
The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #4 (08/03/2007)
Due: 08/08/2007 @ 1:30pm

Name:

Student ID: Instructor: Borja Sotomayor

This homework has two parts: Part A (Polynomial ADT) and Part B (Doubly Linked List). You are only
required to do part A if you are taking this class for credit.

Page 1 of 7

Do not write in this area

A.1 A.2 A.3 A.4 A.5 A.6 B.1 B.2 B.3 TOTAL

Maximum possible points: 75 + 10

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #4 (08/03/2007)
Due: 08/08/2007 @ 1:30pm

Part A: Polynomial ADT
In this part you will implement a Polynomial ADT (Abstract Data Type) using C++
classes. In particular, we will only consider second-order polynomials:

ax2bxc

The class declaration is the following (poly.h in the homework files):

class Polynomial
{

private:
/* Member variables */
int a, b, c;
/* Static member variable */
static int numPolynomials;

public:
/* Constructors */
Polynomial();
Polynomial(int a, int b, int c);
Polynomial(const Polynomial &p); // Copy constructor

/* Destructor */
~Polynomial();

/* Member functions */
bool hasRealSolution();
double getRealSolution1();
double getRealSolution2();
string str();

/* Overloaded operators */
Polynomial& operator=(const Polynomial &p);
Polynomial operator+(const Polynomial &p);
bool operator==(const Polynomial &p);

int operator()(int x);

/* Friends */

/* Static member function */
static int getNumPolynomials();

};

A poly.cpp file is provided that includes a partial implementation of the constructors, and
the implementation of the static getNumPolynomials() function.

Page 2 of 7

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #4 (08/03/2007)
Due: 08/08/2007 @ 1:30pm

To test your implementation, a main.cpp is provided in the homework files. Running this
program with a correct implementation should yield the following:

Number of polynomials is 5
p2 and p3 are the same. Good!
p2 and p5 are the same. Good!
p2 and p4 are not the same. Good!
p2 has real solutions x1=3 , x2=-5
p4 has no real solutions.
p2 is 2x^2 + 4x - 30
p2+p3 is 4x^2 + 8x - 60
p2 is 2x^2 + 4x - 30
p5 is 4x^2 + 8x - 60
p2(3) = 0
p2(-5) = 0
p2(0) = -30
Number of polynomials is 4

Exercise 1 <<5 points>>

A partial implementation of these constructors is provided:

Polynomial();
Polynomial(int a, int b, int c);

However, these constructors do not modify the static numPolynomials member variable
(which keeps a count of the number of Polynomial instances created). Modify the
constructors so they will correctly change the value of numPolynomials, and implement
the destructor:

~Polynomial();

Also, you must make sure that the static numPolynomials member variable is correctly
initialized.

Exercise 2 <<5 points>>

Implement the copy constructor:

Polynomial(const Polynomial &p);

Page 3 of 7

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #4 (08/03/2007)
Due: 08/08/2007 @ 1:30pm

Exercise 3 <<10 points>>

Implement the following member functions:

bool hasRealSolution();
double getRealSolution1();
double getRealSolution2();

In these functions, you will consider the polynomial as a quadratic equation (P(x)=0).
hasRealSolution returns true if the equation has a real solution (or two), and false
otherwise. getRealSolution1 and getRealSolution2 assume that a real solution exists,
and return each of the real solutions (if the equation has a unique solution, they return
the same value).

If you only vaguely remember the quadratic formula, you can get up to speed here:
http://en.wikipedia.org/wiki/Quadratic_equation

Extra credit (10 points): Modify these functions to consider all possible solutions (two
complex solutions, one single real solution, two real solutions) and all possible error
conditions (e.g. what if a=0? What if a=b=0? What if a=b=c=0?). You should not do this
by adding more functions (“getComplexSolution1”, ...) but by writing a single function
that returns an error code and two complex numbers (using the ComplexNumber ADT
seen in class).

