
Lecture 7

Berkeley Socket Programming

Berkeley Sockets

Unix Socket Programming FAQ
Beej's Guide to Network Programming

http://www.lcg.org/sock-faq/
http://www.lcg.org/sock-faq/
http://www.ecst.csuchico.edu/~beej/guide/net/html/
http://www.ecst.csuchico.edu/~beej/guide/net/html/

Metaphors

• Postal Service
– Address

• Name, Street, City, State, Zip Code
– Return Address
– Network of Post Offices
– Local Post Offices
– Lost Mail
– Indeterminacy of Order
– No confirmation of delivery for regular mail
– No failed delivery notification

Metaphors (continued)

• Toll call from one hotel room to another (circa
1945), (or, London today)
– call down to local hotel operator
– tell her the area code and number to call of the remote

hotel
– hotel operator calls long distance operator, who is

listening for incoming calls
– long distance operator calls remote hotel
– remote hotel operator picks up, as she has been

listening for calls, and routes the call to your friend’s
room

– You and your friend are now talking directly

You Already Use Sockets
• echo (7), telnet (25), ftp (21), ssh (22)

– telnet calcna.ab.ca echo
• cat /etc/services | grep [telnet | ssh | ftp | echo | etc.]
• daytime (13) (telnet time.mit.edu 13)
• email (SMTP) (port 25): (telnet direct to SMTP server)

– telnet laime.cs.uchicago.edu 25
– MAIL FROM: jcao@cs.uchicago.edu
– RCPT TO: cspp51081@cs.uchicago.edu
– DATA
– [write something here, and end with a period on a line]
– .
– QUIT

The Fundamentals

• The Computer Systems Research Group (CSRG) at the
University of California Berkeley gave birth to the
Berkeley Socket API (along with its use of the TCP/IP
protocol) with the 4.2BSD release in 1983.
– A Socket is comprised of:

• a 32-bit node address (IP address or FQDN)
• a 16-bit port number (like 7, 21, 13242)

– Example: 192.168.31.52:1051
• The 192.168.31.52 host address is in “IPv4 dotted-

quad” format, and is a decmial representation of
the hex network address 0xc0a81f34

Port Assignments
(less /etc/services)

• Ports 0 through 1023 are reserved, priveledged
ports, defined by TCP and UDP well known port
assignments

• Ports 1024 through 49151 are ports registered by
the IANA (Internet Assigned Numbers
Authority), and represent second tier common
ports (socks (1080), WINS (1512), kermit
(1649), https (443))

• Ports 49152 through 65535 are ephemeral ports,
available for temporary client usage

Protocol Stacks

OSI Model
(Tannenbaum, 1988)

Device Driver and
Hardware

(twisted pair, NIC)

IP Layer
(IPv4, IPv6)

Transport
(TCP, UDP)

Application
(Telnet, ftp, etc.)

Internet Protocol Suite

Physical
(V.24, 802.3,

Ethernet RJ45)

Datalink
(Ethernet, Token
Ring, ATM, PPP)

Network
(IPv4, IPv6, IPX)

Transport
(TCP, UDP)

Session
(RPC, Netbios,

Appletalk, DECnet)

Presentation
(MIDI, HTML,

EBCDIC)

Application
(Telnet, ftp, etc.)

Protocol Communication

Eternet Controller,
3Com Etherlink 3

Driver

IP Layer, IPv4

TCP Transport

ftp Client

Eternet Controller,
3Com Etherlink 3

Driver

IP Layer, IPv4

TCP Transport

ftpd Server

HUB HUB

Router

http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt

Common Protocols
Application ICMP UDP TCP
Ping
Traceroute
DHCP
NTP
SNMP
SMTP
Telnet
FTP
HTTP
NNTP
DNS
NFS
Sun RPC

ICMP: Internet Control Message Protocol
UDP: User Datagram Protocol
TCP: Transmission Control Protocol

Data Encapsulation

• Application puts data out through a socket
• Each successive layer wraps the received data

with its own header:

