858
356698823
393546562
395221354
399321545
399645652
412135468
419654332
422354943
462213589
539565482
539635482
712315465
896546543
936532132
946546523
982132132
983213223

Page 4 of 9

111111111
222222222
444444444
666666666
888888888

222222222
555555555
888888888
999999999

111111111
222222222
444444444
555555555
666666666
888888888
999999999

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #6 (08/10/2007)
Due: 08/15/2007 @ 1:30pm

Exercise 3 <<30 points>>

We have been asked to develop a software solution for Nimbus Airlines' Frequent Flyer
department. Nimbus Airlines has provided the following explanation of how its Frequent
Flyer program works:

In the Frequent Flyer (FF) department, we need to keep track of all the clients
who have enrolled in the FF program. When a client signs up, he/she must provide
his/her name, and is assigned an 8-digit number. The client's record also reflects
the number of miles accumulated, which can later on be used to obtain free flights
or upgrades.

However, the number of miles accumulated in a client's FF account does not
necessarily correspond with the actual number of miles traveled by the client.
Depending on the client's category within the FF program, he/she might
accumulate more miles than actually traveled. We usually use the terms real miles
and air miles to distinguish both types of miles (the former being the real number
of miles traveled, and the latter being the number of miles accumulated in the
client's account).

Our FF program has three types of frequent flyers:
➢ The ordinary frequent flyer is the lowest category. Clients in this category

receive as many air miles as real miles.
➢ The silver frequent flyer rewards clients that have been with us for a long

time. When a silver frequent flyer adds miles to his/her account, the number
of air miles is equal to the number of real miles times the number of years,
plus one, that client has been enrolled in the program. For example, if a
silver frequent flyer takes an 800 mile flight, and he/she has been enrolled
for three years, the number of air miles is 800 * (3+1) = 3200.

➢ The gold frequent flyer rewards clients that fly with us frequently. When a
gold frequent flyer adds miles to his/her account, the number of air miles is
equal to the number of real miles times one tenth (rounded down) of the
number of times he/she has flied with us (plus one). For example, if a gold
frequent flyer takes an 800 mile flight, and he/she has previously been on 97
flights, the number of air miles is 800 * (97/10 + 1) = 800 * (9 + 1) = 8000.

Page 5 of 9

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #6 (08/10/2007)
Due: 08/15/2007 @ 1:30pm

Our software design department has come up with the following object-oriented model
for the stated problem:

The design department has also provided the following comments to the diagram:

➢ printData() prints the client's name, number, and miles.
➢ realMilesToAirmiles() converts a number of real miles to air miles, taking into

account the client's category.
➢ addMiles() adds a number of real miles to a user's account. Internally, this function

must use the realMilesToAirmiles() function to determine what amount of airmiles
must be added to the miles member variable.

➢ The diagram does not reflect what functions are virtual.

Page 6 of 9

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #6 (08/10/2007)
Due: 08/15/2007 @ 1:30pm

Implement the four classes described in the UML class diagram shown above. The points
in this exercise are divided as follows:

➢ 15 points for implementing the four classes, correctly using the inheritance features
in C++.

➢ 15 points for correctly implementing addMiles() and realMilesToAirmiles() using the
polymorphism features in C++.

To test your implementation, a main.cpp file is provided in the homework files that
should yield the following output:

 Cornelius Doe #23166841 200mi
 Lucius Doe #94565432 700mi
 Rufus Doe #32155994 1200mi

No header files are provided, so the main.cpp file will only work if you use exactly the
same class and function names shown in the UML diagram.

Page 7 of 9

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #6 (08/10/2007)
Due: 08/15/2007 @ 1:30pm

Exercise 4 <<10 points>>

You will write a simple program that will ask the user for an undefined amount of
numbers (i.e. the user just keeps on inserting numbers until he decides to stop). You will
use an STL vector to store these numbers. Once the user has finished typing in
numbers, you will print out the contents of the vector (a) using the vector class's bracket
operator, and (b) using iterators. Then you will sort the vector using one of the STL
algorithm functions, and will print the contents of the vector again.

Type in number #1: 56
Another number? (y/n): y
Type in number #2: 12
Another number? (y/n): y
Type in number #3: 78
Another number? (y/n): y
Type in number #4: 99
Another number? (y/n): y
Type in number #5: 34
Another number? (y/n): y
Type in number #6: 2
Another number? (y/n): y
Type in number #7: 89
Another number? (y/n): n

Numbers: 56 12 78 99 34 2 89
Numbers (with iterators): 56 12 78 99 34 2 89

Sorting...

Numbers: 2 12 34 56 78 89 99
Numbers (with iterators): 2 12 34 56 78 89 99

Page 8 of 9

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #6 (08/10/2007)
Due: 08/15/2007 @ 1:30pm

Exercise 5 <<Bonus points: 20 points>>

You are provided with the same Tree implementation provided in the previous
homework. Implement the breadth function:

void breadth(Tree &t);

This functions does a breadth-first traversal of the tree. This algorithm has not been
explained in class, so you will have to look it up elsewhere. Note that most sources show
the algorithm for traversing cyclic graphs. The algorithm for breadth-first traversal of a
tree is slightly simpler. Hint: You will not need to make any modifications to the
TreeNode struct. Hint #2: You will need to use a queue for this traversal. An
implementation of a Queue ADT is provided for you.

A main.cpp file is provided for you to test your implementation. If correctly
implemented, the program should print out the following:

BREADTH-FIRST TRAVERSAL

15 10 23 4 13 17 29 12 25

Page 9 of 9