Exercise 4 <<10 points>>

Overload the following operators:

Polynomial& operator=(const Polynomial &p);
Polynomial operator+(const Polynomial &p);
bool operator==(const Polynomial &p);

Exercise 5 <<10 points>>

Overload the function call operator:

int operator()(int x);

Note: We have not discussed the function call operator in class. You will have to read
about it on your own.

Page 4 of 7

http://en.wikipedia.org/wiki/Quadratic_equation

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #4 (08/03/2007)
Due: 08/08/2007 @ 1:30pm

You must overload the function call operator in such a way that using the parentheses
operator on a Polynomial object will return the value of that polynomial when x is equal
to the integer value supplied as a parameter. For example:

Polynomial p(1,2,3);

cout << p(2); // Prints out “11” (Why? ---> 1*2^2 + 2*2 + 3 = 11)

Exercise 6 <<5 points>>

Implement the following function:

string str();

This function returns a string representation of the polynomial. You must make sure that
you print out the polynomial correctly. Hint: Careful with terms that have a negative
coefficient and terms that have a zero coefficient.

Page 5 of 7

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #4 (08/03/2007)
Due: 08/08/2007 @ 1:30pm

Part B: Doubly-Linked List
NOTE: You only need to do this exercise if you are taking CMSC 15200 for credit.

You will implement a doubly linked list (as described in class).

The structure and function declarations are the following (dlist.h in the homework files):

struct ListNode {
int data;
ListNode *next;
ListNode *prev;

};

struct DList {
ListNode *head;

};

void createList(DList &l);
ListNode* first(DList &l);
void insertHead(DList &l, int data);
void insertAfter(ListNode* node, int data);
void printData(DList &l);
bool find(DList &l, int data);
void deleteHead(DList &l);
void deleteAfter(ListNode* node);
void deleteData(DList &l, int data);
void deleteList(DList &l);

// New functions
/* Inserts a new node with provided data before the specified node */
void insertBefore(DList &l, ListNode* node, int data);
/* Deletes the specified node */
void deleteNode(DList &l, ListNode* node);

Page 6 of 7

Head

DoubleList

7 43 16 34

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2007

Homework #4 (08/03/2007)
Due: 08/08/2007 @ 1:30pm

Don't reinvent the wheel. Reuse as much code as possible from the list implementation
seen in class! In fact, you should only tweak the existing functions to make sure that the
“prev” pointer always has a valid value, and then implement the new “insertBefore” and
“deleteNode” functions.

Note that, although the book describes how to implement a doubly-linked list, you
cannot take code directly from the book. This exercise also evaluates your ability to read
code (both from the book and the provided list implementation) and adapt it to your own
needs.

To test your list implementation, a main_double.cpp is provided in the homework files.
Running this program with a correct doubly linked list implementation should yield the
following:

5 4 3 2 1 5 4 3 2 1
5 1 4 3 2 1 5 4 3 2 1
1
0
1 4 3 2 1 5 4 3 2 1
1 3 2 1 5 4 3 2 1
1 2 1 5 4 3 2 1
42 1 2 1 5 4 3 2 1
42 37 1 2 1 5 4 3 2 1
37 1 2 1 5 4 3 2 1
37 1 2 1 4 3 2 1
37 2 4 3 2
List is empty!

Note: Debugging programs that use data structures is no easy matter, and you are likely
to encounter run-time errors due to dangling pointers. One good strategy is to draw the
data structure on paper, and for each operation see how the “next” and “prev” pointers
are affected. Don't forget to consider special cases (e.g. “What happens if I try to delete
the first node?”) Also, if your program crashes unexpectedly (the hallmark of a dangling
pointer), the Eclipse debugger can come in handy to pinpoint the dangling pointer (the
debugger will pause execution at the exact line that caused the crash).

Note 2: In your code, make sure you explicitly point out (with comments) what code you
had to add/modify to turn the list into a doubly linked list.

The point weights for this exercise are the following: <<10 points>> for correctly updating
the “prev” pointer, <<10 points>> for implementing insertBefore, <<10 points>> for
implementing deleteNode.

Page 7 of 7