Application data

Eternet Controller,
3Com Etherlink 3

Driver

IP Layer, IPv4

TCP Transport

ftp Client

Application dataTransport
Header

Application dataTransport
Header

IP
Header

Application dataTransport
Header

IP
Header

Ethernet
Header

The Hardware (Ethernet) Layer

• Responsible for transfering frames (units of data)
between machines on the same physical network

Preamble
(bit sequence)

Destination
Address

(192.32.65.1)

64 bits 48 bits

Source
 Address

(192.32.63.5)

48 bits

Packet type
(magic number

for protocol:
0x800 = IP,
0x6003 =
Decnet,

0x809B =
Appletalk)

Datagram
(THE DATA)

(up to 12k bits)

16 bits variable

Cyclic
Redundancy

Check

32 bits

The IP Layer
• The IP layer allows packets to be sent over gateways to

machines not on the physical network
• Addresses used are IP addresses, 32-bit numbers divided

into a network address (used for routing) and a host
address

• The IP protocol is connectionless, implying:
– gateways route discrete packets independently and

irrespective of other packets
– packets from one host to another may be routed

differently (and may arrive at different times)
– non-guaranteed delivery

IP Datagram Format
• Packets may be broken up, or fragmented, if

original data is too large for a single packet
(Maximum Transmission Unit is currently 12k
bits, or 1500 Bytes)

• Packets have a Time To Live, number of
seconds/rounds it can bounce around aimlessly
among routers until it’s killed

Preamble Length
of data

2 bytes 2 bytes

Fragmentation
Information (if

it's too big for an
ethernet frame

buffer)

4 bytes

Time
To Live

Protocol
(TCP,
UDP)

1 byte 1 byte

Checksum

2 bytes

Destination
Address

(192.32.65.1)

4 bytes

Source
 Address

(192.32.63.5)

4 bytes

Options
Datagram

(THE DATA)
(up to 12k bits)

variable variable

The Transport Layer

• Unix has two common transports
– User Datagram Protocol

• record protocol
• connectionless, broadcast
• Metaphor: Postal Service

– Transmission Control Protocol
• byte stream protocol
• direct connection-oriented
• Metaphor: Phone Service circa 1945

– “Sarah, this is Andy, get me Barney please.”

The Transport Layer:
UDP Protocol

• Connectionless, in that no long term connection
exists between the client and server. A
connection exists only long enough to deliver a
single packet and then the connection is severed.

• No guaranteed delivery (“best effort”)
• Fixed size boundaries, sent as a single “fire and

forget message”. Think announcement.
• No built-in acknowledgement of receipt

http://www.rfc-editor.org/rfc/rfc768.txt

The Transport Layer:
UDP Protocol

• No built-in order of delivery, random delivery
• Unreliable, since there is no acknowledgement of

receipt, there is no way to know to resend a lost
packet

• Does provide checksum to guarantee integrity of
packet data

• Fast and Efficient

http://www.rfc-editor.org/rfc/rfc768.txt

The Transport Layer:
TCP Protocol

• TCP guarantees delivery of packets in order of
transmission by offering acknowledgement and
retransmission: it will automatically resend after
a certain time if it does not receive an ACK

• TCP promises sequenced delivery to the
application layer, by adding a sequence number
to every packet. Packets are reordered by the
receiving TCP layer before handing off to the
application layer. This also aides in handling
“duplicate” packets.

http://www.rfc-editor.org/rfc/rfc793.txt

The Transport Layer:
TCP Protocol

• Pure stream-oriented connection, it does not care
about message boundaries

• A TCP connection is full duplex (bidirectional),
so the same socket can be read and written to (cf.
half duplex pipes)

• Provides a checksum that guarantees packet
integrity

http://www.rfc-editor.org/rfc/rfc793.txt

TCP’s Positive Acknowledgement
with Retransmission

• TCP offers acknowledgement and retransmission: it will automatically
resend after a certain time if it does not receive an ACK

• TCP offers flow control, which uses a “sliding window” (in the TCP
header) will allow a limited number of non-ACKs on the net during a
given interval of time. This increases the overall bandwidth efficiency.
This window is dynamically manged by the recipient TCP layer.

time t1

Packet 1 is sent
Timer1 started

Packet 1 is
received, ACK

sent

time t2

ACK received for
Packet 1

Packet 2 sent and
Timer2 started

time t3

Vortex
Of

Death

time t4
ACK never

received, Timer2
times out

Packet 2 RESENT
as Packet 3 and
Timer3 started

time t5

Packet 3 is
received, ACK

sent

ACK received for
Packet 2

time t6 time t7

How to Reuse Addresses
• Local ports are locked from rebinding for a period of time (usually a

couple of minutes based on the TIME_WAIT state) after a process
closes them. This is to ensure that a temporarily “lost” packet does
not reappear, and then be delivered to a reincarnation of a listening
server. But when coding and debugging a client server app, this is
bothersome. The following code will turn this feature off:

int yes = 1;
server = socket(AF_INET, SOCK_STREAM, 0);

if (setsockopt(server, SOL_SOCKET,
SO_REUSEADDR, &yes, sizeof(int)) < 0)

{
perror(“setsockopt SO_REUSEADDR");
exit(1);

}

TCP Datagram Format

• Source and Destination addresses
• Sequence Number tells what byte offset within

the overall data stream this segment applies
• Acknowledgement number lets the recipient set

what packet in the sequence was received ok.

Source
Port

Destination
Port

2 bytes 2 bytes

Sequence
Number

4 bytes

Acknowledgement
Number

4 bytes

Checksum

2 bytes

Window
Size

2 bytes

Urgent
Pointer

Datagram
(THE DATA)

(up to 12k bits)

2 bytes variable

Flags

2 bytes

Options

variable

Socket Domain Families
• There are several significant socket domain families:

– Internet Domain Sockets (AF_INET)
• implemented via IP addresses and port numbers

– Unix Domain Sockets (AF_UNIX)
• implemented via filenames (think “named pipe”)

– Novell IPX (AF_IPX)
– AppleTalk DDS (AF_APPLETALK)
– Example:

~mark/pub/51081/sockets/linux/socketpairs.c

Creating a Socket
#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain, int type, int protocol);

• domain is one of the Address Families
(AF_INET, AF_UNIX, etc.)

• type defines the communication protocol
semantics, usually defines either:
– SOCK_STREAM: connection-oriented stream (TCP)
– SOCK_DGRAM: connectionless, unreliable (UDP)

• protocol specifies a particular protocol, just set
this to 0 to accept the default (PF_INET,
PF_UNIX) based on the domain

Create socket

bind a port to the
socket

SERVER

listen for incoming
connections

accept an
incoming

connection

read from the
connection

write to the
connection

Create socket

connect to server's
port

read from the
connection

write to the
connection

close connection

CLIENT

looploop

• Connection-
oriented socket
connections

• Client-Server
view

Server Side Socket Details

Create socket

bind a port to the
socket

SERVER

listen for incoming
connections

accept an
incoming

connection

read from the
connection

write to the
connection

int socket(int domain, int type, int protocol)
sockfd = socket(PF_INET, SOCK_STREAM, 0);

int bind(int sockfd, struct sockaddr *server_addr, socklen_t length)
bind(sockfd, &server, sizeof(server));

int listen(int sockfd, int num_queued_requests)
listen(sockfd, 5);

int accept(int sockfd, struct sockaddr *incoming_address, socklen_t length)
newfd = accept(sockfd, &client, sizeof(client)); /* BLOCKS */

int read(int sockfd, void * buffer, size_t buffer_size)
read(newfd, buffer, sizeof(buffer));

int write(int sockfd, void * buffer, size_t buffer_size)
write(newfd, buffer, sizeof(buffer));

Client Side Socket Details

Create socket

CLIENT

connect to Server
socket

read from the
connection

write to the
connection

int socket(int domain, int type, int protocol)
sockfd = socket(PF_INET, SOCK_STREAM, 0);

int connect(int sockfd, struct sockaddr *server_address, socklen_t length)
connect(sockfd, &server, sizeof(server));

int read(int sockfd, void * buffer, size_t buffer_size)
read(sockfd, buffer, sizeof(buffer));

int write(int sockfd, void * buffer, size_t buffer_size)
write(sockfd, buffer, sizeof(buffer));

Setup for an Internet Domain
Socket

struct sockaddr_in {
sa_family_t sin_family;
unsigned short int sin_port;
struct in_addr sin_addr;
unsigned char pad[...];

};

• sin_family is set to Address Family AF_INET
• sin_port is set to the port number you want to bind to
• sin_addr is set to the IP address of the machine you are

binding to (struct in_addr is a wrapper struct for an
unsigned long). INADDR_ANY supports all interfaces
(since a given machine may have multiple interface cards)

• ignore padding

Setup for A Unix Domain Socket

struct sockaddr_un {
sa_family_t sun_family;
char sun_path[UNIX_PATH_MAX];

};

• sun_family is set to Address Family AF_UNIX
• sun_path is set to a UNIX pathname in the

filesystem

Reading From and Writing To
Stream Sockets

• Sockets, like everything else, are like files:
– low level IO:

• read() system call
• write() system call

– higher level IO:
• int recv(int socket, char *buf, int len, int flags);

– blocks on read
– returns 0 when other connection has terminated

• int send(int socket, char *buf, int len, int flags);
– returns the number of bytes actually sent

• where flags may be one of:
– MSG_DONTROUTE (don’t route out of localnet)
– MSG_OOB (out of band data (think interruption))
– MSG_PEEK (examine, but don’t remove from stream)

Closing a Socket Session

• int close(int socket);
– closes read/write IO, closes socket file

descriptor
• int shutdown(int socketfd, int how);

– where how is:
• 0: no more receives allowed
• 1: no more sends are allowed
• 2: disables both receives and sends (but

doesn’t
close the socket, use close() for that)

• Example: hangserver.c (hangman game)

Host and Network Byte Ordering
• Different computer architectures store numbers

differently:
– Little Endian architectures (like VAX, Intel) store the

least significant byte first
• This means that within a (2-byte) word, the least significant

byte is stored first, that is, at the lowest byte address
– Big Endian architectures (like Sun Sparc, Motorola

68000) store the most significant byte appearing first
• This means that within a (2-byte) word, the most significant

byte is stored first, that is, at the lowest byte address

• examples:
~mark/pub/51081/byteorder/linux/endian.sh and
~mark/pub/51081/byteorder/solaris/endian.sh

Why This Matters

• TCP/IP mandates that big-endian byte ordering
be used for transmitting protocol information

• This means that little-endian machines will need
to convert ip addresses and port numbers into
big-endian form in order to communicate
successfully

• Note that big-endian architectures don’t actually
have to do anything, because they already meet
the specification

What’s To Be Done About It?

• Several functions are provided to allow you to easily
convert between host and network byte ordering, and they
are:
– to translate 32-bit numbers (i.e. IP addresses):

• unsigned long htonl(unsigned long hostlong);
• unsigned long ntohl(unsigned long netlong);

– to translate 16-bit numbers (i.e. Port numbers):
• unsigned short htons(unsigned short hostshort);
• unsigned short ntohs(unsigned short netshort);

UDP Clients and Servers

• Connectionless clients and servers create a socket using
SOCK_DGRAM instead of SOCK_STREAM

• Connectionless servers do not call listen() or accept(), and
usually do not call connect()

• Since connectionless communications lack a sustained
connection, several methods are available that allow you
to specify a destination address with every call:
– sendto(sock, buffer, buflen, flags, to_addr, tolen);
– recvfrom(sock, buffer, buflen, flags, from_addr, fromlen);

• Examples: daytimeclient.c, mytalkserver.c, mytalkclient.c

Servicing Multiple Clients
• Two main approaches:

– forking with fork()
– selecting with select()

• fork() approach forks a new process to handle each
incoming client connection, essentially to act as a
“miniserver” dedicated to each new client:
– must worry about zombies created when parent loops

back to accept() a new client (ignore SIG_CHILD
signal)

– inefficient
• A better approach would be to have a single process

handle all incoming clients, without having to spawn
separate child “server handlers”. Enter select().

select()

int select(int numfiledescs, fd_set readfdsset, fd_set
writefdsset, fd_set errorfdsset, struct timeval * timeout);

• The select() system call provides a way for a
single server to wait until a set of network
connections has data available for reading

• The advantage over fork() here is that no multiple
processes are spawned

• The downside is that the single server must
handle state management on its own for all its
new clients

select() (continued)
• select() will return if any of the descriptors in readfdsset

and writefdsset of file descriptors are ready for reading or
writing, respectively, or, if any of the descriptors in
errorfdsset are in an error condition

• The FD_SET(int fd, fd_set *set) function will add the file
descriptor fd to the set set

• The FD_ISSET(int fd, fd_set *set) function will tell you
if filedesc fd is in the modified set set

• select() returns the total number of descriptors in the
modified sets

• If a client closes a socket whose file descriptor is in one
of your watched sets, select() will return, and your next
recv() will return 0, indicating the socket has been closed

Setting the timeval in select()

• If you set the timeout to 0, select() times out immediately
• If you set the timeout to NULL, select() will never time

out, and will block indefinitely until a filedes is modified
• If you don’t care about a particular file descriptor set, just

set it to NULL in the call:
select (max, &readfds, NULL, NULL, NULL);

– Here we only care about reading, and we want to
block indefinitely until we do have a file descriptor
ready to be read

• examples: multiserver.c, multiclient.c

Miscellaneous Socket Functions
• int getpeername(int sockfd, struct sockaddr * addr, int

*addrlen);
– this tells you the hostname of the REMOTE

connection
• int gethostname(char * hostname, size_t size);

– this tells you the hostname of your LOCAL
connection

• int inet_aton(const char * string_address,
&(addr.sin_addr));
– converts the const ip string_address (“192.168.3.1”)

into an acceptable numeric form
• addr.sin_addr = inet_addr(“192.168.3.1”);

– does the same thing

More Miscellaneous Functions

• struct hostent *gethostbyname(const char
*hostname);
– Does a DNS lookup and returns a pointer to a hostent

structure that contains the host name, aliases, address
type (AF_INET, etc.), length, and an array of IP
addresses for this host (hostent.h_addr_list[0] is
usually the one)
(cf. /etc/nsswitch.conf)
struct hostent {
char *h_name; /*DNS host name*/
char **h_aliases; /*alias list*/
int h_addrtype; /* “AF_INET”, etc*/
int h_length; /* length of addr*/
char **h_addr_list; /*list of IP adds*/
};

And a Few More

struct servent * getservbyname(const char
*servicename, const char *protocol)

struct servent * getservbyport(int port, const char
*protocol)

• example:
serventptr = getservbyname(“daytime”, “udp”);
struct servent {

char * s_name; /*official service name*/
char **s_aliases; /* alias list */
int s_port; /*port num*/
char *s_proto; /* protocol: “tcp”, “udp”*/

};

	Lecture 7
	Berkeley Sockets
	Metaphors
	Metaphors (continued)
	You Already Use Sockets
	The Fundamentals
	Port Assignments (less /etc/services)
	Protocol Stacks
	Protocol Communication
	Common Protocols
	Data Encapsulation
	The Hardware (Ethernet) Layer
	The IP Layer
	IP Datagram Format
	The Transport Layer
	The Transport Layer:UDP Protocol
	The Transport Layer:UDP Protocol
	The Transport Layer:TCP Protocol
	The Transport Layer:TCP Protocol
	TCP¡¯s Positive Acknowledgement with Retransmission
	How to Reuse Addresses
	TCP Datagram Format
	Socket Domain Families
	Creating a Socket
	Server Side Socket Details
	Client Side Socket Details
	Setup for an Internet Domain Socket
	Setup for A Unix Domain Socket
	Reading From and Writing To Stream Sockets
	Closing a Socket Session
	Host and Network Byte Ordering
	Why This Matters
	What¡¯s To Be Done About It?
	UDP Clients and Servers
	Servicing Multiple Clients
	select()
	select() (continued)
	Setting the timeval in select()
	Miscellaneous Socket Functions
	More Miscellaneous Functions
	And a Few More

